Esempio n. 1
0
pulsesequence()
{
/* DECLARE AND LOAD VARIABLES */

  char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
              mag_flg[MAXSTR],    /* magic-angle coherence transfer gradients */
              f2180[MAXSTR],                  /* Flag to start t2 @ halfdwell */
              wudec[MAXSTR],	 /* automatic low power C-13 WURST decoupling */
              C13refoc[MAXSTR],	       /* adiabatic C13  pulse in middle of t1*/
	      NH2only[MAXSTR];		       /* spectrum of only NH2 groups */

 
  int         icosel,          		          /* used to get n and p type */
              t1_counter,  		        /* used for states tppi in t1 */
              t2_counter,  	 	        /* used for states tppi in t2 */
              PRexp,                        /* projection-reconstruction flag */
	      ni2 = getval("ni2");

  double      csa, sna, tau1, tau2,	                 /*  t1 and t2 delays */ 
              bw, ofs, ppm, nst,        /* bandwidth, offset, ppm, # of steps */
	      mix = getval("mix"),		 	    /* NOESY mix time */
	      tNH = 1.0/(4.0*getval("JNH")),	  /* 1/4J N15 evolution delay */
              pra = M_PI*getval("pra")/180.0,             /* projection angle */
              pwClvl = getval("pwClvl"), 	/* coarse power for C13 pulse */
              pwC = getval("pwC"),    /* C13 90 degree pulse length at pwClvl */
              compC = getval("compC"), /* adjust for C13 amplifier compression */
              pwC180 = 0.001,   /* duration of C13 180 degree adiabatic pulse */ 
              compH = getval("compH"), /* adjust for H1 amplifier compression */

   	tpwrsf = getval("tpwrsf"), /* fine power adjustment for flipback pulse */
   	pwHs = getval("pwHs"),	         /* H1 90 degree pulse length at tpwrs */
   	tpwrs = 0.0,	  	       /* power for the pwHs ("H2Osinc") pulse */
   	xdel = 2.0*GRADIENT_DELAY + POWER_DELAY,                /* xtra delay */

	pwNlvl = getval("pwNlvl"),	               /* power for N15 pulses */
        pwN = getval("pwN"),           /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

        gzcal=getval("gzcal"),
	gt1 = getval("gt1"),  		        /* coherence pathway gradients */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt0 = getval("gt0"),				    /* other gradients */
	gt3 = getval("gt3"), 
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl6 = getval("gzlvl6"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5");

    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("f2180",f2180);
    getstr("C13refoc",C13refoc);
    getstr("NH2only",NH2only);
    getstr("wudec",wudec);

/*   LOAD PHASE TABLE    */

	settable(t1,2,phi1);
	settable(t3,4,phi3);
	settable(t9,16,phi9);
	settable(t10,1,phi10);
	settable(t11,8,rec);

/*   MAKE PBOX SHAPES   */

   if((FIRST_FID) && ((C13refoc[A]=='y') || (wudec[A]=='y')))   /* call Pbox */
   {
     ppm = getval("dfrq"); ofs = 0.0; nst = 1000;   /* nst - number of steps */ 
     bw = pwC*compC;
     if(bw > 0.0) 
     {
       bw = 0.1/bw;                                     /* maximum bandwidth */
       bw = pwC180*bw*bw; 
     }
     else
       bw = 200.0*ppm; 
       
     if(C13refoc[A]=='y')
       adC180 = pbox_makeA("adC180", "wurst2i", bw, pwC180, ofs, compC*pwC, pwClvl, nst);
     if(wudec[A]=='y') 
       wuCdec_lr = pbox_Adec("wurstC_lr", "CAWURST", bw, 0.01, ofs, compC*pwC, pwClvl);
   }      
    
   if(pwHs > 1.0e-5)                /* selective H20 one-lobe sinc pulse */
   {
     if(FIRST_FID) 
       H2Osinc = pbox_Rsh("H2Osinc", "sinc90", pwHs, 0.0, compH*pw, tpwr);
     tpwrs = H2Osinc.pwr;
     pwHs = H2Osinc.pw;
   }

/* CHECK VALIDITY OF PARAMETER RANGES */

  if ((mix - gt4 - gt5) < 0.0 )
  { text_error("mix is too small. Make mix equal to %f or more.\n",(gt4 + gt5));
						   		    psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
  { text_error("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y'))
  { text_error("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1); }

  if( dpwr2 > 50 )
  { text_error("don't fry the probe, DPWR2 too large!  ");   	    psg_abort(1); }

  if( pw > 20.0e-6 )
  { text_error("dont fry the probe, pw too high ! ");               psg_abort(1); } 
  
  if( pwN > 100.0e-6 )
  { text_error("dont fry the probe, pwN too high ! ");              psg_abort(1); }

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2) 
      tsadd(t1,1,4);  
    if (phase2 == 1) 
    { tsadd(t10,2,4); icosel = 1; }
    else              icosel = -1; 

/* set up Projection-Reconstruction experiment */
   
    PRexp = 0;      
    if((pra > 0.0) && (pra < 90.0)) PRexp = 1;

    csa = cos(pra);
    sna = sin(pra);
    
    if(PRexp)
    {
      tau1 = d2*csa;
      tau2 = d2*sna;
    }
    else
    {
      tau1 = d2;
      tau2 = d3;
    }

    if((f1180[A] == 'y') && (ni > 1.0))    /*  Set up f1180, tau1 = t1 */
      tau1 += 1.0/(2.0*sw1);
    tau1 = tau1/2.0;

    if((PRexp == 0) && (f2180[A] == 'y') && (ni2 > 1.0)) /*  Set up f2180  tau2 = t2 */
      tau2 += 1.0/(2.0*sw2);     
    tau2 = tau2/2.0;

    if(tau1 < 0.2e-6) tau1 = 0.0;
    if(tau2 < 0.2e-6) tau2 = 0.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t11,2,4); }

   if( ix == 1) d3_init = d3;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) { tsadd(t3,2,4); tsadd(t11,2,4); }

/*  Correct inverted signals for NH2 only spectra  */

   if(NH2only[A]=='y') { tsadd(t3,2,4); }

   if(wudec[A]=='y') xdel = xdel + POWER_DELAY + PWRF_DELAY + PRG_START_DELAY;

/* BEGIN PULSE SEQUENCE */

status(A);

	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(4095.0);
	txphase(zero);
        dec2phase(zero);

	delay(d1);

	dec2rgpulse(pwN, zero, 0.0, 0.0);  /* destroy N15 and C13 magnetization */
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);

   	txphase(t1);
   	decphase(zero);
   	dec2phase(zero);
	delay(5.0e-4);
	rcvroff();

   	rgpulse(pw, t1, 50.0e-6, 0.0);                     /* 1H pulse excitation */

   	txphase(zero);

   if (tau1 > (2.0*GRADIENT_DELAY + pwN + 0.64*pw + 5.0*SAPS_DELAY))  
   {
     if (tau1>0.002)
     {
       zgradpulse(gzlvl6, 0.8*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw));
       delay(0.2*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw) - SAPS_DELAY);
     }
     else
     {
       delay(tau1-pwN-0.64*pw);
     }
     
     if (C13refoc[A]=='y')
       sim3pulse(0.0, 2.0*pwC, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
     else
       dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
       
     if (tau1>0.002)
     {
       zgradpulse(-1.0*gzlvl6, 0.8*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw));
       delay(0.2*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw) - SAPS_DELAY);
     }
     else
     {
       delay(tau1-pwN-0.64*pw);
     }
   }
   else if (tau1 > (0.64*pw + 0.5*SAPS_DELAY))
     delay(2.0*tau1 - 2.0*0.64*pw - SAPS_DELAY );

   	rgpulse(pw, zero, 0.0, 0.0);

	delay(mix - gt4 - gt5 -gstab -200.0e-6);
	dec2rgpulse(pwN, zero, 0.0, 0.0);
	zgradpulse(gzlvl4, gt4);
        delay(gstab);

   	rgpulse(pw, zero, 200.0e-6,0.0);			       /* HSQC begins */

   	dec2phase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(tNH - gt0);

   	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

   	txphase(one);
	zgradpulse(gzlvl0, gt0);
	delay(tNH - gt0);

 	rgpulse(pw, one, 0.0, 0.0);
	txphase(two);
        if (tpwrsf<4095.0)
        {
          obspower(tpwrs+6.0); obspwrf(tpwrsf);
   	  shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0);
	  obspower(tpwr); obspwrf(4095.0);
        }
        else
        {
          obspower(tpwrs);
   	  shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0);
	  obspower(tpwr);
        }
	zgradpulse(gzlvl3, gt3);
	dec2phase(t3);
	decpwrf(adC180.pwrf);
	delay(2.0e-4);
   	dec2rgpulse(pwN, t3, 0.0, 0.0);
	decphase(zero);


/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

        txphase(zero);
	dec2phase(t9);

     if (NH2only[A]=='y')	
     {      
    	delay(tau2);
         			  /* optional sech/tanh pulse in middle of t2 */
    	if (C13refoc[A]=='y') 				   /* WFG_START_DELAY */
           { decshaped_pulse("adC180", pwC180, zero, 0.0, 0.0);
             delay(tNH - 1.0e-3 - WFG_START_DELAY - 2.0*pw); }
    	else
           { delay(tNH - 2.0*pw);}
    	rgpulse(2.0*pw, zero, 0.0, 0.0);
    	if (tNH < gt1 + 1.99e-4)  delay(gt1 + 1.99e-4 - tNH);

    	delay(tau2);

    	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);
        if (mag_flg[A] == 'y')
          magradpulse(gzcal*gzlvl1, gt1);
        else
          zgradpulse(gzlvl1, gt1);
    	dec2phase(t10);
   	if (tNH > gt1 + 1.99e-4)  delay(tNH - gt1 - 2.0*GRADIENT_DELAY);
   	else   delay(1.99e-4 - 2.0*GRADIENT_DELAY);
     }
     else
     {
        if ( (C13refoc[A]=='y') && (tau2 > 0.5e-3 + WFG2_START_DELAY) )
           {  delay(tau2 - 0.5e-3 - WFG2_START_DELAY); /* WFG2_START_DELAY */
            simshaped_pulse("", "adC180", 2.0*pw, pwC180, zero, zero, 0.0, 0.0);
            delay(tau2 - 0.5e-3);
            delay(gt1 + 2.0e-4);}
	else
           { delay(tau2);
            rgpulse(2.0*pw, zero, 0.0, 0.0);
            delay(gt1 + 2.0e-4 - 2.0*pw);
            delay(tau2); }

	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        if(mag_flg[A] == 'y')
          magradpulse(gzcal*gzlvl1, gt1);
        else
          zgradpulse(gzlvl1, gt1);
          
	dec2phase(t10);
	delay(2.0e-4 - 2.0*GRADIENT_DELAY);
     } 

/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */

	sim3pulse(pw, 0.0, pwN, zero, zero, t10, 0.0, 0.0);

	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	delay(tNH - 1.5*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(one);
	delay(tNH  - 1.5*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, one, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(1.5*gzlvl5, gt5);
	delay(tNH - 1.5*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(1.5*gzlvl5, gt5);
	delay(tNH - pwN - 0.5*pw - gt5);

	rgpulse(pw, zero, 0.0, 0.0);

	delay((gt1/10.0) + 1.0e-4+ gstab - 0.5*pw + xdel);

	rgpulse(2.0*pw, zero, 0.0, rof1);
	dec2power(dpwr2);				       /* POWER_DELAY */
	
        if (mag_flg[A] == 'y')
          magradpulse(icosel*gzcal*gzlvl2, gt1/10.0);
        else
          zgradpulse(icosel*gzlvl2, gt1/10.0);
        delay(gstab + rof2);
        
	setreceiver(t11);
        rcvron();
        statusdelay(C,1.0e-4-rof1);		
        if(wudec[A]=='y') 
        {
          decpwrf(4095.0);
          decpower(wuCdec_lr.pwr+3.0);
          decprgon("wurstC_lr", 1.0/wuCdec_lr.dmf, wuCdec_lr.dres);
          decon();
        }	
}		 
Esempio n. 2
0
pulsesequence()

{

   double   gzlvlE = getval("gzlvlE"),
            gtE = getval("gtE"),
            EDratio = getval("EDratio"),
            gstab = getval("gstab"),
            mult = getval("mult"),
	    pwx180 = getval("pwx180"),
	    pwxlvl180 = getval("pwxlvl180"),
	    pwx180r = getval("pwx180r"),
	    pwxlvl180r = getval("pwxlvl180r"),
            tpwr180 = getval("tpwr180"),
            pw180 = getval("pw180"),
            hsglvl = getval("hsglvl"),
            hsgt = getval("hsgt"),
            gzlvl5 = getval("gzlvl5"),
            tau,
            taug;
   int      icosel,
	    phase1 = (int)(getval("phase")+0.5),
            prgcycle = (int)(getval("prgcycle")+0.5),
	    ZZgsign;
   char	    pwx180ad[MAXSTR],
	    pwx180ref[MAXSTR],
	    bipflg[MAXSTR],
	    pw180ad[MAXSTR];

//synchronize gradients to srate for probetype='nano'
//   Preserve gradient "area"
        gtE = syncGradTime("gtE","gzlvlE",0.5);
        gzlvlE = syncGradLvl("gtE","gzlvlE",0.5);

  getstr("pwx180ad", pwx180ad);
  getstr("pwx180ref", pwx180ref);
  getstr("pw180ad", pw180ad);
  getstr("bipflg",bipflg);
  if (bipflg[0] == 'y')
  {
        tpwr180=getval("tnbippwr");
        pw180=getval("tnbippw");
        getstr("tnbipshp",pw180ad);
  }
  if (bipflg[1] == 'y')
  {
        pwxlvl180=getval("dnbippwr");
        pwx180=getval("dnbippw");
        getstr("dnbipshp",pwx180ad);
  }

  tau = 1 / (4*(getval("j1xh")));

  if (mult > 0.5)
    taug = 2*tau + getval("tauC");
  else
    taug = gtE + gstab + 2 * GRADIENT_DELAY;
  ZZgsign=-1; 
  if (mult == 2) ZZgsign=1;
  icosel = 1;
 
  assign(ct,v17);
  assign(zero,v18);
  assign(zero,v19);

  if (getflag("prgflg") && (satmode[0] == 'y') && (prgcycle > 1.5))
    {
        hlv(ct,v17);
        mod2(ct,v18); dbl(v18,v18);
        if (prgcycle > 2.5)
           {
                hlv(v17,v17);
                hlv(ct,v19); mod2(v19,v19); dbl(v19,v19);
           }
     }

  settable(t1, 4, ph1);
  settable(t2, 2, ph2);
  settable(t3, 8, ph3);
  settable(t4, 16, ph4);
  settable(t5, 16, ph5);

  getelem(t1, v17, v1);
  getelem(t3, v17, v3);
  getelem(t4, v17, v4);
  getelem(t2, v17, v2);
  getelem(t5, v17, oph);

  assign(zero,v6);
  add(oph,v18,oph);
  add(oph,v19,oph);

  if ((phase1 == 2) || (phase1 == 5))
    icosel = -1;

  initval(2.0*(double)(((int)(d2*getval("sw1")+0.5)%2)),v14);
/*
  mod2(id2, v14);
  dbl(v14,v14);
*/
  add(v2, v14, v2);
  add(oph, v14, oph);

status(A);
   obspower(tpwr);

   delay(5.0e-5);
   if (getflag("sspul"))
        steadystate();

   if (satmode[0] == 'y')
     {
        if ((d1-satdly) > 0.02)
                delay(d1-satdly);
        else
                delay(0.02);
        if (getflag("slpsat"))
           {
                shaped_satpulse("relaxD",satdly,zero);
                if (getflag("prgflg"))
                   shaped_purge(v6,zero,v18,v19);
           }
        else
           {
                satpulse(satdly,zero,rof1,rof1);
                if (getflag("prgflg"))
                   purge(v6,zero,v18,v19);
           }
     }
   else
        delay(d1);

   if (getflag("wet"))
     wet4(zero,one);

   obspower(tpwr);
   decpower(pwxlvl180);

  status(B);

    if (getflag("nullflg"))
    {
      rgpulse(0.5 * pw, zero, rof1, rof1);
      obspower(tpwr180);
      delay(tau);
      simshaped_pulse(pw180ad,pwx180ad,pw180,pwx180,zero,zero,rof1,rof1);
      delay(tau+POWER_DELAY+rof1);
      delay(tau+POWER_DELAY+rof1);
      simshaped_pulse(pw180ad,pwx180ad,pw180,pwx180,zero,zero,rof1,rof1);
      obspower(tpwr);
      delay(tau);
      rgpulse(0.5 * pw, zero, rof1, rof1);
      zgradpulse(hsglvl, hsgt);
      delay(1e-3);
    }

    rgpulse(pw, v6, rof1, rof1);
    obspower(tpwr180);
    shaped_pulse(pw180ad,pw180,zero,rof1,rof1);
    delay(tau+2.0*POWER_DELAY+2.0*rof1);
    simshaped_pulse(pw180ad,pwx180ad,pw180,pwx180,zero,zero,rof1,rof1);
    delay(tau);
    obspower(tpwr);
    rgpulse(pw, v1, rof1, rof1);
    zgradpulse(hsglvl, 2 * hsgt);
    decpower(pwxlvl);
    obspower(tpwr180);
    delay(1e-3);
    decrgpulse(pwx, v2, rof1, 2.0e-6);

    delay(d2 / 2);
    shaped_pulse(pw180ad,pw180,zero,rof1,rof1);
    delay(d2 / 2);

    delay(taug - POWER_DELAY);
    decpower(pwxlvl180r);
    decshaped_pulse(pwx180ref, pwx180r, zero, rof1, rof1);

    if(mult < 1.5)
      {
       obspower(tpwr);
       if (mult <0.5)
         delay(2*rof1);
       else
         rgpulse(mult*pw,zero,rof1,rof1);
      }
    else
      shaped_pulse(pw180ad,pw180,zero,rof1,rof1);

    if(mult < 1.5)
      delay(4*pwx/PI + 4.0e-6 + taug - gtE - gstab - 2 * GRADIENT_DELAY + WFG_START_DELAY + pw180 + WFG_STOP_DELAY - mult*pw);
    else
      delay(4*pwx/PI + 4.0e-6 + POWER_DELAY + taug  - gtE - gstab - 2 * GRADIENT_DELAY);

    zgradpulse(gzlvlE, gtE);
    delay(gstab);
    decshaped_pulse(pwx180ref, pwx180r, zero, rof1, rof1);
    decpower(pwxlvl);

    decrgpulse(pwx, v4, 2.0e-6, rof1);
    obspower(tpwr);
    decpower(pwxlvl180);
    zgradpulse(ZZgsign*0.6 * hsglvl, 1.2 * hsgt);
    delay(1e-3);

    rgpulse(pw, v3, rof1, rof1);
    obspower(tpwr180);
    shaped_pulse(pw180ad,pw180,zero,rof1,rof1);
    zgradpulse(gzlvl5,gtE/2.0);
    delay(tau-gtE/2.0+2.0*POWER_DELAY);
    simshaped_pulse(pw180ad,pwx180ad,pw180,pwx180,zero,zero,rof1,rof2);
    zgradpulse(gzlvl5+icosel * 2.0*gzlvlE/EDratio, gtE/2.0);
    delay(tau-gtE/2.0);
    decpower(dpwr);

  status(C);
}
Esempio n. 3
0
pulsesequence()
{
 char    
    f1180[MAXSTR],    
    f2180[MAXSTR],
    mag_flg[MAXSTR];  /* y for magic angle, n for z-gradient only  */

 int        
    icosel,
    t1_counter,   
    t2_counter;   

 double      
    ni2,  
    ratio,        /* used to adjust t1 semi-constant time increment */
    tau1,       
    tau2,       
    taua,         /*  ~ 1/4JCH =  1.5 ms - 1.7 ms]        */
    taub,         /*  ~ 3.3 ms          */
    bigTC,        /*  ~ 8 ms            */
    bigTCO,       /*  ~ 6 ms           */
    bigTN,        /*  ~ 12 ms           */
    tauc,         /*  ~ 5.4 ms          */
    taud,         /*  ~ 2.3 ms          */
    gstab,         /*  ~0.2 ms, gradient recovery time     */

    pwClvl,   /* High power level for carbon on channel 2 */
    pwC,      /* C13 90 degree pulse length at pwClvl     */

    compH,     /* Compression factor for H1 on channel 1  */
    compC,     /* Compression factor for C13 on channel 2  */
    pwNlvl,   /* Power level for Nitrogen on channel 3    */
    pwN,      /* N15 90 degree pulse lenght at pwNlvl     */
    maxpwCN,
    bw, ofs, ppm, /* bandwidth, offset, ppm - temporary Pbox parameters */
    pwCa90,   /*90 "offC13" pulse at Ca(56ppm) xmtr at CO(174ppm) */
    pwCa180,  /*180 "offC17" pulse at Ca(56ppm) xmtr at CO(174ppm) */
    pwCO90,   /* 90 "offC6" pulse at CO(174ppm) xmtr at CO(174ppm)*/
    pwCO180,  /* 180 "offC8" pulse at CO(174ppm) xmtr at CO(174ppm)*/
    pwCab180, /* 180 "offC27" pulse at Cab(46ppm) xmtr at CO(174ppm)*/

    tpwrHd,   /* Power level for proton decoupling on channel 1  */
    pwHd,     /* H1 90 degree pulse lenth at tpwrHd.             */
    waltzB1 = getval("waltzB1"),  /* waltz16 field strength (in Hz)     */

    phi_CO,   /* phase correction for Bloch-Siegert effect on CO */
    phi_Ca,   /* phase correction for Bloch-Siegert effect on Ca */

    gt1,
    gt2,
    gt3,
    gt4, 
    gt5,
    gt6,
    gt7,
    gt0,

    gzlvl1,  
    gzlvl2,   
    gzlvl3,
    gzlvl4, 
    gzlvl5,
    gzlvl6,   /* N15 selection gradient level in DAC units */
    gzlvl7,
    gzlvl0,   /* H1 gradient level in DAC units            */
    gzcal,    /* gradient calibration (gcal)               */
    dfCa180,
    dfCab180,
    dfC90,
    dfCa90,
    dfCO180;
 
         
/* LOAD VARIABLES */

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("mag_flg", mag_flg);

    gzcal  = getval("gzcal");
      ni2  = getval("ni2");
    taua   = getval("taua"); 
    taub   = getval("taub");
    tauc = getval("tauc");
    bigTC = getval("bigTC");
    bigTCO = getval("bigTCO");
    bigTN = getval("bigTN");
    taud = getval("taud");
    gstab = getval("gstab");
  
    pwClvl = getval("pwClvl");
    pwC = getval("pwC");
    compH = getval("compH");
    compC = getval("compC");

    pwNlvl = getval("pwNlvl");
    pwN = getval("pwN");

    phi_CO = getval("phi_CO");
    phi_Ca = getval("phi_Ca");

    gt1 = getval("gt1");
    gt2 = getval("gt2");
    gt3 = getval("gt3");
    gt4 = getval("gt4");
    gt5 = getval("gt5");
    gt6 = getval("gt6");
    gt7 = getval("gt7");
    gt0 = getval("gt0");
 
    gzlvl1 = getval("gzlvl1");
    gzlvl2 = getval("gzlvl2");
    gzlvl3 = getval("gzlvl3");
    gzlvl4 = getval("gzlvl4");
    gzlvl5 = getval("gzlvl5");
    gzlvl6 = getval("gzlvl6");
    gzlvl7 = getval("gzlvl7");
    gzlvl0 = getval("gzlvl0");

    setautocal();                        /* activate auto-calibration flags */ 
        
    if (autocal[0] == 'n') 
    { 
      pwCa90 = getval("pwCa90");
      pwCa180 = getval("pwCa180");
      pwCab180 = getval("pwCab180");
      pwCO90 = getval("pwCO90");
      pwCO180 = getval("pwCO180");

      dfCa180 = (compC*4095.0*pwC*2.0*1.69)/pwCa180;           /*power for "offC17" pulse*/
      dfCab180 = (compC*4095.0*pwC*2.0*1.69)/pwCab180;       /*power for "offC27" pulse*/
      dfC90  = (compC*4095.0*pwC*1.69)/pwCO90;                  /*power for "offC6" pulse */
      dfCa90  = (compC*4095.0*pwC)/pwCa90;                     /*power for "offC13" pulse*/
      dfCO180  = (compC*4095.0*pwC*2.0*1.65)/pwCO180;          /*power for "offC8" pulse */

      dfCa90 = (int) (dfCa90 + 0.5);
      dfCa180 = (int) (dfCa180 + 0.5);
      dfC90 = (int) (dfC90 + 0.5);
      dfCO180 = (int) (dfCO180 + 0.5);	
      dfCab180 = (int) (dfCab180 +0.5);

    /* power level and pulse time for WALTZ 1H decoupling */
	pwHd = 1/(4.0 * waltzB1) ;                          
	tpwrHd = tpwr - 20.0*log10(pwHd/(compH*pw));
	tpwrHd = (int) (tpwrHd + 0.5);
    }
    else
    {
      if(FIRST_FID)                                            /* call Pbox */
      {
        ppm = getval("dfrq"); bw = 118.0*ppm; ofs = -118.0*ppm;
        offC6 = pbox_make("offC6", "sinc90n", bw, 0.0, compC*pwC, pwClvl);
        offC8 = pbox_make("offC8", "sinc180n", bw, 0.0, compC*pwC, pwClvl);
        offC17 = pbox_make("offC17", "sinc180n", bw, ofs, compC*pwC, pwClvl);
        bw = 128.0*ppm;
        offC13 = pbox_make("offC13", "square90n", bw, ofs, compC*pwC, pwClvl);
        ofs = -128.0*ppm;
        offC27 = pbox_make("offC27", "sinc180n", bw, ofs, compC*pwC, pwClvl);
        bw = 2.8*7500.0;
        wz16 = pbox_Dcal("WALTZ16", 2.8*waltzB1, 0.0, compH*pw, tpwr);

        ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
      } 
      dfC90 = offC6.pwrf;      pwCO90 = offC6.pw;
      dfCO180 = offC8.pwrf;    pwCO180 = offC8.pw;
      dfCa90 = offC13.pwrf;    pwCa90 = offC13.pw;
      dfCa180 = offC17.pwrf;   pwCa180 = offC17.pw;
      dfCab180 = offC27.pwrf;  pwCab180 = offC27.pw;
      tpwrHd = wz16.pwr;       pwHd = 1.0/wz16.dmf;
    }

    maxpwCN = 2.0*pwN;
    if (pwCab180 > pwN) maxpwCN = pwCab180;

/* LOAD PHASE TABLE */

    settable(t1,4,phi1);
    settable(t2,2,phi2);
    settable(t3,8,phi3);
    settable(t4,16,phi4);
    settable(t5,1,phi5);
   
    settable(t16,8,rec); 

/* CHECK VALIDITY OF PARAMETER RANGES */
   
    if(ni > 64)
    {
       printf("ni is out of range. Should be: 14 to 64 ! \n");
       psg_abort(1);
    }
/*
    if(ni/sw1 > 2.0*(bigTCO))
    {
       printf("ni is too big, should be < %f\n", sw1*2.0*(bigTCO));
       psg_abort(1);
    }
*/

    if(ni2/sw2 > 2.0*(bigTN - pwCO180))
    {
       printf("ni2 is too big, should be < %f\n",2.0*sw2*(bigTN-pwCO180));
       psg_abort(1);
    }

    if((dm[A] == 'y' || dm[B] == 'y' ))
    {
       printf("incorrect dec1 decoupler flags! Should be 'nnn' ");
       psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y'))
    {
       printf("incorrect dec2 decoupler flags! Should be 'nny' ");
       psg_abort(1);
    }


    if( dpwr > 50 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

/*  Phase incrementation for hypercomplex 2D data */

    if (phase1 == 1) 
    {
       tsadd(t1, 1, 4);   
    }

    if (phase2 == 2)
    {
       tsadd(t5,2,4);
       icosel = 1; 
    }
    else icosel = -1;

   
/*  Set up f1180  tau1 = t1               */
      
    tau1 = d2;
    if ((f1180[A] == 'y') && (ni > 1))
      { tau1 += (1.0/(2.0*sw1)); }
    if(tau1 < 0.2e-6) tau1 = 0.0;
    tau1 = tau1/4.0;

    ratio = 2.0*bigTCO*sw1/((double) ni);
    ratio = (double)((int)(ratio*100.0))/100.0;
    if (ratio > 1.0) ratio = 1.0;
    if((dps_flag) && (ni > 1)) 
        printf("ratio = %f => %f\n",2.0*bigTCO*sw1/((double) ni), ratio);

/*  Set up f2180  tau2 = t2               */
    tau2 = d3;
    if ((f2180[A] == 'y') && (ni2 > 1))
      { tau2 += (1.0/(2.0*sw2)); }
    if(tau2 < 0.2e-6) tau2 = 0.0;
    tau2 = tau2/4.0;
 

/* Calculate modifications to phases for States-TPPI acquisition  */

    if( ix == 1) d2_init = d2 ;
    t1_counter = (int)((d2-d2_init)*sw1 + 0.5);
    
    if((t1_counter % 2)) 
    {
       tsadd(t1,2,4);     
       tsadd(t16,2,4);    
    }

    if( ix == 1) d3_init = d3 ;
    t2_counter = (int)((d3-d3_init)*sw2 + 0.5);
    if((t2_counter % 2)) 
    {
       tsadd(t2,2,4);  
       tsadd(t16,2,4);    
    }

    decstepsize(1.0);
    initval(phi_CO, v1);
    initval(phi_Ca, v2);

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   	delay(d1-1.0e-3);
    obsoffset(tof);
    decoffset(dof);
    obspower(tpwr);        
    decpower(pwClvl);
    decpwrf(4095.0);
    dec2power(pwNlvl);
    txphase(zero);
    decphase(zero);
    dec2phase(zero);
    rcvroff();

    if(gt6 > 0.2e-6)
    {
       delay(10.0e-6);
       decrgpulse(pwC, zero, 1.0e-6, 1.0e-6);
       delay(0.2e-6);
       zgradpulse(gzlvl6, gt6);
    }  
    decpwrf(dfCa180); 
    delay(1.0e-3);

    rgpulse(pw,zero,1.0e-6,1.0e-6);            
    delay(2.0e-6);
    zgradpulse(gzlvl0,gt0);  
    delay(taua - gt0 - 2.0e-6 - WFG_START_DELAY);

    simshaped_pulse("","offC17",2.0*pw,pwCa180,zero,zero,1.0e-6,1.0e-6);
      /* c13 offset on CO, slp 180 on Ca */
    delay(taua - gt0 - 500.0e-6 - WFG_STOP_DELAY);
    zgradpulse(gzlvl0,gt0); 
    txphase(one);
    delay(500.0e-6);
    rgpulse(pw, one, 1.0e-6, 1.0e-6);
    decphase(zero);
  
    delay(2.0e-6);
    zgradpulse(gzlvl3,gt3);

    obspower(tpwrHd);
    decpwrf(dfCa90);
    delay(200.0e-6);
   

/* c13 offset on CO, slp 90 on Ca */
    decshaped_pulse("offC13", pwCa90, zero, 0.0, 0.0);
    delay(taub -PRG_START_DELAY);

    obsprgon("waltz16", pwHd, 180.0);
    xmtron();

    decpwrf(dfC90);
    decphase(t1);
    delay(bigTC -taub -SAPS_DELAY -PWRF_DELAY);

/* c13 offset on CO, on-res 90 on CO */
    decshaped_pulse("offC6", pwCO90, t1, 0.0, 0.0);
/* CO EVOLUTION BEGINS */

    decpwrf(dfCO180);
    decphase(zero);
    delay(bigTCO/2.0 +maxpwCN/2.0 +WFG_STOP_DELAY -2.0*pwCO90/PI -ratio*tau1);

/* c13 offset on CO, on-res 180 on CO */
    decshaped_pulse("offC8", pwCO180, zero, 0.0, 0.0);

    decpwrf(dfCab180);
    delay(bigTCO/2.0 +(2.0 -ratio)*tau1 -PRG_STOP_DELAY);
    xmtroff();
    obsprgoff();

/* c13 offset on CO, slp 180 at Cab */
    sim3shaped_pulse("","offC27","",0.0,pwCab180,2.0*pwN,zero,zero,zero,0.0,0.0); 

    obsprgon("waltz16", pwHd, 180.0);
    xmtron();
    decpwrf(dfCO180);
    delay(bigTCO/2.0 +(2.0 -ratio)*tau1 -PRG_START_DELAY);

/* c13 offset on CO, on-res 180 on CO */
    decshaped_pulse("offC8", pwCO180, zero, 0.0, 0.0);

    decpwrf(dfC90);
    dcplrphase(v1);  
    delay(bigTCO/2.0 +maxpwCN/2.0 +WFG_STOP_DELAY -2.0*pwCO90/PI -ratio*tau1 -SAPS_DELAY);

/* CO EVOLUTION ENDS */
    decshaped_pulse("offC6", pwCO90, zero, 0.0, 0.0);
/* c13 offset on CO, on-res 90 on CO */

    decpwrf(dfCa90);
    decphase(t3); dcplrphase(v2);
    delay(bigTC -2.0*SAPS_DELAY -PWRF_DELAY);

/* c13 offset on CO, slp 90 at Ca */
    decshaped_pulse("offC13", pwCa90, t3, 0.0, 0.0);

    xmtroff();

    decpwrf(dfCO180);
    decphase(zero); dcplrphase(zero);
    dec2phase(t2);   

    delay(2.0e-5);
    zgradpulse(gzlvl4,gt4);
    delay(2.0e-6);

    obsprgon("waltz16", pwHd, 180.0);
    xmtron();
    txphase(zero);
    delay(150.0e-6);

    dec2rgpulse(pwN, t2, 0.0, 0.0);
/* N15 EVOLUTION BEGINS HERE */

    delay(bigTN/2.0 -tau2);

    decshaped_pulse("offC8", pwCO180, zero, 0.0, 0.0); /* c13 offset on CO, on-res 180 on CO */

    decpwrf(dfCa180);
    dec2phase(t4);
    delay(bigTN/2.0 -tau2);
 
    dec2rgpulse(2.0*pwN, t4, 0.0, 0.0);
    decshaped_pulse("offC17", pwCa180, zero, 0.0, 0.0); /* c13 offset on CO, slp 180 at Ca */

    decpwrf(dfCO180);
    delay(bigTN/2.0 +tau2 -pwCa180 -WFG_START_DELAY -WFG_STOP_DELAY);

    decshaped_pulse("offC8", pwCO180, zero, 0.0, 0.0);
       /* c13 offset on CO, on-res 180 on CO */

    delay(bigTN/2.0 +tau2 -tauc -PRG_STOP_DELAY);
    dec2phase(t5);
    xmtroff();
    obsprgoff();
    obspower(tpwr);

    if (mag_flg[A] == 'y') magradpulse(gzcal*gzlvl1, gt1);
      else zgradpulse(gzlvl1, gt1);

    delay(tauc -gt1 -2.0*GRADIENT_DELAY);
  
/* N15 EVOLUTION ENDS HERE */
    sim3pulse(pw,0.0, pwN, zero,zero, t5, 0.0, 0.0);

    dec2phase(zero);
    delay(2.0e-6);
    zgradpulse(0.8*gzlvl5, gt5);
    delay(taud - gt5 - 2.0e-6);

    sim3pulse(2.0*pw,0.0, 2.0*pwN, zero,zero, zero, 0.0, 0.0);

    delay(taud - gt5 - 500.0e-6);
    zgradpulse(0.8*gzlvl5, gt5);
    txphase(one);
    decphase(one);
    delay(500.0e-6);

    sim3pulse(pw,0.0, pwN, one,zero, one, 0.0, 0.0);
    
    delay(2.0e-6);
    txphase(zero);
    decphase(zero);
    zgradpulse(gzlvl5, gt5);
    delay(taud - gt5 - 2.0e-6);
    sim3pulse(2.0*pw,0.0, 2.0*pwN, zero,zero, zero, 0.0, 0.0);
  
    delay(taud - gt5 - 2.0*POWER_DELAY - 500.0e-6);
    zgradpulse(gzlvl5, gt5);
    decpower(dpwr);
    dec2power(dpwr2);
    delay(500.0e-6);

    rgpulse(pw, zero, 0.0, 0.0);

    delay(gstab +gt2 +2.0*GRADIENT_DELAY);

    rgpulse(2.0*pw, zero, 0.0, 0.0);

    if (mag_flg[A] == 'y') magradpulse(icosel*gzcal*gzlvl2, gt2);
      else zgradpulse(icosel*gzlvl2, gt2);  

    delay(0.5*gstab);    

    rcvron();
statusdelay(C, 0.5*gstab);
    setreceiver(t16);
}
Esempio n. 4
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */
/* sequence are declared and initialized as 0.0 in bionmr.h, and       */
/* reinitialized below  */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            stCshape[MAXSTR],
 	    TROSY[MAXSTR];			    /* do TROSY on N15 and H1 */
 
int         t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
	    ni = getval("ni"),
	    ni2 = getval("ni2");

double      d2_init=0.0,  		        /* used for states tppi in t1 */
	    d3_init=0.0,  	 	        /* used for states tppi in t2 */
	    tau1,         				         /*  t1 delay */
	    tauCH = getval("tauCH"), 		         /* 1/4J delay for CH */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
            timeNCA = getval("timeNCA"),
            timeC = getval("timeC"),      /* other delays */
            tauCC = getval("tauCC"),
	    zeta = getval("zeta"),

	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
        compC = getval("compC"),
        rf0,
        rfst,

   widthHd,
   pwS1,					/* length of square 90 on Cab */
   pwS2,					/* length of square 180 on Ca */
   phi7cal = getval("phi7cal"),  /* phase in degrees of the last C13 90 pulse */
   phshift = getval("phshift"),        /*  phase shift induced on CO by 180 on CA in middle of t1 */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),
        waltzB1 = getval("waltzB1"),
	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("TROSY",TROSY);

    widthHd=2.069*(waltzB1/sfrq);  /* produces same field as std. sequence */

/*   LOAD PHASE TABLE    */

	settable(t1,2,phi1);
	settable(t2,4,phi2);
        settable(t4,1,phx);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,4,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,16,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,8,rec);}

        

/*   INITIALIZE VARIABLES   */

 	kappa = 5.4e-3;
	lambda = 2.4e-3;

/* maximum fine power for pwC pulses (and initialize rfst) */
        rf0 = 4095.0;    rfst=0.0;

    if( pwC > 20.0*600.0/sfrq )
	{ printf("increase pwClvl so that pwC < 20*600/sfrq");
	  psg_abort(1); }



/* 30 ppm sech/tanh inversion for Ca-Carbons */

        rfst = (compC*4095.0*pwC*4000.0*sqrt((4.5*sfrq/600.0+3.85)/0.41));
        rfst = (int) (rfst + 0.5);
        strcpy(stCshape, "stC30");

    /* get calculated pulse lengths of shaped C13 pulses */
	pwS1 = c13pulsepw("co", "ca", "sinc", 90.0); 
	pwS2 = c13pulsepw("ca", "co", "square", 180.0); 
	

/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( gt4 > zeta - 0.6*pwC)
       { printf(" gt4 is too big. Make gt4 equal to %f or less.\n", 
  	 (zeta - 0.6*pwC)); 	     				     psg_abort(1);}

    if ( 0.5*ni*1/(sw1) > 2.0*timeC + tauCC - OFFSET_DELAY - SAPS_DELAY)
       { printf(" ni is too big. Make ni equal to %d or less.\n", 
  	 ((int)((2.0*timeC - OFFSET_DELAY)*2.0*sw1))); 	     psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}
    if ( dpwr2 > 46 )
       { printf("dpwr2 too large! recheck value  ");		     psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value ");	             psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value ");	             psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y' )
       { text_error("Choose either TROSY='n' or dm2='n' ! ");        psg_abort(1);}
 

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2) tsadd(t2,1,4);  
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }



/*  C13 TIME INCREMENTATION and set up f1180  */

/*  Set up f1180  */

    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;


/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2; 
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t2,2,4); tsadd(t12,2,4); }

   if( ix == 1) d3_init = d3; 
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }



/*   BEGIN PULSE SEQUENCE   */

status(A);
   	delay(d1);
        if (dm3[B]=='y') lk_hold();

	rcvroff();
        set_c13offset("ca");
	obsoffset(tof);
	obspower(tpwr);
 	obspwrf(4095.0);
	decpower(pwClvl);
	decpwrf(4095.0);
 	dec2power(pwNlvl);
	txphase(three);
	delay(1.0e-5);

	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

        if(dm3[B] == 'y')			  /*optional 2H decoupling on */
         {dec3unblank(); dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank(); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);} 

	rgpulse(pw, zero, 0.0, 0.0);                  /* 1H pulse excitation */
                          
        txphase(zero);
        decphase(zero);
	zgradpulse(gzlvl0, gt0);			/* 2.0*GRADIENT_DELAY */

	decpwrf(rfst);
        delay(tauCH - gt0 - WFG2_START_DELAY - 0.5e-3 + 70.0e-6);

        simshaped_pulse("",stCshape, 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);

        delay(tauCH - gt0 - 0.5e-3 + 70.0e-6 - 150.0e-6);

        decpwrf(rf0);

	zgradpulse(gzlvl0, gt0);   	 	        /* 2.0*GRADIENT_DELAY */
	delay(150.0e-6);
           
	rgpulse(pw, one, 0.0, 0.0);	
	zgradpulse(gzlvl3, gt3);
	delay(2.0e-4);
        decrgpulse(pwC, t1, 0.0, 0.0);

        set_c13offset("co");

	delay(zeta - 0.6*pwC - OFFSET_DELAY - POWER_DELAY - PWRF_DELAY - PRG_START_DELAY);
        
        h1decon("DIPSI2", widthHd, 0.0); /*POWER_DELAY+PWRF_DELAY+PRG_START_DELAY */
         
	delay(2.0*timeC - zeta);
 
        c13pulse("co", "ca", "sinc", 90.0, t2, 0.0, 0.0); /* pwS1 */		
	
        delay(timeNCA - tau1);

        c13pulse("ca", "co", "sinc", 180.0, zero, 2.0e-6, 2.0e-6);
        sim3_c13pulse("", "co", "ca", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); /* pwS2 */

        delay(timeNCA + tau1 + (60.0e-6));
        
        initval(phshift, v3);
        decstepsize(1.0);
        dcplrphase(v3);        
        c13pulse("co", "ca", "sinc", 90.0, one, 0.0, 0.0); /* pwS1 */

        delay(2.0*timeC + tauCC - OFFSET_DELAY - SAPS_DELAY - tau1);
        c13pulse("ca", "co", "sinc", 180.0, zero, 0.0, 0.0);
        delay(tauCC);
        sim3_c13pulse("", "co", "ca", "square", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 0.0, 60.0e-6); 
        delay(tau1);

        set_c13offset("ca");

        initval(phi7cal, v7);
        decstepsize(1.0);
        dcplrphase(v7);                                         /* SAPS_DELAY */
        dec2phase(t8);

	nh_evol_se_train("ca", "co"); /* common part of sequence in bionmr.h  */

if (dm3[B] == 'y')  lk_sample();

}		 
Esempio n. 5
0
pulsesequence()
{
char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
	    f2180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            CCdseq[MAXSTR],
            CChomodec[MAXSTR],          /* Setup for C-imino - C-H6 */
	    pwC_Sel_Shape[MAXSTR],	       /* Selective C 180 refocusing pulse */
	    pwH_Sel_Shape[MAXSTR];	       /* Selective H 180 refocusing pulse */
 
int         icosel,          			  /* used to get n and p type */
            t1_counter,  		        /* used for states tppi in t1 */
	    ni2 = getval("ni2"),
            t2_counter;  		        /* used for states tppi in t2 */

double      tau1,         				          /* t1 delay */
	    tau2,         				          /* t2 delay */
            CCdpwr = getval("CCdpwr"),    /*   power level for CC decoupling */
            CCdres = getval("CCdres"),    /*   dres for CC decoupling */
            CCdmf = getval("CCdmf"),      /*   dmf for CC decoupling */

	    lambda = 1.0/(4*getval("JCH")),	   /* 1/4J H1 evolution delay */
	    taucc = 1.0/(4*getval("JCC")),	   /* 1/4J CC evolution delay */
	    delta_cc = 1.0/(4*getval("JCC")),	   /* 1/4J CC evolution delay */
	    pwH_Sel_pw = getval("pwH_Sel_pw"),	/* 180 Pulse selective pulse*/
	    pwH_Sel_lvl = getval("pwH_Sel_lvl"),	/* 180 Pulse selective pulse power level*/
	    pwC_Sel_pw = getval("pwC_Sel_pw"),	/* 180 C Pulse selective pulse*/
	    pwC_Sel_lvl = getval("pwC_Sel_lvl"),	/* 180 C Pulse selective pulse power level*/
            pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
            pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
            calC = getval("calC"),        /* multiplier on a pwC pulse for calibration */

            dofa,

            calH = getval("calH"),        /* multiplier on a pw pulse for H1 calibration */

	    pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
            pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */


	    sw1 = getval("sw1"),

            gstab = getval("gstab"),   /* Gradient recovery delay, probe-dependent */

        gt1 = getval("gt1"),  		       /* coherence pathway gradients */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("f1180",f1180);
    getstr("CCdseq",CCdseq);
    getstr("CChomodec",CChomodec);
    getstr("f2180",f2180);
    getstr("pwH_Sel_Shape",pwH_Sel_Shape);
    getstr("pwC_Sel_Shape",pwC_Sel_Shape);



/*   LOAD PHASE TABLE    */

        settable(t1,8,phi1);
        settable(t2,4,phi2);
	settable(t3,2,phi3);
	settable(t4,1,phi4);
	settable(t5,1,phi5);
	settable(t6,1,phi6);
	settable(t9,16,phi9);
	settable(t11,16,rec);

/* reset calH and calC if the user forgets */
  if (ni>1.0)
   {
	calH=1.0; calC=1.0;
   }

/* CHECK VALIDITY OF PARAMETER RANGES */

  if ((ni/sw1) > (4*taucc - 2*gt4))
  { text_error( " ni is too big. Make ni equal to %d or less.\n",    
      ((int)((4*taucc - 2*gt4)*sw1)) );					    psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y'))
  { text_error("incorrect dec2 decoupler flags! Should be 'nnn' or 'nny' "); psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y'))
  { text_error("incorrect dec1 decoupler flags! Should be 'nny' "); psg_abort(1); }

  if( dpwr > 49 )
  { text_error("don't fry the probe, DPWR too large!  ");   	    psg_abort(1); }

  if( dpwr2 > 47 )
  { text_error("don't fry the probe, DPWR2 too large!  ");           psg_abort(1); }

  if( (pw > 20.0e-6) && (tpwr > 56) )
  { text_error("don't fry the probe, pw too high ! ");              psg_abort(1); }
 
  if( (pwC > 40.0e-6) && (pwClvl > 56) )
  { text_error("don't fry the probe, pwN too high ! ");             psg_abort(1); }

  if( (pwN > 100.0e-6) && (pwNlvl > 56) )
  { text_error("don't fry the probe, pwN too high ! ");             psg_abort(1); }

  if ( ni/sw1 > 4.0*taucc)
  { text_error( " ni is too big. Make ni equal to %d or less.\n",
      ((int)(4*taucc*sw1)) );                                       psg_abort(1); }

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

	icosel=1;

	if (phase1 == 2) 
	{
		tsadd(t1,1,4);
		tsadd(t4,1,4);
		tsadd(t5,1,4);
	}

	if (phase2 == 2) 
	{
		tsadd(t6,2,4);
		icosel = -1;
	}
	else icosel = 1;

/*  Set up f1180  */
       tau1 = d2;
  if((f1180[A] == 'y') && (ni > 1.0)) 
   {
	tau1 += ( 1.0 / (2.0*sw1) );
	if(tau1 < 0.2e-6) tau1 = 0.0;
   }

	tau1 = tau1/2.0;

/*  Set up f2180  */
       tau2 = d3;
  if((f2180[A] == 'y') && (ni2 > 1.0)) 
   {
	tau2 += ( 1.0 / (2.0*sw2) );
	if(tau2 < 0.2e-6) tau2 = 0.0;
   }

	tau2 = tau2/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */
  if( ix == 1) d2_init = d2;

	t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );

  if(t1_counter % 2) 
   {
	tsadd(t1,2,4);
	tsadd(t4,2,4);
	tsadd(t5,2,4);
	tsadd(t11,2,4);
   }

/* Calculate modifications to phases for States-TPPI acquisition          */
  if( ix == 1) d3_init = d3;

	t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );

/* BEGIN PULSE SEQUENCE */

status(A);
        dofa = dof - 35.0*dfrq; /*start at C2' */
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	obsoffset(tof);
	decoffset(dofa);
	dec2offset(dof2);
	txphase(zero);
	decphase(zero);
        dec2phase(zero);

	delay(d1);
        rcvroff();

status(B);

	dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
	decrgpulse(pwC, zero, 0.0, 0.0);
	zgradpulse(gzlvl0, 0.5e-3);
	delay(gstab/2);
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	delay(5.0e-4);

   	rgpulse(calH*pw,zero,0.0,0.0);                 /* 1H pulse excitation */
   	decphase(t4);
        delay(2.0*lambda);
        decrgpulse(calC*pwC, t4, 0.0, 0.0);
	zgradpulse(gzlvl3, gt3);
	obspower(pwH_Sel_lvl);
   	decphase(zero);
        delay(taucc -lambda - gt3 - WFG2_START_DELAY - pwH_Sel_pw/2.0 + 70.0e-6);

        shaped_pulse(pwH_Sel_Shape, pwH_Sel_pw, zero, 0.0, 0.0);
        delay(lambda - pwH_Sel_pw/2.5);

        decrgpulse(2.0*pwC, t1, 0.0, 0.0);

        zgradpulse(gzlvl3, gt3);
	obspower(tpwr);
   	decphase(t5);
   	txphase(t2);
        delay(taucc - gt3);

        simpulse(pw, pwC, t2, t5, 0.0, 0.0);

        zgradpulse(gzlvl4, gt4);       	/* 2.0*GRADIENT_DELAY */
        txphase(zero);
	decphase(t3);
	delay(2*taucc + tau1 - gt4);

    	decrgpulse(2.0*pwC, t3, 0.0, 0.0);
        zgradpulse(gzlvl4, gt4);       	/* 2.0*GRADIENT_DELAY */
    	decphase(zero);
		
        delay(2.0*taucc - tau1 - gt4);

        dofa = dof - 17.5*dfrq; /*change to C1' */
	decoffset(dofa);
/*  ffffffffffffffffffff   BEGIN SENSITIVITY ENHANCE   fffffffffffffffffffff  */
        decrgpulse(pwC, zero, 0.0, 0.0);

if (CChomodec[A]=='y')
 {
	delay(delta_cc);
    	decrgpulse(2.0*pwC, zero, 0.0, 0.0);
	delay(delta_cc);
        decpower(CCdpwr); decphase(zero);
        decprgon(CCdseq,1.0/CCdmf,CCdres);
        decon();  /* CC decoupling on */
	delay(tau2);
    	dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
	delay(tau2);

        decoff(); decprgoff();        /* CC decoupling off */
	decpower(pwC_Sel_lvl);

        zgradpulse(icosel*gzlvl1, gt1/2.0);       	/* 2.0*GRADIENT_DELAY */
        delay(gstab);
        decshaped_pulse(pwC_Sel_Shape, pwC_Sel_pw, t9, 0.0, 0.0);
        zgradpulse(-1.0*icosel*gzlvl1, gt1/2.0);       	/* 2.0*GRADIENT_DELAY */
	decphase(t6);
        decpower(pwClvl);
        delay(gstab);
		
 }
else
 {
	decphase(zero);
        zgradpulse(icosel*gzlvl1, gt1/2.0);       	/* 2.0*GRADIENT_DELAY */
	delay(delta_cc + tau2);
    	decrgpulse(2.0*pwC, t9, 0.0, 0.0);
        zgradpulse(-1.0*icosel*gzlvl1, gt1/2.0);       	/* 2.0*GRADIENT_DELAY */
	decphase(t6);
	delay(delta_cc - tau2);
 }		
	simpulse(pw, pwC, zero, t6, 0.0, 0.0);
	decpower(pwC_Sel_lvl);
	decphase(two);
	zgradpulse(gzlvl5, gt5);
	delay(lambda - pwC_Sel_pw/2.0 - gt5);
        simshaped_pulse("",pwC_Sel_Shape, 2.0*pw,pwC_Sel_pw, zero, two, 0.0, 0.0);
	decpower(pwClvl);
	zgradpulse(gzlvl5, gt5);
	txphase(one);
	decphase(one);
	delay(lambda - pwC_Sel_pw/2.0 - gt5);
	simpulse(pw, pwC, one, one, 0.0, 0.0);
	decpower(pwC_Sel_lvl);
	txphase(zero);
	decphase(zero);
	zgradpulse(gzlvl6, gt5);
	delay(lambda - pwC_Sel_pw/2.0 - gt5);
        simshaped_pulse("",pwC_Sel_Shape, 2.0*pw,pwC_Sel_pw, zero, zero, 0.0, 0.0);
	zgradpulse(gzlvl6, gt5);
	delay(lambda - pwC_Sel_pw/2.0 - gt5);
	rgpulse(pw, zero, 0.0, 0.0);
        zgradpulse(gzlvl2, gt1/8.0);         		/* 2.0*GRADIENT_DELAY */
	delay(gstab/2-2.0*GRADIENT_DELAY);		
	rgpulse(2.0*pw, zero, 0.0, 0.0);
	decpower(dpwr);					       /* POWER_DELAY */
	dec2power(dpwr2);				      /* POWER_DELAY */
        zgradpulse(-1.0*gzlvl2, gt1/8.0);         		/* 2.0*GRADIENT_DELAY */
	delay(gstab/2 -2.0*POWER_DELAY-2.0*GRADIENT_DELAY);		
status(C);
		 
	setreceiver(t11);
}		 
Esempio n. 6
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            RELAY[MAXSTR],                         /* Insert HCCH-relay delay */
            ribose[MAXSTR],                         /* ribose CHn groups only */
            aromatic[MAXSTR],                     /* aromatic CHn groups only */
            rna_stCshape[MAXSTR],     /* calls sech/tanh pulses from shapelib */
            rna_stCdec[MAXSTR],        /* calls STUD+ waveforms from shapelib */
	    mag_flg[MAXSTR],             /* Flag to use magic-angle gradients */
	    H2O_flg[MAXSTR],
	    sspul[MAXSTR],
            SHAPE[MAXSTR],
	    STUD[MAXSTR];   /* apply automatically calculated STUD decoupling */
 
int         t1_counter,  		        /* used for states tppi in t1 */
            t2_counter,  	 	        /* used for states tppi in t2 */
            ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
            delta1,delta2,
               ni = getval("ni"),
            lambda = 0.94/(4*getval("JCH")),       /* 1/4J H1 evolution delay */
            tCH = 1/(6.0*getval("JCH")),          /* 1/4J C13 evolution delay */
            tCC = 1/(8*getval("JCC")),

        pwClvl = getval("pwClvl"),              /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
   rfC,                           /* maximum fine power when using pwC pulses */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */
                               /* temporary Pbox parameters */
   bw, pws, ofs, ppm, nst,     /* bandwidth, pulsewidth, offset, ppm, # steps */

/* Sech/tanh inversion pulses automatically calculated by macro "rna_cal"     */
/* and string parameter rna_stCshape calls them from your shapelib.           */
   rfst = 0.0,          /* fine power for the rna_stCshape pulse, initialised */
   dofa,        /* dof shifted to 80 or 120ppm for ribose or aromatic spectra */

/* string parameter stCdec calls stud decoupling waveform from your shapelib.*/
   studlvl,	                         /* coarse power for STUD+ decoupling */
            stdmf = getval("dmf80"),     /* dmf for 80 ppm of STUD decoupling */
            rf80 = getval("rf80"),                /* rf in Hz for 80ppm STUD+ */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gt7 = getval("gt7"),
	gt8 = getval("gt8"),
	gt9 = getval("gt9"),
        gzcal = getval("gzcal"),
	grecov = getval("grecov"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),

	gzlvl7 = getval("gzlvl7"),		/* triax option */
	gzlvl8 = getval("gzlvl8"),
	gzlvl9 = getval("gzlvl9");

    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("f2180",f2180);
    getstr("RELAY",RELAY);
    getstr("ribose",ribose);
    getstr("aromatic",aromatic);
    getstr("H2O_flg",H2O_flg);
    getstr("sspul",sspul);
    getstr("SHAPE",SHAPE);
    getstr("STUD",STUD);


/*   INITIALIZE VARIABLES   */

/* maximum fine power for pwC pulses */
        rfC = 4095.0;

  setautocal();                        /* activate auto-calibration flags */ 

  if (autocal[0] == 'n') 
  {
      /* 50ppm sech/tanh inversion */
      rfst = (compC*4095.0*pwC*4000.0*sqrt((7.5*sfrq/600+3.85)/0.41));
      rfst = (int) (rfst + 0.5);
  }
  else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
  {
    if(FIRST_FID)                                            /* call Pbox */
    {
      ppm = getval("dfrq"); 
      bw = 50.0*ppm; pws = 0.001; ofs = 0.0; nst = 500.0; 
      stC50 = pbox_makeA("rna_stC50", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
      if (dm3[B] == 'y') H2ofs = 3.2;
      ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
    }
    rfst = stC50.pwrf; 
  }
        strcpy(rna_stCshape, "rna_stC50");
        strcpy(rna_stCdec, "wurst80");
        studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80);
        studlvl = (int) (studlvl + 0.5);

/*  RIBOSE spectrum only, centered on 80ppm. */
  if (ribose[A]=='y')
        dofa = dof - 30.0*dfrq;

/*  AROMATIC spectrum only, centered on 120ppm */
  else
        dofa = dof + 10*dfrq;


/* CHECK VALIDITY OF PARAMETER RANGES */

  if( dpwrf < 4095 )
        { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
          psg_abort(1); }

  if( pwC > (24.0e-6*600.0/sfrq) )
        { printf("Increase pwClvl so that pwC < 24*600/sfrq");
          psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y' ))
	{ printf("incorrect Dec1 decoupler flags!  "); psg_abort(1);}

  if((dm2[A] == 'y' || dm2[B] == 'y'))
	{ printf("incorrect Dec2 decoupler flags!  "); psg_abort(1);}

  if((dm3[A] == 'y' || dm3[C] == 'y' ))
	{printf("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' ");
								psg_abort(1); }
  if ((dm3[B] == 'y'  &&   dpwr3 > 44 ))
	{ printf("Deuterium decoupling power too high ! "); psg_abort(1);}

  if( dpwr > 50 )
	{ printf("don't fry the probe, dpwr too large!  "); psg_abort(1);}

  if( dpwr2 > 50 )
	{ printf("don't fry the probe, dpwr2 too large!  "); psg_abort(1); }


/*  CHOICE OF PULSE SEQUENCE */

  if ( ((ribose[A]=='y') && (aromatic[A]=='y')) )
   { text_error("Choose  ONE  of  ribose='y'  OR  aromatic='y' ! ");
        psg_abort(1); }

  if ( ((aromatic[A]=='y') && (RELAY[A]=='y')) )
   { text_error("No RELAY with aromatic='y' ! ");
        psg_abort(1); }


/* LOAD VARIABLES */

   settable(t1, 2, phi1);
   settable(t2, 4, phi2);
   settable(t3, 16, phi3);
   settable(t4, 2, phi4);
   settable(t11,8, rec);


/* INITIALIZE VARIABLES */

/* Phase incrementation for hypercomplex data */

   if ( phase1 == 2 )     /* Hypercomplex in t1 */
     tsadd(t1,1,4);

   if ( phase2 == 2 )
     tsadd(t2,1,4);

/* calculate modification to phases based on current t1 values
   to achieve States-TPPI acquisition */

   if(ix == 1) d2_init = d2;
   t1_counter = (int)((d2-d2_init)*sw1 + 0.5);
   if(t1_counter % 2)     
   {
       tsadd(t1,2,4);
       tsadd(t11,2,4);
   }

/* calculate modification to phases based on current t2 values
   to achieve States-TPPI acquisition */

   if(ix == 1) d3_init = d3;
   t2_counter = (int)((d3-d3_init)*sw2 + 0.5);
   if(t2_counter % 2)     
   {
       tsadd(t2,2,4);
       tsadd(t11,2,4);
   }
 
/* set up so that get (90, -180) phase corrects in F1 if f1180 flag is y */

   tau1 = d2;
   if(f1180[A] == 'y')
   {
      tau1 += (1.0/(2.0*sw1));
   }
   if (tau1 < 1.0e-6) tau1 = 0.0;
   tau1 = tau1/2.0;

/* set up so that get (90, -180) phase corrects in F2 if f2180 flag is y */

   tau2 = d3;
   if(f2180[A] == 'y')
   {
      tau2 += (1.0/(2.0*sw2));
   }
   if (tau2 < 1.0e-6) tau2 = 0.0;
   tau2 = tau2/2.0;

   if (ni > 1)
      delta1 = (double)(t1_counter*(lambda - gt5 - 0.2e-3))/((double)(ni-1));
   else delta1 = 0.0;
   if (ni2 > 1)
      delta2 = (double)(t2_counter*(tCC - 0.6e-3))/((double)(ni2-1));
   else delta2 = 0.0;

   initval(7.0, v1);
   obsstepsize (45.0);

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obsoffset(tof);
   decoffset(dofa);
   dec2offset(dof2);
   obspower(tpwr-12);                   
   decpower(pwClvl);
   decpwrf(rfC);
   dec2power(pwNlvl);                  
   decphase(zero);
   dec2phase(zero);
   if (sspul[0] == 'y')
   {
      rgpulse(200*pw, one, 10.0e-6, 0.0e-6);
      rgpulse(200*pw, zero, 0.0e-6, 1.0e-6);
   }
   obspower(tpwr);                   
   xmtrphase(v1);
   txphase(t1);
   if (dm3[B] == 'y') lk_sample();
   delay(d1);
   if (dm3[B] == 'y') lk_hold();
   rcvroff();

       decrgpulse(pwC, zero, rof1, rof1);
       delay(rof1);
       zgradpulse(gzlvl0,0.5e-3); 
       delay(grecov);

   if(dm3[B] == 'y')				  /*optional 2H decoupling on */
        { 
          dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
         } 

status(B);
	rgpulse(pw, t1, 1.0e-4, rof1);
	xmtrphase(zero);
	txphase(zero);

	zgradpulse(gzlvl5,gt5); 

/*
        decpwrf(rfst);
        delay(lambda - gt5 - rof1 - SAPS_DELAY - GRADIENT_DELAY - POWER_DELAY -
                        WFG2_START_DELAY - 0.5e-3 + 70.0e-6 + tau1);

        decshaped_pulse(rna_stCshape, 1.0e-3, zero, 0.0, 0.0);

        delay(tau1 - delta1);

        rgpulse(2.0*pw, zero, 0.0, rof1);
        txphase(one);
        decpwrf(rfC);

        zgradpulse(gzlvl5,gt5);
        delay(lambda - delta1 - gt5 - rof1 - GRADIENT_DELAY - POWER_DELAY - 0.5e-3 + 70.0e-6);
*/


        delay(lambda - gt5 - rof1 - SAPS_DELAY - GRADIENT_DELAY + tau1);

        decrgpulse(2*pwC, zero, 0.0, 0.0);

        delay(tau1 - delta1);

        rgpulse(2.0*pw, zero, 0.0, rof1);
        txphase(one);

        zgradpulse(gzlvl5,gt5);
        delay(lambda - delta1 - gt5 - rof1 - GRADIENT_DELAY);

	rgpulse(pw, one, 0.0, rof1);
	decphase(t2);
	txphase(zero);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl3,gt3); 
   else
      zgradpulse(gzlvl3,gt3); 

	delay(grecov);

	decrgpulse(pwC, t2, rof1, 0.0);
	decphase(zero);

	delay(tau2);
	
	dec2rgpulse(2.0*pwN,zero,0.0,0.0);

	delay(tCH - 2*pwN);

	rgpulse(2.0*pw, zero, 0.0, 0.0);
	decphase(t3);

	delay(tCC - tCH + tau2 - delta2 - 2.0*pw);
	
	decrgpulse(2.0*pwC, t3, 0.0, 0.0);
	decphase(t4);

	delay(tCC - delta2);

	decrgpulse(pwC, t4, 0.0, rof1);
	txphase(zero);
	decphase(zero);

  if(RELAY[A] == 'y')
   {
        zgradpulse(gzlvl4, gt4);
        delay(tCC - gt4 - GRADIENT_DELAY - pwC);

        decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        zgradpulse(gzlvl4, gt4);
        delay(tCC - gt4 - GRADIENT_DELAY - pwC);

        decrgpulse(pwC, zero, 0.0, 0.0);
   }

	zgradpulse(gzlvl4,gt4); 
   	delay(tCC - gt4);

   	decrgpulse(2.0*pwC, zero, 0.0, rof1);

   if (H2O_flg[A] == 'y')
   {
      delay(tCC - gt4 - grecov - POWER_DELAY);

      zgradpulse(gzlvl4,gt4); 

      txphase(one);
      decphase(one);
      delay(grecov);

      decrgpulse(pwC, one, 0.0, rof1);
      rgpulse(900*pw, one, 0.0, rof1);
      txphase(zero);

      rgpulse(500*pw, zero, rof1, rof1);
      decphase(one);

      if(mag_flg[A] == 'y')
         magradpulse(gzcal*gzlvl7,gt7);
      else
         zgradpulse(gzlvl7,gt7);
      delay(200.0e-6);

      simpulse(pw, pwC, zero, one, 0.0, rof1);
      decphase(zero);

      zgradpulse(gzlvl4,gt4); 
      delay(tCH - gt4);

      simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, rof1);

      zgradpulse(gzlvl4,gt4); 
      delay(tCH - gt4);
   }
   else
   {
      delay(tCC - tCH - 2.0*pw - POWER_DELAY);
      rgpulse(2.0*pw, zero, 0.0, rof1);

      zgradpulse(gzlvl4,gt4); 
      delay(tCH - gt4 - rof1);
   }
   
	decrgpulse(pwC, zero, 0.0, rof1);
	txphase(zero);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl8,gt8); 
   else
      zgradpulse(gzlvl8,gt8); 

	delay(grecov);

        if(dm3[B] == 'y')	         /*optional 2H decoupling off */
        {
         dec3rgpulse(1/dmf3, three, 0.0, 0.0);
         dec3blank();
         setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
         dec3blank();
        }

	rgpulse(pw, zero, 0.0, rof1);

  if (SHAPE[A] =='y')
   {
	decpwrf(rfst);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

	delay(lambda - gt9 - GRADIENT_DELAY - POWER_DELAY - WFG2_START_DELAY - 0.5e-3 + 70.0e-6);

        simshaped_pulse("",rna_stCshape,2*pw, 1.0e-3, zero, zero, 0.0, rof1);
        decphase(zero);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

	decpwrf(rfC);

if (STUD[A]=='y') decpower(studlvl); else decpower(dpwr);

	delay(lambda - gt9 -rof1 -0.5*pw - 2*POWER_DELAY - GRADIENT_DELAY - 0.5e-3 + 70.0e-6);
   }
  else
   {
   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

        delay(lambda - gt9 - GRADIENT_DELAY);

        simpulse(2*pw, 2*pwC, zero, zero, 0.0, rof1);

   if(mag_flg[A] == 'y')
      magradpulse(gzcal*gzlvl9,gt9);
   else
      zgradpulse(gzlvl9,gt9);

if (STUD[A]=='y') decpower(studlvl); else decpower(dpwr);

        delay(lambda - gt9 -rof1 -0.5*pw - POWER_DELAY - GRADIENT_DELAY);
     } 

	rgpulse(pw, zero, rof1, rof2);
	rcvron();
if (dm3[B] == 'y') lk_sample();
	setreceiver(t11);

if ((STUD[A]=='y') && (dm[C] == 'y'))
	{
        decunblank();
        decon();
        decprgon(rna_stCdec,1/stdmf, 1.0);
        startacq(alfa);
        acquire(np, 1.0/sw);
        decprgoff();
        decoff();
        decblank();
        }
   else	
	 status(C);
setreceiver(t11);
}
Esempio n. 7
0
pulsesequence()
{
   double          tau, rg1 = 2.0e-6,
                   jXH = getval("jXH"),
                   mult = getval("mult"),
                   gt0 = getval("gt0"),
                   gzlvl0 = getval("gzlvl0"),
                   gt1 = getval("gt1"),
                   gzlvl1 = getval("gzlvl1"),
                   gt2 = getval("gt2"),
                   gzlvl2 = getval("gzlvl2"),
                   gt3 = getval("gt3"),
                   gzlvl3 = getval("gzlvl3"),
                   Gratio = getval("Gratio"),
                   gstab = getval("gstab"),
                   compH = getval("compH"),
                   compX = getval("compX"),
                   Hpwr = getval("Hpwr"),
		   jevol = 0.25 / 140.0;    /* default for C-13 */

   char            pshape[MAXSTR], zz[MAXSTR], ad180[MAXSTR], sspul[MAXSTR];
   shape           hdx;                     /* HADAMARD stuff */
   void            setphases();

   getstr("pshape", pshape);              /* pulse shape as in wavelib */
   getstr("sspul", sspul);
   getstr("zz", zz);
   getstr("ad180", ad180);
   if (jXH > 0.0) jevol = 0.25 / jXH;
   
   tau = gt3 + gstab;
   if (mult > 0.5)
    tau = 2*jevol;

   setphases();

   /* MAKE PBOX SHAPES */

   if (FIRST_FID)
   {
     ad180sh = pbox_ad180("ad180", pwx, pwxlvl);    /* make adiabatic 180 */
     if (strcmp(pwpat,"Hdec") == 0)
     {
       /* make H decoupling shape */
       Hdec = pboxHT_dec(pwpat, pshape, jXH, 20.0, pw, compH, tpwr);
       Hpwr = Hdec.pwr;
     }
   }

   hdx = pboxHT_F1i(pshape, pwx*compX, pwxlvl);         /* HADAMARD stuff */
   if (getval("htcal1") > 0.5)           /* enable manual power calibration */
     hdx.pwr += getval("htpwr1");

 /* THE PULSE PROGRAMM STARTS HERE */
   status(A);

    delay(5.0e-5);
    zgradpulse(gzlvl0,gt0);
    if (sspul[0] == 'y')
    {
      rgpulse(pw,zero,rof1,rof1);
      zgradpulse(gzlvl0,gt0);
    }

    pre_sat();
      
    if (getflag("wet"))
      wet4(zero,one);

   decoffset(dof);
   decpower(pwxlvl);
   obspower(tpwr);
   obsoffset(tof);
   delay(2.0e-5);
 
   status(B);

   rgpulse(pw, v2, rg1, rg1);
   delay(jevol - ad180sh.pw/2.0 - 3.0*rg1); /* +rg on both sides */
   decshaped_pulse(ad180sh.name, ad180sh.pw, zero, rg1, rg1);
   rgpulse(2.0*pw, zero, rg1, rg1);
   delay(jevol + ad180sh.pw/2.0 - rg1);
   rgpulse(pw, one, rg1, rg1);

   zgradpulse(-gzlvl2, gt2);
   delay(gstab);

   decpower(hdx.pwr);
   if (strcmp(pwpat,"") == 0)
     decshaped_pulse(hdx.name, hdx.pw, zero, rg1, rg1);
   else
   {
     obspower(Hpwr);
     simshaped_pulse(pwpat, hdx.name, hdx.pw, hdx.pw, zero, zero, rg1, rg1);
   }
   zgradpulse(gzlvl2*1.4, gt2);
   decpower(pwxlvl); obspower(tpwr);

   if((zz[A] == 'y') && (mult == 0)) 
   {
     ifzero(v1);
       decshaped_pulse(ad180sh.name, ad180sh.pw, zero, rg1, rg1);
     elsenz(v1);
       delay(0.5e-3);
     endif(v1);
   }
   else
   {
     delay(0.5e-3);
     decrgpulse(pwx,v1,rg1,rg1);
     if(ad180[A]=='y')
       decshaped_pulse(ad180sh.name, ad180sh.pw, zero, rg1, rg1);
     if(zz[A] == 'y')
       delay(tau);
     else
     {
       zgradpulse(gzlvl1,gt1);
       delay(tau - gt1 - 2*GRADIENT_DELAY);
     }
     if(ad180[A]=='y')
     {
       rgpulse(mult*pw, zero, rg1, rg1);
       decshaped_pulse(ad180sh.name, ad180sh.pw, zero, rg1, rg1);
     }
     else
       simpulse(mult*pw,2*pwx,zero,one,rg1,rg1);
     delay(tau); 
     decrgpulse(pwx,zero,rg1,rg1);
   }
   zgradpulse(gzlvl2/1.7, gt2);
   delay(gstab);

   rgpulse(pw, zero, rg1, rg1);
   delay(jevol - ad180sh.pw/2.0 - 3.0*rg1);  /* +rg on both sides */
   decshaped_pulse(ad180sh.name, ad180sh.pw, zero, rg1, rg1);
   rgpulse(2.0*pw, zero, rg1, rg1);

   if(zz[A] == 'y') 
   {
     delay(jevol + ad180sh.pw/2.0 - rg1);
     rgpulse(pw, one, rg1, rg1);
     zgradpulse(-gzlvl3, gt3);
     decpower(dpwr);
     delay(gstab);
     rgpulse(pw, three, rg1, rof2);
   }
   else
   {
     zgradpulse(2.0*gzlvl1/Gratio, gt1/2.0);
     decpower(dpwr);
     delay(jevol + ad180sh.pw/2.0 - rg1 - gt1/2.0 - 2*GRADIENT_DELAY - POWER_DELAY + rof2);
   }
   status(C);
}
Esempio n. 8
0
pulsesequence()
{

  double j1min = getval("j1min"),
         j1max = getval("j1max"),
         gzlvlE = getval("gzlvlE"),
         gtE = getval("gtE"),
         mult = getval("mult"),
	 pwx180 = getval("pwx180"),
	 pwxlvl180 = getval("pwxlvl180"),
	 pw180 = getval("pw180"),
         pwx180r = getval("pwx180r"),
         pwxlvl180r = getval("pwxlvl180r"),
	 tpwr180 = getval("tpwr180"),
         EDratio = getval("EDratio"),
         hsglvl = getval("hsglvl"),
         hsgt = getval("hsgt"),
         gstab = getval("gstab"),
         dmfct = getval("dmfct"),
         dpwrct = getval("dpwrct"),
         tau,
	 tau1,
	 tau3,
	 taug,
         bigT = getval("BigT");

  char   pwx180ad[MAXSTR],
	 pw180ad[MAXSTR],
	 dmct[MAXSTR],
	 bipflg[MAXSTR],
         pwx180ref[MAXSTR],
         dmmct[MAXSTR];

  int	 icosel,
         igcorr,
         prgcycle = (int)(getval("prgcycle")+0.5),
	 phase1 = (int)(getval("phase")+0.5);

//synchronize gradients to srate for probetype='nano'
//   Preserve gradient "area"
        gtE = syncGradTime("gtE","gzlvlE",1.0);
        gzlvlE = syncGradLvl("gtE","gzlvlE",1.0);

  getstr("pwx180ad",pwx180ad);
  getstr("pw180ad",pw180ad);
  getstr("dmct",dmct);
  getstr("pwx180ref", pwx180ref);
  getstr("dmmct", dmmct);

  getstr("bipflg",bipflg);
  if (bipflg[0] == 'y')
  {
        tpwr180=getval("tnbippwr");
        pw180=getval("tnbippw");
        getstr("tnbipshp",pw180ad);
  }
  if (bipflg[1] == 'y')
  {
        pwxlvl180=getval("dnbippwr");
        pwx180=getval("dnbippw");
        getstr("dnbipshp",pwx180ad);
  }

  tau1 = 1/(2*(j1min + 0.07*(j1max - j1min)));
  tau3 = 1/(2*(j1max - 0.07*(j1max - j1min)));
  tau = 1 / (j1min+j1max);

  taug = tau + getval("tauC");

  icosel = 1;
  igcorr = 2;
  
  if (mult > 0.5)
    igcorr = 1;

  assign(ct,v17);
  assign(zero,v18);
  assign(zero,v19);

  if (getflag("prgflg") && (satmode[0] == 'y') && (prgcycle > 1.5))
    {
        hlv(ct,v17);
        mod2(ct,v18); dbl(v18,v18);
        if (prgcycle > 2.5)
           {
                hlv(v17,v17);
                hlv(ct,v19); mod2(v19,v19); dbl(v19,v19);
           }
     }

  settable(t1, 4, ph1);
  settable(t2, 8, ph2);
  settable(t3, 16, ph3);
  settable(t6, 2, ph6);
  getelem(t1, v17, v1);
  getelem(t3, v17, v3);
  getelem(t2, v17, v2);
  getelem(t6, v17, oph);
  assign(zero, v4);

  assign(zero,v6);
  add(oph,v18,oph);
  add(oph,v19,oph);

  initval(2.0*(double)(((int)(d2*getval("sw1")+0.5)%2)),v14);
/*
  mod2(id2, v14);
  dbl(v14,v14);
*/
  add(v2, v14, v2);
  add(v4, v14, v4);
  add(oph, v14, oph);

  if ((phase1 == 2) || (phase1 == 5))
    icosel = -1;

  status(A);

   delay(5.0e-5);
   if (getflag("sspul"))
        steadystate();

   if (satmode[0] == 'y')
     {
        if ((d1-satdly) > 0.02)
                delay(d1-satdly);
        else
                delay(0.02);
        if (getflag("slpsat"))
           {
                shaped_satpulse("relaxD",satdly,zero);
                if (getflag("prgflg"))
                   shaped_purge(v6,zero,v18,v19);
           }
        else
           {
                satpulse(satdly,zero,rof1,rof1);
                if (getflag("prgflg"))
                   purge(v6,zero,v18,v19);
           }
     }
   else
        delay(d1);

   if (getflag("wet"))
     wet4(zero,one);

    obspower(tpwr);
    decpower(pwxlvl);

    if (getflag("nullflg"))
    {
      decpower(pwxlvl180);
      rgpulse(0.5 * pw, zero, rof1, rof1);
      obspower(tpwr180);
      delay(tau/2.0);
      simshaped_pulse(pw180ad,pwx180ad,pw180,pwx180,zero,zero,rof1,rof1);
      delay(tau/2.0+POWER_DELAY+rof1);
      delay(tau/2.0+POWER_DELAY+rof1);
      simshaped_pulse(pw180ad,pwx180ad,pw180,pwx180,two,two,rof1,rof1);
      obspower(tpwr);
      delay(tau/2.0);
      rgpulse(0.5 * pw, zero, rof1, rof1);
      decpower(pwxlvl);
      zgradpulse(hsglvl, 1.4*hsgt);
      delay(1e-3);
    }

  status(B);

    rgpulse(pw, zero, rof1, rof1);
  if (getflag("dmct"))
  {
    decpower(dpwrct);
    decprgon("garp1",1/dmfct,1.0);
/*
    setstatus(DECch, FALSE, 'g', FALSE, dmfct);
*/
    decunblank();
    decon();
  }
    obspower(tpwr180);
    delay(bigT/2 - d2/2  - tau - taug - pwx180r);
    delay(pw180+WFG_START_DELAY+WFG_STOP_DELAY);
    shaped_pulse(pw180ad,pw180,zero,rof1,rof1);
    delay(bigT/2 - d2/2  - tau - taug - pwx180r);
    delay(4*pw/PI+2*rof1+POWER_DELAY+4*pwx/PI+2*POWER_DELAY);
  if (getflag("dmct"))
  {
    decoff();
    decblank();
    decprgoff();
/*
    setstatus(DECch, FALSE, 'c', FALSE, dmf);
*/
    decpower(pwxlvl);
  }

    if (mult > 0.5)
    {
     delay(tau-gtE-2*GRADIENT_DELAY-gstab);
     zgradpulse(icosel*gzlvlE,gtE);
     delay(gstab);
    }
    else
    {
     delay(tau);
    }

    decrgpulse(pwx,v2,rof1,rof1);

    if (mult > 0.5)
    {
    decpower(pwxlvl180r);
    delay(taug);
    decshaped_pulse(pwx180ref, pwx180r, v4, rof1, rof1);

    delay(d2/2);
    shaped_pulse(pw180ad,pw180,zero,rof1,rof1);
    delay(d2/2);
    zgradpulse(icosel*gzlvlE,gtE);

    delay(taug-gtE-2*GRADIENT_DELAY+(4*pwx/PI+2*rof1+2*POWER_DELAY-(WFG_START_DELAY+pw180+WFG_STOP_DELAY+2*rof1)));
    decshaped_pulse(pwx180ref, pwx180r, v3, rof1, rof1);
    }

    else
    {
    decpower(pwxlvl180);
    delay(taug/2+(pwx180r-pwx180)/2);
    decshaped_pulse(pwx180ad, pwx180, v4, rof1, rof1);
    delay(taug/2+(pwx180r-pwx180)/2.0-gtE-2*GRADIENT_DELAY-gstab);

    zgradpulse(icosel*gzlvlE,gtE);
    delay(gstab);

    delay(d2/2);
    shaped_pulse(pw180ad,pw180,zero,rof1,rof1);
    delay(d2/2);

    zgradpulse(icosel*gzlvlE,gtE);

    delay(taug/2+(pwx180r-pwx180)/2.0+(4*pwx/PI+2*rof1+2*POWER_DELAY-WFG_START_DELAY-pw180-WFG_STOP_DELAY-2*rof1)-gtE-2*GRADIENT_DELAY);
    decshaped_pulse(pwx180ad, pwx180, v3, rof1, rof1);
  
    delay(taug/2+(pwx180r-pwx180)/2);
    }

    decpower(pwxlvl);
    decrgpulse(pwx,v1,rof1,rof1);

    obspower(tpwr);

    delay(tau);

    rgpulse(pw,one,rof1,rof2);
    decrgpulse(pwx,zero,rof1,rof1);
    obspower(tpwr180);
    zgradpulse(igcorr*3*gzlvlE/(10*EDratio),gtE);
    delay(tau3 - gtE - 2*GRADIENT_DELAY);
    decrgpulse(pwx,zero,rof1,rof1);
    zgradpulse(igcorr*7*gzlvlE/(10*EDratio),gtE);
    delay(tau - gtE - 2*GRADIENT_DELAY);
    decrgpulse(pwx,zero,rof1,rof1);
    shaped_pulse(pw180ad,pw180,zero,rof1,rof1);
    zgradpulse(igcorr*2*gzlvlE/EDratio,gtE);
    delay(tau1 - gtE - 2*GRADIENT_DELAY - POWER_DELAY);
    decpower(dpwr);

  status(C);

    delay(tau+tau3+3*pwx+6*rof1-tau1+WFG_START_DELAY+WFG_STOP_DELAY);
}
Esempio n. 9
0
void pulsesequence()
{
double  gzlvlE = getval("gzlvlE"),
        gtE = getval("gtE"),
        EDratio = getval("EDratio"),
        gstab = getval("gstab"),
        mult = getval("mult"),
	pwx180 = getval("pwx180"),
	pwxlvl180 = getval("pwxlvl180"),
	pwx180r = getval("pwx180r"),
	pwxlvl180r = getval("pwxlvl180r"),
        hsglvl = getval("hsglvl"),
        hsgt = getval("hsgt"),
        tauA=getval("tauA"),        //compensation for tauB and tauD
        tauB=getval("tauB"),        //effect of rof2
        tauD=getval("tauD"),        //effect of alfa
        tBal=getval("tBal"),        //supports inova console if ~1/(fb*1.3)
        pwr_XBIP = getval("pwr_XBIP"),
        pw_XBIP = getval("pw_XBIP"),
        pwr_HBIP = getval("pwr_HBIP"),
        pw_HBIP = getval("pw_HBIP"),
        gzlvlcr = getval("gzlvlcr"),
        gtcr = getval("gtcr"),        //crusher gradient in BIRD
        npoints = getval("npoints"),  // npoints should be an integer multiple of np
        tau, evolcorr, taug,cycles;
int     prgcycle = (int)(getval("prgcycle")+0.5),
	phase1 = (int)(getval("phase")+0.5),
	icosel, ZZgsign;
char	pwx180ad[MAXSTR], pwx180adR[MAXSTR], pwx180ref[MAXSTR],
        shp_XBIP[MAXSTR], shp_HBIP[MAXSTR], BIRD[MAXSTR], BIRDmode[MAXSTR];

//synchronize gradients to srate for probetype='nano'
//   Preserve gradient "area"
        gtE = syncGradTime("gtE","gzlvlE",0.5);
        gzlvlE = syncGradLvl("gtE","gzlvlE",0.5);

  getstr("pwx180ad", pwx180ad);
  getstr("pwx180adR", pwx180adR);
  getstr("pwx180ref", pwx180ref);
  getstr("shp_XBIP",shp_XBIP);
  getstr("shp_HBIP",shp_HBIP);
  getstr("BIRD",BIRD);
  getstr("BIRDmode",BIRDmode);

  tau = 1 / (4*(getval("j1xh")));
  evolcorr = (4*pwx/PI)+2*pw+8.0e-6;
  cycles=np/npoints;
  cycles = (double)((int)((cycles)));
  initval(cycles,v20);

  if (mult > 0.5)
    taug = 2*tau + getval("tauC");
  else
    taug = gtE + gstab + 2 * GRADIENT_DELAY;
  ZZgsign=-1; 
  if (mult == 2) ZZgsign=1;
  icosel = 1;
 
  assign(ct,v17);
  assign(zero,v18);
  assign(zero,v19);

  if (getflag("prgflg") && (satmode[0] == 'y') && (prgcycle > 1.5))
    {
        hlv(ct,v17);
        mod2(ct,v18); dbl(v18,v18);
        if (prgcycle > 2.5)
           {
                hlv(v17,v17);
                hlv(ct,v19); mod2(v19,v19); dbl(v19,v19);
           }
     }
 
     if (BIRD[0]=='n')          //gHSQC phases
        {
                settable(t1,4,ph1);
                settable(t2,2,ph2);
                settable(t3,8,ph3);
                settable(t4,16,ph4);
                settable(t5,16,ph5);
        }
     else                      //rtgHSQC-BIRD phases
        {
                settable(t1,8,ph11);
                settable(t2,2,ph12);
                settable(t3,16,ph13);
                settable(t4,32,ph14);
                settable(t5,32,ph15);
                settable(t7,4,ph17);
                settable(t8,4,ph18);
                settable(t9,4,ph19);
                getelem(t7, v17, v7);
                getelem(t8, v17, v8);
                getelem(t9, v17, v9);
        }

     getelem(t1, v17, v1);
     getelem(t3, v17, v3);
     getelem(t4, v17, v4);
     getelem(t2, v17, v2);
     getelem(t5, v17, oph);

  assign(zero,v6);
  add(oph,v18,oph);
  add(oph,v19,oph);

  if ((phase1 == 2) || (phase1 == 5))
    icosel = -1;

  initval(2.0*(double)(((int)(d2*getval("sw1")+0.5)%2)),v14);
  add(v2, v14, v2);
  add(oph, v14, oph);

status(A);
   obspower(tpwr); decpower(pwxlvl);
   delay(5.0e-5);
   if (getflag("sspul"))
        steadystate();

   if (satmode[0] == 'y')
     {
        if ((d1-satdly) > 0.02)
                delay(d1-satdly);
        else
                delay(0.02);
        if (getflag("slpsat"))
           {
                shaped_satpulse("relaxD",satdly,zero);
                if (getflag("prgflg"))
                   shaped_purge(v6,zero,v18,v19);
           }
        else
           {
                satpulse(satdly,zero,rof1,rof1);
                if (getflag("prgflg"))
                   purge(v6,zero,v18,v19);
           }
     }
   else
        delay(d1);

   if (getflag("wet"))
     wet4(zero,one);

  status(B);
              /****** null flag starts here *****/
    if (getflag("nullflg"))
    {
      rgpulse(0.5 * pw, zero, rof1, rof1);
      delay(2 * tau);
      decpower(pwxlvl180);
      decshaped_pulse(pwx180ad, pwx180, zero, rof1, rof1);
      rgpulse(2.0 * pw, zero, rof1, rof1);
      delay(2 * tau + 2 * POWER_DELAY);
      decshaped_pulse(pwx180adR, pwx180, zero, rof1, rof1);
      decpower(pwxlvl);
      rgpulse(1.5 * pw, two, rof1, rof1);
      zgradpulse(hsglvl, hsgt);
      delay(1e-3);
    }

/*********gHSQC or gHSQC part of pure shift starts here *****/

    if (getflag("cpmgflg"))
    {
      rgpulse(pw, v6, rof1, 0.0);
      cpmg(v6, v15);
    }
    else
      rgpulse(pw, v6, rof1, rof1);
    delay(tau);
    decpower(pwxlvl180);
    decshaped_pulse(pwx180ad, pwx180, zero, rof1, rof1);
    rgpulse(2.0 * pw, zero, rof1, rof1);
    delay(tau + 2 * POWER_DELAY);
    decshaped_pulse(pwx180adR, pwx180, zero, rof1, rof1);
    decpower(pwxlvl);
    rgpulse(pw, v1, rof1, rof1);
    zgradpulse(hsglvl, 2 * hsgt);
    delay(1e-3);
    decrgpulse(pwx, v2, rof1, 2.0e-6);

      delay(d2 / 2);
    rgpulse(2 * pw, zero, 2.0e-6, 2.0e-6);
      delay(d2 / 2);

    delay(taug - POWER_DELAY);
    if (mult > 0.5)
    {
    decpower(pwxlvl180r);
    decshaped_pulse(pwx180ref, pwx180r, zero, rof1, rof1);
    rgpulse(mult * pw, zero, rof1, rof1);
    delay(taug - mult * pw - 2 * rof1 + POWER_DELAY - gtE - gstab - 2 * GRADIENT_DELAY+evolcorr);
    zgradpulse(gzlvlE, gtE);
    delay(gstab);
    decshaped_pulse(pwx180ref, pwx180r, zero, rof1, rof1);
    }
    else
    {
    decpower(pwxlvl180);
    decshaped_pulse(pwx180ad, pwx180, zero, rof1, rof1);
    delay(taug + POWER_DELAY - gtE - gstab - 2 * GRADIENT_DELAY+evolcorr);
    zgradpulse(gzlvlE, gtE);
    delay(gstab);
    decshaped_pulse(pwx180ad, pwx180, zero, rof1, rof1);
    }

    decpower(pwxlvl);

    decrgpulse(pwx, v4, 2.0e-6, rof1);
    zgradpulse(ZZgsign*0.6 * hsglvl, 1.2 * hsgt);
    delay(1e-3);
    rgpulse(pw, v3, rof1, rof1);
    decpower(pwxlvl180);
    decshaped_pulse(pwx180adR, pwx180, zero, rof1, rof1);
    decpower(dpwr);
    delay(tau - (2 * pw / PI) - 2*rof1);
    rgpulse(2 * pw, zero, rof1, rof2);
    decpower(pwxlvl180);
    decshaped_pulse(pwx180ad, pwx180, zero, rof1, rof1);
    decpower(dpwr);
    zgradpulse(icosel * 2.0*gzlvlE/EDratio, gtE/2.0);
    delay(tau - gtE/2.0 - 2 * GRADIENT_DELAY);

/********gHSQC part stops and BIRD Acquisition starts here*************/
    // delay(tBal);
        //filter delay (Hoult) for inova; adjust tBal manually for the same effect
        //delay(1.0/(getval("fb")*1.3))

        if (BIRD[0]=='y')
        {
#ifdef NVPSG
                setacqmode(WACQ|NZ);    //use this line only for vnmrs console; comment this out in inova
#endif
                obsblank();
//                delay(rof2);
                startacq(alfa);
        }

/*----------------------------------------------------------------------------
         Observe the 1st half chunk
-----------------------------------------------------------------------------*/

        if (BIRD[0]=='y')
        {
                status(C);
                acquire(npoints/2.0,1.0/sw);
                rcvroff();                                            
                status(B);
                obspower(tpwr);

/*------------------------------------------------------------------------
         Using hard 13C inversion pulse in BIRD
--------------------------------------------------------------------------*/

                if (BIRDmode[0]== 'h')
                {
                        rgpulse(pw,v7,rof1,rof1);
                        decpower(pwxlvl);
                        delay(tau);        
                        zgradpulse(gzlvlcr,gtcr);
                        delay(tau-gtcr);
                        simpulse(2.0*pw,2.0*pwx,v8,v8,rof1,rof1);
                        decpower(dpwr);
                        delay(tau);
                        zgradpulse(gzlvlcr,gtcr);
                        delay(tau-gtcr);
                        rgpulse(pw,v9,rof1,rof1);
                }

/*---------------------------------------------------------------------------
        Using BIP 13C inversion pulse in BIRD
----------------------------------------------------------------------------*/

                if (BIRDmode[0]== 'b')
                {
                  rgpulse(pw,v7,rof1,rof1);                     
                  if (pwr_XBIP!=pwxlvl) decpower(pwr_XBIP); else decpower(pwxlvl);
                  if (pwr_HBIP!=tpwr)  obspower(pwr_HBIP);
                  delay(tau); 
                  zgradpulse(gzlvlcr,gtcr);
                  delay(tau-gtcr);                              
                  simshaped_pulse(shp_HBIP,shp_XBIP,2.0*pw,pw_XBIP,v8,v8,rof1,rof1);
                  if (pwr_HBIP!=tpwr) obspower(tpwr);
                  decpower(dpwr);
                  delay(tau);
                  zgradpulse(gzlvlcr,gtcr);
                  delay(tau-gtcr);
                  rgpulse(pw,v9,rof1,rof1);
                }
                
                delay(tauA);
                rgpulse(pw*2.0,v7,rof1,rof1);  // hard 180 degree refocusing pulse
                obsblank();
                delay(tauB);
                rcvron();       //this includes rof3
                delay(tauD);
                decr(v20);

/*------------------------------------------------------------------------------
                Loops for more chunks
------------------------------------------------------------------------------*/

                starthardloop(v20);
                status(C);
                        acquire(npoints,1.0/sw);
                        rcvroff();                                    
                status(B);
                        obspower(tpwr);                               

/*------------------------------------------------------------------------                                              
Using hard 13C inversion pulse in BIRD
--------------------------------------------------------------------------*/
                if (BIRDmode[0]== 'h')
                {
                        rgpulse(pw,v7,rof1,rof1);
                        decpower(pwxlvl);                             
                        delay(tau);         
                        zgradpulse(gzlvlcr,gtcr);
                        delay(tau-gtcr);                      
                        simpulse(2.0*pw,2.0*pwx,v8,v8,rof1,rof1);
                        decpower(dpwr);
                        delay(tau);
                        zgradpulse(gzlvlcr,gtcr);
                        delay(tau-gtcr);
                        rgpulse(pw,v9,rof1,rof1);
                }
/*---------------------------------------------------------------------------
Using BIP 13C inversion pulse in BIRD
----------------------------------------------------------------------------*/
//                if (BIRDmode[0]== 'b')
                if (BIRDmode[0]== 'b')
                {
                        rgpulse(pw,v7,rof1,rof1);                     
                        if (pwr_XBIP!=pwxlvl) decpower(pwr_XBIP); else decpower(pwxlvl);
                        delay(tau);      
                        zgradpulse(gzlvlcr,gtcr);
                        delay(tau-gtcr);                         
                        simshaped_pulse(shp_HBIP,shp_XBIP,2*pw,pw_XBIP,v8,v8,rof1,rof1);
                        decpower(dpwr);
                        delay(tau);
                        zgradpulse(gzlvlcr,gtcr);
                        delay(tau-gtcr);
                rgpulse(pw,v9,rof1,rof1);
                }

                delay(tauA);
                rgpulse(pw*2.0,v7,rof1,rof1);            // hard 180 degree refocusing pulse
                obsblank();
                delay(tauB);
                rcvron();       //this includes rof3
                delay(tauD);

                endhardloop();

/*----------------------------------------------------------------
                Acquisition of last half chunk
----------------------------------------------------------------*/
                status(C);
                        acquire(npoints/2.0,1.0/sw);
                        rcvroff();                                    
                        endacq();
                        incr(v20);
        }
                 /****** BIRD ends here for all *****/
/***************** ACQ for conventional gHSQC ******************************/
        else
        status(C);
}
Esempio n. 10
0
void pulsesequence()
{
/* DECLARE VARIABLES */

 char       autocal[MAXSTR],  /* auto-calibration flag */
            fsat[MAXSTR],
            fscuba[MAXSTR],
            f1180[MAXSTR],    /* Flag to start t1 @ halfdwell         */
            f2180[MAXSTR],    /* Flag to start t2 @ halfdwell         */
            shib[MAXSTR],     /* iburp for inversion during first inept     */
            Hshp[MAXSTR],     /* proton inversion during chirp        */
            ddseq[MAXSTR],
            shreb[MAXSTR],    /* reburb hard during t2                */
            co_shp[MAXSTR],   /* shape of co 180 at 176 ppm */
            CT_flg[MAXSTR],
            codecseq[MAXSTR],
            c180_flg[MAXSTR],

            n_shift[MAXSTR],
            shibca[MAXSTR],
            shibcai[MAXSTR];

 int         phase, phase2, t2_counter, ni2, ni,
             t1_counter;   /* used for states tppi in t2,t1        */ 

 double      tau1,         /*  t1 delay */
             tau2,         /*  t2 delay */
             taua,         /*  ~ 1/4JCH =  1.7 ms; first inept */
             mix,	   /* noesy mixing time */
             TC,           /* Variable CT period during t1 1/2JCC */
             TC2,          /* Variable CT period during t3  1/2JCC */
             pwc,          /* 90 c pulse at dhpwr            */
             tsatpwr,      /* low level 1H trans.power for presat  */
             dhpwr,        /* power level for high power 13C pulses on dec1 */
             sw1,          /* sweep width in f1                    */ 
             sw2,          /* sweep width in f2                    */ 
             pwC,pwClvl,compC,pwN,pwNlvl,ppm,ofs,bw,  /*used by Pbox */
             d_ib,
             pwib,

             pwhshp,

             pwd1,        /* 2H flip back pulses   */

             d_reb,
             pwreb,

             ph_reb,
             ph_reb1,    /* only used if CT_flg=='y' and n_shift=='y'  */

             pwco180,

             dhpwr2,
             pwn,

             d_co180,

             pwcodec,    /* carbon pw90 for seduce decoupling */
             dpwrsed,
             dressed,

             d_ibca,     /* power level for selective 13Ca pulse during CT-t2 */
             pwibca,     /* selective 13Ca pulse width  */

             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gt9,
             gt10,
             gt11,
             gt12,
             gstab,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7,
             gzlvl8,
             gzlvl9,
             gzlvl10,
             gzlvl11,
             gzlvl12;

/*  variables commented out are already defined by the system      */


/* LOAD VARIABLES */

  getstr("autocal",autocal);
  getstr("fsat",fsat);
  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("fscuba",fscuba);
  getstr("ddseq",ddseq);
  getstr("n_shift",n_shift); 
  getstr("Hshp",Hshp);
  getstr("CT_flg",CT_flg);
  getstr("c180_flg",c180_flg);

  compC = getval("compC"); pwN=getval("pwN"); pwNlvl=getval("pwNlvl");
  pwC = getval("pwC"); pwClvl=getval("pwClvl");
  
  pwhshp = getval("pwhshp");
  taua   = getval("taua"); 
  mix   = getval("mix"); 
  TC = getval("TC");
  pwc = getval("pwc");
  tpwr = getval("tpwr");
  tsatpwr = getval("tsatpwr");
  dhpwr = getval("dhpwr");
  dpwr = getval("dpwr");
  phase = (int) ( getval("phase") + 0.5);
  phase2 = (int) ( getval("phase2") + 0.5);
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  ni2 = getval("ni2");
  ni  = getval("ni");

  pwd1 = getval("pwd1");

  ph_reb = getval("ph_reb");
  ph_reb1 = getval("ph_reb1");

  TC2 = getval("TC2");

  dhpwr2 = getval("dhpwr2");
  pwn = getval("pwn");

  setautocal();

  if(autocal[0]=='n')
  {     
    getstr("shreb",shreb);
    getstr("shib",shib);
    getstr("shibca",shibca);
    getstr("shibcai",shibcai);
    getstr("co_shp",co_shp);
    getstr("codecseq",codecseq);

    d_reb = getval("d_reb");
    pwreb = getval("pwreb");
    d_ib = getval("d_ib");
    pwib = getval("pwib");
    d_ibca = getval("d_ibca");
    pwibca = getval("pwibca"); 
    d_co180 = getval("d_co180");
    pwco180 = getval("pwco180");
    pwcodec = getval("pwcodec");
    dpwrsed = getval("dpwrsed");
    dressed = getval("dressed");
  }
  else
  {    
  /*strcpy(Hshp,"hard");  former declarations using TNMR.h syntax
    strcpy(shreb,"Preb_5p");
    strcpy(shib,"Pib_1p5");
    strcpy(shibca,"Pib_35p");
    strcpy(shibcai,"Pib_35pi");    
    strcpy(co_shp,"Psed_156p");
    strcpy(codecseq,"Pdec_156p");*/

    strcpy(Hshp,"hard");
    strcpy(shreb,"Preb_5p");
    strcpy(shib,"Pib_1p5");
    strcpy(shibca,"Pib_35p");
    strcpy(shibcai,"Pib_35pi");    
    strcpy(co_shp,"Psed_156p");
    strcpy(codecseq,"Pdec_156p");
    if (FIRST_FID)
    {
      ppm = getval("dfrq");

/*       These are former declarations (at top) using TNMR.h syntax                     */
/*REB180   "reburp 110p 5p"*/             /* RE-BURP 180 on Cab at 24.6 ppm, 5 ppm away */
/*IB180    "iburp2 24.4p 1.5p"*/          /* I-BURP 180 on  Me at 21.1 ppm, 1.5 ppm away */
/*IBCA     "iburp2 24.4p 35p"*/           /* I-BURP 180 on Cab at 54.6 ppm, 35 ppm away */
/*IBCAI    "iburp2 24.4p 35p"*/           /* I-BURP 180 on Cab at 54.6 ppm, 35 ppm away */
/*CO180    "seduce 30p 156p"*/            /* SEDUCE 180 on C' at 175.6 ppm 156 ppm away */
/*CODEC    "WURST2 20p/4m 156p"*/  /* WURST2 decoupling on C' at 175.6 ppm 156 ppm away */
/*REB180ps "-stepsize 0.5 -attn i"*/                     /* seduce 180 shape parameters */
/*CODECps  "-dres 1.0 -maxincr 20.0 -attn i"*/
    /*co180 = pbox(co_shp, CO180, REB180ps, dfrq, compC*pwc, dhpwr);*/
    /*ibcai = pbox(shibcai, IBCAI, REB180ps, dfrq, compC*pwc, dhpwr);*/      
    /*ibca = pbox(shibca, IBCA, REB180ps, dfrq, compC*pwc, dhpwr);*/
    /*ib180 = pbox(shib, IB180, REB180ps, dfrq, compC*pwc, dhpwr);*/          
    /*reb = pbox(shreb, REB180, REB180ps, dfrq, compC*pwc, dhpwr);*/
    /*COdec = pbox(codecseq, CODEC, CODECps, dfrq, compC*pwc, dhpwr);*/

      bw = 110.0*ppm; ofs = 5.0*ppm;
      Preb_5p = pbox_Rsh("Preb_5p", "reburp", bw , ofs, compC*pwC, pwClvl);
      bw = 24.4*ppm; ofs = 1.5*ppm;
      Pib_1p5 = pbox_Rsh("Pib_1p5", "iburp2", bw , ofs, compC*pwC, pwClvl);
      bw = 24.4*ppm; ofs = 35*ppm;
      Pib_35p = pbox_Rsh("Pib_35p", "iburp2", bw , ofs, compC*pwC, pwClvl);
      bw = 24.4*ppm; ofs = 35*ppm;
      Pib_35pi = pbox_Rsh("Pib_35pi", "iburp2", bw , ofs, compC*pwC, pwClvl);
      bw = 30.0*ppm; ofs = 156*ppm;
      Psed_156p = pbox_Rsh("Psed_156p", "seduce", bw , ofs, compC*pwC, pwClvl);
      bw = 20.0*ppm; ofs = 156*ppm;
      Pdec_156p = pbox_Dsh("Pdec_156p", "WURST2", bw , ofs, compC*pwC, pwClvl);


      ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
    }
    d_reb = Preb_5p.pwr;        pwreb = Preb_5p.pw;
    d_ib = Pib_1p5.pwr;         pwib = Pib_1p5.pw;
    d_ibca = Pib_35p.pwr;       pwibca = Pib_35p.pw;       
    d_co180 = Psed_156p.pwr;    pwco180 = Psed_156p.pw;  
    dpwrsed = Pdec_156p.pwr;    pwcodec = 1.0/Pdec_156p.dmf;  dressed = Pdec_156p.dres;

    pwc=pwC; dhpwr=pwClvl; pwn=pwN; dhpwr2=pwNlvl; pwhshp=2.0*pw;
    pwd1=1/dmf3; pwhshp=2.0*pw;
  }   
   
  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");
  gt9 = getval("gt9");
  gt10 = getval("gt10");
  gt11 = getval("gt11");
  gt12 = getval("gt12");

  gstab  = getval("gstab");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");
  gzlvl9 = getval("gzlvl9");
  gzlvl10 = getval("gzlvl10");
  gzlvl11 = getval("gzlvl11");
  gzlvl12 = getval("gzlvl12");

/* LOAD PHASE TABLE */

  settable(t1,4,phi1);
  settable(t2,8,phi2);
  settable(t7,2,phi7);
  settable(t8,2,phi8);
  settable(t9,8,rec);

/* CHECK VALIDITY OF PARAMETER RANGES */

   if(TC/2.0 - 0.5*(ni-1)*1/(sw1) - POWER_DELAY - 4.0e-6 
         - WFG3_START_DELAY - pwco180
         - WFG3_STOP_DELAY - pwd1 
         - gt4 - gstab -2.0e-6 - POWER_DELAY
         - 4.0e-6 - WFG_START_DELAY < 0.2e-6)
    {
        printf(" ni is too big\n");
        psg_abort(1);
    }

  if(CT_flg[A] == 'y' && n_shift[A] == 'n') {

   if(TC2/2.0 - 0.5*(ni2-1)*1/(sw2) - POWER_DELAY - 4.0e-6 
         - WFG3_START_DELAY - pwco180
         - WFG3_STOP_DELAY - pwd1 
         - gt10 - gstab -2.0e-6 - POWER_DELAY
         - 4.0e-6 - WFG_START_DELAY < 0.2e-6)
    {
        printf(" ni2 is too big\n");
        psg_abort(1);
    }

   }

  if(CT_flg[A] == 'y' && n_shift[A] == 'y') {

   if(TC2/2.0 - 0.5*(ni2-1)/sw2 - POWER_DELAY 
         - 4.0e-6 - WFG3_START_DELAY - pwco180
         - WFG3_STOP_DELAY - 2.0e-6 - POWER_DELAY - WFG_START_DELAY
         - 4.0e-6 - pwibca - WFG_STOP_DELAY - pwd1 
         - gt10 - gstab -2.0e-6 - POWER_DELAY
         - 4.0e-6 - WFG3_START_DELAY < 0.2e-6)
    {
        printf(" ni2 is too big\n");
        psg_abort(1);
    }

   }

    if((dm[A] == 'y' || dm[B] == 'y' ))
    {
        printf("incorrect dec1 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y'))
    {
        printf("incorrect dec2 decoupler flags!  ");
        psg_abort(1);
    }

    if((dm3[A] == 'y' || dm3[B] == 'y' || dm3[C] == 'y'))
    {
        printf("incorrect dec3 decoupler flags!  ");
        psg_abort(1);
    }

    if( tsatpwr > 6 )
    {
        printf("TSATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 48 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( d_ib > 54 )
    {
        printf("don't fry the probe, d_ib too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 49 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( dpwr3 > 51 )
    {
        printf("don't fry the probe, DPWR3 too large!  ");
        psg_abort(1);
    }

    if( dhpwr > 63 )
    {
        printf("don't fry the probe, DHPWR too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 

    if( pwd1 < 100.0e-6 && pwd1 != 0.0)
    {
        printf("dont fry the probe, pwd1 too short and dpwr3 too high! ");
        psg_abort(1);
    } 

    if(d_co180 > 50)
    {
        printf("dont fry the probe, d_co180 is too high\n ");
        psg_abort(1);
    } 

    if(((pwco180 > 250e-6) || (pwco180 < 200e-6)) && (autocal[A] == 'n'))
     {
        printf("pwco180 is misset < 250 us > 200 us\n");
        psg_abort(1);
     }

    if(dpwrsed > 45) 
     {
        printf("dpwrsed is misset < 46\n");
        psg_abort(1);
     }

    if(gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || 
        gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 ||
        gt7 > 15e-3 || gt8 > 15e-3 || gt9 > 15e-3 || 
        gt10 > 15e-3 || gt11 > 15e-3 || gt12 > 15e-3) 
    {
        printf("gradients on for too long. Must be < 15e-3 \n");
        psg_abort(1);
    }

/*  Phase incrementation for hypercomplex 2D data */

    if (phase2 == 2) {
      tsadd(t2,1,4);  
    }

    if (phase == 2) 
      tsadd(t1,1,4);

/*  Set up f2180  tau2 = t2               */
   
    tau2 = d3;

    if(CT_flg[A] == 'y') {

    if(f2180[A] == 'y') {
        tau2 += ( 1.0 / (2.0*sw2) );
    }

    }

    if(CT_flg[A] == 'n' && n_shift[A] == 'n') {

         if(f2180[A] == 'y') {
            tau2 += ( 1.0 / (2.0*sw2) - 4.0/PI*pwc - POWER_DELAY
                      - PRG_START_DELAY - 4.0*pw - 4.0e-6 - 2.0*pwn
                      - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6);

            if(tau2 < 0.0 && ix == 1) 
               printf("tau2 start2 negative; decrease sw2\n");
          }

         if(f2180[A] == 'n') {
            tau2 = ( tau2 - 4.0/PI*pwc - POWER_DELAY
                      - PRG_START_DELAY - 4.0*pw - 4.0e-6 - 2.0*pwn
                      - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6);
         }

     } 

    if(CT_flg[A] == 'n' && n_shift[A] == 'y') {

         if(f2180[A] == 'y') {
            tau2 += ( 1.0 / (2.0*sw2) - 4.0/PI*pwn - POWER_DELAY
                      - PRG_START_DELAY - 4.0*pw - 4.0e-6 
                      - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6);

            if(tau2 < 0.0 && ix == 1) 
               printf("tau2 start2 negative; decrease sw2\n");
          }

         if(f2180[A] == 'n') {
            tau2 = ( tau2 - 4.0/PI*pwn - POWER_DELAY
                      - PRG_START_DELAY - 4.0*pw - 4.0e-6
                      - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6);
         }

     } 

    if(tau2 < 0.4e-6) tau2 = 0.4e-6;
    tau2 = tau2/2.0;

/*  Set up f1180  tau1 = t1               */
   
    tau1 = d2;
    if(f1180[A] == 'y') {
        tau1 += ( 1.0 / (2.0*sw1) );
    }
    if(tau1 < 0.4e-6) tau1 = 0.4e-6;
    tau1 = tau1/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
      tsadd(t1,2,4);     
      tsadd(t9,2,4);     
    }

   if( ix == 1) d3_init = d3 ;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) {
      tsadd(t2,2,4);     
      tsadd(t9,2,4);    
    }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obspower(tsatpwr);     /* Set transmitter power for 1H presaturation */
   decpower(dhpwr);       /* Set Dec1 power for hard 13C pulses         */
   dec2power(dhpwr2);    /* Set Dec2 power for hard 15N pulses         */
   dec3power(dpwr3);     /* Set Dec3 power for 2H pulses        */

/* Presaturation Period */


   if (fsat[0] == 'y')
   {
        delay(2.0e-5);
        rgpulse(d1,zero,2.0e-6,2.0e-6); /* presat */
        obspower(tpwr);    /* Set transmitter power for hard 1H pulses */
        delay(2.0e-5);
        if(fscuba[0] == 'y')
        {
                delay(2.2e-2);
                rgpulse(pw,zero,2.0e-6,0.0);
                rgpulse(2*pw,one,2.0e-6,0.0);
                rgpulse(pw,zero,2.0e-6,0.0);
                delay(2.2e-2);
        }
   }
   else
   {
    delay(d1);
   }

   obspower(tpwr);          /* Set transmitter power for hard 1H pulses */
   txphase(zero);
   dec2phase(zero);
   decphase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(B);

   rcvroff();
   lk_hold();
   delay(20.0e-6);

/* first ensure that magnetization does infact start on H and not C */

   decrgpulse(pwc,zero,2.0e-6,2.0e-6);

   delay(2.0e-6);
   zgradpulse(gzlvl1,gt1);
   delay(gstab);

   decpower(d_ib);			/* set power for chirp during inept */
   delay(4e-6);

/* this is the real start */

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(2.0e-6);
   zgradpulse(gzlvl2,gt2);
   delay(2.0e-6);

   delay(taua - gt2 - 4.0e-6 - WFG2_START_DELAY);   /* taua <= 1/4JCH */                          

   simshaped_pulse(Hshp,shib,pwhshp,pwib,zero,zero,0.0,0.0);
   decphase(zero);

   txphase(one); decphase(t1);
   decpower(dhpwr);

   delay(2.0e-6);
   zgradpulse(gzlvl2,gt2);
   delay(2.0e-6);

   delay(taua - gt2 - 4.0e-6 - WFG2_STOP_DELAY - POWER_DELAY); 

   rgpulse(pw,one,0.0,0.0);
   txphase(zero);

   delay(2.0e-6);
   zgradpulse(gzlvl3,gt3);
   delay(gstab);

   decrgpulse(pwc,t1,0.0,0.0);
   decphase(zero);

   delay(tau1);

   decpower(d_co180);
   sim3shaped_pulse(Hshp,co_shp,"hard",pwhshp,pwco180,2.0*pwn,zero,zero,zero,4.0e-6,0.0);

   delay(TC/2.0 - tau1 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180
         - WFG3_STOP_DELAY - pwd1 
         - gt4 - gstab -2.0e-6 - POWER_DELAY
         - 4.0e-6 - WFG_START_DELAY);

   dec3rgpulse(pwd1,zero,0.0,0.0);

   delay(tau1);

   delay(2.0e-6);
   zgradpulse(gzlvl4,gt4);
   delay(gstab);

   initval(1.0,v3);
   decstepsize(ph_reb);
   dcplrphase(v3);

   decpower(d_reb);

   decshaped_pulse(shreb,pwreb,zero,4.0e-6,0.0);
   dcplrphase(zero);

   decphase(zero); decpower(dhpwr);
  
   delay(2.0e-6);
   zgradpulse(gzlvl4,gt4);
   delay(gstab);

   delay(TC/2.0 - tau1 - WFG_STOP_DELAY - POWER_DELAY
         - gt4 - gstab -2.0e-6);

   decrgpulse(pwc,zero,0.0,0.0);

   dec3rgpulse(pwd1,two,4.0e-6,0.0);


   delay(2.0e-6);
   zgradpulse(gzlvl5,gt5);
   delay(gstab);

   rgpulse(pw,zero,0.0,0.0);

   delay(2.0e-6);
   zgradpulse(gzlvl6,gt6);
   delay(gstab);

   decpower(d_ib);
   delay(taua - gt6 - 4.0e-6 - WFG2_START_DELAY - POWER_DELAY);

   simshaped_pulse(Hshp,shib,pwhshp,pwib,zero,zero,0.0,0.0);
   decphase(zero);

   delay(2.0e-6);
   zgradpulse(gzlvl6,gt6);
   delay(gstab);


   decpower(dhpwr);
   txphase(one);
   delay(taua - gt6 - gstab -2.0e-6 - POWER_DELAY - WFG2_STOP_DELAY);

   rgpulse(pw,one,0.0,0.0);
   txphase(zero);

   delay(mix - gt7 - 352.0e-6);

   decrgpulse(pwc,zero,0.0,0.0);

   delay(2.0e-6);
   zgradpulse(gzlvl7,gt7);
   delay(gstab);

   decpower(d_ib); /* set power level for iburp */

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   delay(2.0e-6);
   zgradpulse(gzlvl8,gt8);
   delay(2.0e-6);

   if(n_shift[A] == 'n') {

   delay(taua - gt8 - 4.0e-6 - WFG2_START_DELAY);   /* taua <= 1/4JCH */                          
   simshaped_pulse(Hshp,shib,pwhshp,pwib,zero,zero,0.0,0.0);
   decphase(zero);

   }

   else {
 delay(taua - gt8 - 4.0e-6 - WFG3_START_DELAY);                 
 sim3shaped_pulse(Hshp,shib,"hard",pwhshp,pwib,2.0*pwn,zero,zero,zero,0.0,0.0);
    }


   txphase(one); decphase(t2);
   decpower(dhpwr);

   delay(2.0e-6);
   zgradpulse(gzlvl8,gt8);
   delay(2.0e-6);

   if(n_shift[A] == 'n') 
      delay(taua - gt8 - 4.0e-6 - WFG2_STOP_DELAY - POWER_DELAY); 
   else
      delay(taua - gt8 - 4.0e-6 - WFG3_STOP_DELAY - POWER_DELAY); 

   rgpulse(pw,one,0.0,0.0);
   txphase(zero);

   delay(2.0e-6);
   zgradpulse(gzlvl9,gt9);
   delay(gstab);

  if(CT_flg[A] == 'y' && n_shift[A] == 'n') {

   decrgpulse(pwc,t2,0.0,0.0);
   decphase(zero);

   delay(tau2);

   decpower(d_co180);
   sim3shaped_pulse(Hshp,co_shp,"hard",pwhshp,pwco180,2.0*pwn,zero,zero,zero,4.0e-6,0.0);

   delay(TC2/2.0 - tau2 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180
         - WFG3_STOP_DELAY - pwd1 
         - gt10 - gstab -2.0e-6 - POWER_DELAY
         - 4.0e-6 - WFG_START_DELAY);

   dec3rgpulse(pwd1,zero,0.0,0.0);

   delay(tau2);

   delay(2.0e-6);
   zgradpulse(gzlvl10,gt10);
   delay(gstab);

   initval(1.0,v4);
   decstepsize(ph_reb);
   dcplrphase(v4);

   decpower(d_reb);

   decshaped_pulse(shreb,pwreb,zero,4.0e-6,0.0);
   dcplrphase(zero);

   decphase(zero); decpower(dhpwr);
   
   delay(2.0e-6);
   zgradpulse(gzlvl10,gt10);
   delay(gstab);

   delay(TC2/2.0 - tau2 - WFG_STOP_DELAY - POWER_DELAY 
         - gt10 - gstab -2.0e-6); 

   decrgpulse(pwc,zero,0.0,0.0);

   dec3rgpulse(pwd1,two,4.0e-6,0.0);

   }

  if(CT_flg[A] == 'y' && n_shift[A] == 'y') {

   dec2phase(t2); delay(2.0e-6);

   dec2rgpulse((pwn-pwc)/2.0,t2,0.0,0.0);
   sim3pulse(0.0e-6,pwc,pwc,zero,t2,t2,0.0,0.0);
   dec2rgpulse((pwn-pwc)/2.0,t2,0.0,0.0);

   decphase(zero);

   delay(tau2);

   decphase(zero);
   decpower(d_co180);
   sim3shaped_pulse(Hshp,co_shp,"hard",pwhshp,pwco180,0.0e-6,zero,zero,zero,4.0e-6,2.0e-6);

   decpower(d_ibca);
   decshaped_pulse(shibca,pwibca,zero,4.0e-6,0.0);
   decphase(zero);

   delay(TC2/2.0 - tau2 - POWER_DELAY - 4.0e-6 - WFG3_START_DELAY - pwco180
         - WFG3_STOP_DELAY - 2.0e-6 - POWER_DELAY - WFG_START_DELAY
         - 4.0e-6 - pwibca - WFG_STOP_DELAY - pwd1 
         - gt10 - gstab -2.0e-6 - POWER_DELAY
         - 4.0e-6 - WFG3_START_DELAY);

   dec3rgpulse(pwd1,zero,0.0,0.0);

   delay(tau2);

   delay(2.0e-6);
   zgradpulse(gzlvl10,gt10);
   delay(gstab);

   initval(1.0,v4);
   decstepsize(ph_reb1);
   dcplrphase(v4);

   decpower(d_reb);

   sim3shaped_pulse("hard",shreb,"hard",0.0e-6,pwreb,2.0*pwn,zero,zero,zero,4.0e-6,0.0);
   dcplrphase(zero);

   decphase(t7); decpower(d_ibca);
   decshaped_pulse(shibcai,pwibca,t7,4.0e-6,0.0);
   decpower(dhpwr); decphase(zero);
   
   delay(2.0e-6);
   zgradpulse(gzlvl10,gt10);
   delay(gstab);

   delay(TC2/2.0 - tau2 - WFG3_STOP_DELAY - POWER_DELAY 
         - 4.0e-6 - WFG_START_DELAY - pwibca - WFG_STOP_DELAY 
         - POWER_DELAY
         - gt10 - gstab -2.0e-6); 

   dec2rgpulse((pwn-pwc)/2.0,zero,0.0,0.0);
   sim3pulse(0.0e-6,pwc,pwc,zero,zero,zero,0.0,0.0);
   dec2rgpulse((pwn-pwc)/2.0,zero,0.0,0.0);

   dec3rgpulse(pwd1,two,4.0e-6,0.0);

   }

   if(CT_flg[A] == 'n' && n_shift[A] == 'n') {

      txphase(one);
      decrgpulse(pwc,t2,0.0,0.0);

      if(c180_flg[A] == 'n')
    {

      decphase(zero);

      /* seduce on */
      decpower(dpwrsed);
      decprgon(codecseq,pwcodec,dressed);
      decon();
      /* seduce on */

      delay(tau2);

      rgpulse(pw,one,0.0,0.0);
      rgpulse(2.0*pw,zero,2.0e-6,0.0);
      rgpulse(pw,one,2.0e-6,0.0);

      dec2rgpulse(2.0*pwn,zero,0.0,0.0);

      delay(tau2); 

      /* seduce off */
      decoff();
      decprgoff();
      decpower(dhpwr);
      /* seduce off */

    }

      else
         decrgpulse(2.0*pwc,zero,4.0e-6,0.0);

      decrgpulse(pwc,zero,4.0e-6,0.0);

   }

   if(CT_flg[A] == 'n' && n_shift[A] == 'y') {

      txphase(one); dec2phase(t2);

      dec2rgpulse((PI-2.0)/PI*(pwn-pwc),t2,2.0e-6,0.0);
      sim3pulse(0.0e-6,pwc,pwc,zero,t2,t2,0.0,0.0);
      dec2rgpulse((2.0/PI)*(pwn-pwc),t2,0.0,0.0);

      if(c180_flg[A] == 'n')
    {

      decphase(zero);

      /* seduce on */
      decpower(dpwrsed);
      decprgon(codecseq,pwcodec,dressed);
      decon();
      /* seduce on */

      delay(tau2);

      rgpulse(pw,one,0.0,0.0);
      rgpulse(2.0*pw,zero,2.0e-6,0.0);
      rgpulse(pw,one,2.0e-6,0.0);

      delay(tau2); 

      /* seduce off */
      decoff();
      decprgoff();      /* note that ca-n evolves ; keep t2,max <= 9.5ms */
      decpower(dhpwr);
      /* seduce off */

    }

      else
         sim3pulse(0.0,2.0*pwc,2.0*pwn,zero,zero,zero,4.0e-6,0.0);

      dec2rgpulse((2.0/PI)*(pwn-pwc),zero,4.0e-6,0.0);
      sim3pulse(0.0e-6,pwc,pwc,zero,zero,zero,0.0,0.0);
      dec2rgpulse((PI-2.0)/PI*(pwn-pwc),zero,0.0,0.0);

   }

   delay(2.0e-6);
   zgradpulse(gzlvl11,gt11);
   delay(gstab);

   lk_sample();

   rgpulse(pw,t8,4.0e-6,0.0);                    /* 90 deg 1H pulse */

   delay(2.0e-6);
   zgradpulse(gzlvl12,gt12);
   delay(2.0e-6);

   decpower(d_ib);

   if(n_shift[A] == 'n') {

   delay(taua - gt12 - 4.0e-6 - WFG2_START_DELAY - POWER_DELAY);
   simshaped_pulse(Hshp,shib,pwhshp,pwib,t8,zero,0.0,0.0);
   decphase(zero);
   }

   else {
 delay(taua - gt12 - 4.0e-6 - WFG3_START_DELAY - POWER_DELAY);                 
 sim3shaped_pulse(Hshp,shib,"hard",pwhshp,pwib,2.0*pwn,t8,zero,zero,0.0,0.0);
    }

   delay(2.0e-6);
   zgradpulse(gzlvl12,gt12);
   delay(2.0e-6);

   if(n_shift[A] == 'n')
     delay(taua - gt12 - 4.0e-6 - WFG2_STOP_DELAY - 2.0*POWER_DELAY);
   else
     delay(taua - gt12 - 4.0e-6 - WFG3_STOP_DELAY - 2.0*POWER_DELAY);

   decpower(dpwr);  /* Set power for decoupling */
   dec2power(dpwr2);  /* Set power for decoupling */

   rgpulse(pw,t8,0.0,rof2);

/* BEGIN ACQUISITION */

status(C);
setreceiver(t9);

}
Esempio n. 11
0
pulsesequence()
{
/* DECLARE VARIABLES */

 char        fscuba[MAXSTR],f1180[MAXSTR],f2180[MAXSTR],fsat[MAXSTR],
             shape[MAXSTR],sh_ad[MAXSTR],f3180[MAXSTR],
             N_flg[MAXSTR],diag_supp[MAXSTR];

 int	     phase,
             phase2,
             phase3,
             t1_counter,
             t2_counter,
             t3_counter, icosel;

 double      hscuba,                /* length of 1/2 scuba delay */
             pwx2,                  /* PW90 for X-nuc            */
             tsatpwr,               /* low power level for presat*/
             dhpwr2,                /* power level for X hard pulses */
             jxh,                   /* coupling for XH           */
             tauxh,                 /* delay = 1/(2jxh)          */
	     tau1,	      	    /* t1/2  H */
	     tau2,	      	    /* t2/2 N */
	     tau3,	      	    /* t3/2 N */
	     sw1,                  /* spectral width in 1H dimension */
             sw2,                  /* spectral width in 15N dimension */
             sw3,                  /* spectral width in 15N dimension */
             MIX,                  /* Total Mixing time for noesy portion */
             pw_sl,                /* selective 2ms pulse on water */
             tpwrsl,               /* power level for pw_sl   */ 
             ppm,nst,pws,bw,ofs,   /* used by Pbox */
             pwN,pwNlvl,compH,compC,pwC,pwClvl,
             d_ad,                 /* C high power for adiabatic pulses */
             pwc_ad,               /* C 90 pulse width   */

             zeta,                /* Bax-Logan trick */
             zeta1,               /* Bax-Logan trick */

             BigT,
             BigT1,

             gzlvl0,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7,
             gzlvl8,
             gzlvl9,
             gzlvl10,
             gzlvl11,
             gzlvl12,

             gstab,
             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gt9,
             gt10,
             gt11,
             gt12;

/* LOAD VARIABLES */
          pwNlvl=getval("pwNlvl");
          pwN=getval("pwN");
          compC=getval("compC");
          pwC=getval("pwC");
          pwClvl=getval("pwClvl");
          compH=getval("compH");

  jxh = getval("jxh");
  dhpwr2 = getval("dhpwr2"); 
  pwx2 = getval("pwx2");
  tsatpwr = getval("tsatpwr");
  hscuba = getval("hscuba");
  phase = (int) (getval("phase") + 0.5);
  phase2 = (int) (getval("phase2") + 0.5);
  phase3 = (int) (getval("phase3") + 0.5);
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  sw3 = getval("sw3");
  MIX  = getval("MIX");
  pw_sl = getval("pw_sl");
  tpwrsl = getval("tpwrsl");

  pwc_ad = getval("pwc_ad");
  d_ad = getval("d_ad");

  ni = getval("ni"); 

  BigT = getval("BigT");
  BigT1 = getval("BigT1");

  gstab  = getval("gstab");
  gzlvl0 = getval("gzlvl0");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");
  gzlvl9 = getval("gzlvl9");
  gzlvl10 = getval("gzlvl10");
  gzlvl11 = getval("gzlvl11");
  gzlvl12 = getval("gzlvl12");

  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");
  gt9 = getval("gt9");
  gt10 = getval("gt10");
  gt11 = getval("gt11");
  gt12 = getval("gt12");

  getstr("fscuba",fscuba); 
  getstr("fsat",fsat); 
  getstr("f1180",f1180); 
  getstr("f2180",f2180); 
  getstr("f3180",f3180); 

  getstr("N_flg",N_flg);

  getstr("diag_supp",diag_supp);
  getstr("sh_ad",sh_ad);
  getstr("shape",shape);
  if(d_ad > 62) {
   printf("chirp power is too high \n");
   psg_abort(1);
  }
  if(pwc_ad > 1.2e-3) {
    printf("adiabatic pulse is too long; set < 0.5 ms\n");
    psg_abort(1);
  } 

   setautocal();                        /* activate auto-calibration flags */ 
        
      if (autocal[0] != 'n') 
        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
      {
        strcpy(shape,"H2Osel");
        strcpy(sh_ad,"C13adiab");
        if(FIRST_FID)                                            /* call Pbox */
        {
          ppm = getval("dfrq"); ofs = 0.0;   pws = 0.0005; /*0.5 ms pulse */
          bw = 200.0*ppm;       nst = 1000;          /* nst - number of steps */
          C13adiab = pbox_makeA("C13adiab", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
          H2Osel = pbox_Rsh("H2Osel", "sinc90", pw_sl, 0.0, compH*pw, tpwr);
          ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
        }
        pw_sl = H2Osel.pw; tpwrsl = H2Osel.pwr-1.0;  /* 1dB correction applied */
        d_ad = C13adiab.pwr; pwc_ad = C13adiab.pw;
        pwx2=pwN; dhpwr2=pwNlvl;
      }

/* check validity of parameter range */

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y'))
	{
	printf("incorrect Dec1 decoupler flags!  ");
	psg_abort(1);
    } 

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y'))
	{
	printf("incorrect Dec2 decoupler flags!  ");
	psg_abort(1);
    } 

    if( tsatpwr > 8 )
    {
	printf("tsatpwr too large !!!  ");
	psg_abort(1);
    }

    if( dpwr > -16 )
    {
	printf("No C decoupling used in this expt. ");
	psg_abort(1);
    }

    if( dpwr2 > -16 )
    {
	printf("No N decoupling used in this expt. ");
	psg_abort(1);
    }

    if(gzlvl0 > 500) {
        printf("gzlvl0_max is 500\n");
        psg_abort(1);
    } 

    if( gt1 > 3e-3 || gt2 > 3e-3 || gt3 > 3e-3 || gt4 > 3e-3 
        || gt5 > 3e-3 || gt6 > 3e-3 || gt7 > 3e-3 
        || gt8 > 3e-3 || gt9 > 3e-3 || gt10 > 3e-3 || gt11 > 3e-3  
        || gt12 > 3e-3)
    {
        printf("gradients are on for too long !!! ");
        psg_abort(1);
    } 


    if(ix==1) {
    if(f1180[A] != 'n' || f2180[A] !='y' || f3180[A] != 'y') {
        printf("f1180 should be n, f2180 y, and f3180 should be y\n");
    }
   }


/* LOAD VARIABLES */

  settable(t1, 4,  phi1);
  settable(t2, 1,  phi2);
  settable(t3, 1,  phi3);
  settable(t4, 1,  phi4);
  settable(t5, 1,  phi5);
  settable(t6, 1,  phi6);
  settable(t7, 1,  phi7);
  settable(t8, 1,  phi8);
  settable(t9, 2,  phi9);
  settable(t10, 4,  rec);

/* INITIALIZE VARIABLES */

  tauxh = 1/(4*jxh);

/* Phase incrementation for hypercomplex data */

  if( phase == 2 ) {
        tsadd(t2, 1, 4);
        tsadd(t3, 1, 4);
   }

   if ( phase2 == 2 ) {    /* Hypercomplex in t2 */
        tsadd(t1, 1, 4);
   }

   if ( phase3 == 2 )     /* Hypercomplex in t3 */
   {
        tsadd(t6, 2, 4);
        tsadd(t7, 2, 4);
        tsadd(t8, 2, 4);
        tsadd(t10, 2, 4);
        icosel = -1;
   }
   else
       icosel = 1;

/* calculate modifications to phases based on current t2/t3 values
   to achieve States-TPPI acquisition */

   if(ix==1)
     d4_init = d4;
     t3_counter = (int) ( (d4-d4_init)*sw3 + 0.5);
     if(t3_counter %2) {
       tsadd(t4,2,4);
       tsadd(t5,2,4);
       tsadd(t10,2,4);
     }

   if(ix==1)
     d3_init = d3;
     t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5);
     if(t2_counter %2) {
       tsadd(t1,2,4);
       tsadd(t10,2,4); 
     }

   if(ix==1)
     d2_init = d2;
     t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5);
     if(t1_counter %2) {
       tsadd(t2,2,4);
       tsadd(t3,2,4);
       tsadd(t10,2,4); 
     }

/* set up so that get (-90,180) phase corrects in F1 if f1180 flag is y */

     tau1 = d2;
     if(f1180[A] == 'y') {
            tau1 += 1/(2.0*sw1);
     }

     tau1 = tau1/2.0;
     if(tau1 < 0.2e-6) tau1 = 0.2e-6;
     

/* set up so that get (-90,180) phase corrects in F2 if f2180 flag is y */

   tau2 = d3;
   if(f2180[A] == 'y')  
      tau2 += ( 1.0/(2.0*sw2) - (4.0/PI)*pwx2
                - 2.0*(2.0*GRADIENT_DELAY + 50.0e-6 + 5.0e-6) );
   if(f2180[A] == 'n')  
      tau2 = ( tau2 - (4.0/PI)*pwx2
                - 2.0*(2.0*GRADIENT_DELAY + 50.0e-6 + 5.0e-6) );

   tau2 = tau2/2.0;

   if(ix==1)
     if((tau2 + 5.0e-6 - 0.5*(WFG_START_DELAY + 4.0*pw + WFG_STOP_DELAY)
         < 5.0e-6) && N_flg[A] == 'n')
      printf("tau2 is negative; set f1180 to y\n");

/* set up so that get (-90,180) phase corrects in F3 if f3180 flag is y */

   tau3 = d4;
   if(f3180[A] == 'y')  tau3 += ( 1.0/(2.0*sw3) );

   tau3 = tau3/2.0;
   if( tau3 < 0.2e-6) tau3 = 2.0e-7; 

/* Now include Bax/Logan trick */

   if(ni != 1) {
     if(diag_supp[A] == 'n')
        zeta = (tauxh - gt5 - 102.0e-6 + 2.0*pwx2 - 2.0e-6);
     else 
        zeta = (1.0/(8.0*93.39) - gt5 - 102.0e-6 + 2.0*pwx2 - 2.0e-6);
     zeta = zeta / ( (double) (ni-1) );

     if(zeta < 0.0) {
        printf("problem with zeta\n");
        psg_abort(1);
     }

   }

   else
      zeta = 0.0;

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2 - d2_init)*sw1 + 0.5 );

   zeta1 = zeta*( (double)t1_counter );
   tau1 = tau1 - zeta1; 



/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obspower(tsatpwr);            /* Set power for presaturation  */
   decpower(d_ad);               /* Set decoupler1 power to d_ad */
   dec2power(dhpwr2);            /* Set decoupler2 power to dhpwr2 */

/* Presaturation Period */


 if(fsat[0] == 'y')
{
  txphase(zero);
  rgpulse(d1,zero,2.0e-6,2.0e-6);  /* presat */
  obspower(tpwr);                /* Set power for hard pulses  */

    if (fscuba[0] == 'y')            /* Scuba pulse sequence */
    {  
      hsdelay(hscuba);

      rgpulse(pw,zero,1.0e-6,0.0);	/* 90x180y90x */
      rgpulse(2*pw,one,1.0e-6,0.0);
      rgpulse(pw,zero,1.0e-6,0.0);
 
      txphase(zero);
      delay(hscuba);        
    }
}

else  {
 obspower(tpwr);                /* Set power for hard pulses  */
 delay(d1);
}

status(B);

   obsoffset(tof);

   rcvroff();
   delay(20.0e-6);

  /* eliminate all magnetization originating from 15N */

  dec2rgpulse(pwx2,zero,0.0,0.0);

  delay(2.0e-6);
  zgradpulse(gzlvl1,gt1);
  delay(gstab);

  rgpulse(pw,zero,0.0,0.0);

  delay(2.0e-6);
  zgradpulse(gzlvl2,gt2);
  delay(2.0e-6);

  delay(tauxh - gt2 - 4.0e-6);               /* delay=1/4J(XH)   */

  sim3pulse(2*pw,0.0e-6,2*pwx2,zero,zero,zero,0.0,0.0);

  delay(tauxh - gt2 - 202.0e-6);             /* delay=1/4J(XH)   */

  txphase(one); dec2phase(t1);

  delay(2.0e-6);
  zgradpulse(gzlvl2,gt2);
  delay(gstab);

  rgpulse(pw,one,0.0,0.0);       

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,two,2.0e-6,0.0);
  delay(2.0e-6);
  obspower(tpwr);
  /* shaped pulse */

  delay(2.0e-6);
  zgradpulse(gzlvl3,gt3);
  delay(gstab);

  txphase(zero);

  dec2rgpulse(pwx2,t1,0.0,0.0);
  dec2phase(zero);

  if(N_flg[A] == 'n') 
  {
    if(tau2 + 5.0e-6 - 0.5*(WFG2_START_DELAY
                 + pwc_ad + WFG2_STOP_DELAY) < 0.2e-6)
     {
      rgradient('z',gzlvl0); /* use rgradient since shaping takes more time */
      delay(tau2 + 5.0e-6 - 0.5*(WFG_START_DELAY + 4.0*pw + WFG_STOP_DELAY));
      rgradient('z',0.0);
      delay(50.0e-6);

      shaped_pulse("composite",4.0*pw,zero,0.0,0.0);  /* 90x-180y-90x  */

      rgradient('z',-1.0*gzlvl0);
      delay(tau2 + 5.0e-6 - 0.5*(WFG_START_DELAY + 4.0*pw + WFG_STOP_DELAY));
      rgradient('z',0.0);
      delay(50.0e-6);

     }

     else

     {
      rgradient('z',gzlvl0); /* use rgradient since shaping takes more time */
      delay(tau2 + 5.0e-6 - 0.5*(WFG2_START_DELAY
              + pwc_ad + WFG2_STOP_DELAY));
      rgradient('z',0.0);
      delay(50.0e-6);

      simshaped_pulse("composite",sh_ad,4.0*pw,pwc_ad,zero,zero,0.0,0.0);

      rgradient('z',-1.0*gzlvl0); /* use rgradient since shaping takes more time */
      delay(tau2 + 5.0e-6 - 0.5*(WFG2_START_DELAY
              + pwc_ad + WFG2_STOP_DELAY));
      rgradient('z',0.0);
      delay(50.0e-6);

     }
  }   /* N_flg[A] == y */

  else
    sim3pulse(2.0*pw,0.0,2.0*pwx2,zero,zero,zero,4.0e-6,4.0e-6);

  dec2rgpulse(pwx2,zero,0.0,0.0);

  delay(2.0e-6);
  zgradpulse(gzlvl4,gt4);
  delay(gstab);

  if(diag_supp[A] == 'n') {

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,t3,2.0e-6,0.0);
  delay(2.0e-6);
  obspower(tpwr);
  /* shaped pulse */

  rgpulse(pw,t2,2.0e-6,0.0);
  txphase(t9);

  delay(tau1 + tauxh + zeta1 - gt5 - 102.0e-6);

  delay(2.0e-6);
  zgradpulse(gzlvl5,gt5);
  delay(100.0e-6);

  dec2rgpulse(2.0*pwx2,zero,0.0,0.0);

  delay(tau1);

  rgpulse(2.0*pw,t9,0.0,0.0); txphase(one);

  delay(tauxh - zeta1 - gt5 - 102.0e-6 + 2.0*pwx2);

  delay(2.0e-6);
  zgradpulse(gzlvl5,gt5);
  delay(100.0e-6);

  rgpulse(pw,one,0.0,0.0);

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,one,2.0e-6,0.0);
  delay(2.0e-6);
  obspower(tpwr);
  /* shaped pulse */

  delay(MIX - gt6 - gstab -2.0e-6); 

    delay(2.0e-6);
    zgradpulse(gzlvl6,gt6);
    delay(gt6);
    delay(gstab);

  }

  else {

  initval(1.0,v4);
  obsstepsize(45.0);
  xmtrphase(v4);

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,t3,2.0e-6,0.0);
  delay(2.0e-6);
  obspower(tpwr);
  /* shaped pulse */
/*
  xmtrphase(zero);
  delay(2.0e-6);

  initval(1.0,v4);
  obsstepsize(45.0);
  xmtrphase(v4);
*/
  
  rgpulse(pw,t2,2.0e-6,0.0);

  xmtrphase(zero);
  txphase(t9);

  delay(tau1 + 1.0/(8.0*93.39) + zeta1 - gt5 - 102.0e-6 - SAPS_DELAY);

  delay(2.0e-6);
  zgradpulse(gzlvl5,gt5);
  delay(100.0e-6);

  dec2rgpulse(2.0*pwx2,zero,0.0,0.0);

  delay(tau1);

  rgpulse(2.0*pw,t9,0.0,0.0); txphase(one);

  delay(1.0/(8.0*93.39) - zeta1 - gt5 - 102.0e-6 + 2.0*pwx2);

  delay(2.0e-6);
  zgradpulse(gzlvl5,gt5);
  delay(100.0e-6);

  rgpulse(pw,one,0.0,0.0);

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,one,2.0e-6,0.0);
  delay(2.0e-6);
  obspower(tpwr);
  /* shaped pulse */

    delay(2.0e-6);
    zgradpulse(gzlvl6,gt6/2.0);
    delay(gstab);

    delay(MIX - 1.5*gt6 - 2.0*(gstab+2.0e-6) - 2.0*pwx2); 

    dec2rgpulse(2.0*pwx2,zero,0.0,0.0); 

    delay(2.0e-6);
    zgradpulse(gzlvl6,gt6);
    delay(gstab);

  }

   rgpulse(pw,two,2.0e-6,0.0);

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,zero,2.0e-6,0.0);
  delay(2.0e-6); txphase(zero);
  obspower(tpwr);
  /* shaped pulse */

  delay(2.0e-6);
  zgradpulse(gzlvl7,gt7);
  delay(2.0e-6);

  delay(tauxh  
      - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
      - pw_sl - WFG_STOP_DELAY - 2.0e-6 - POWER_DELAY 
      - gt7 - 4.0e-6);               /* delay=1/4J(XH)   */

  sim3pulse(2*pw,0.0e-6,2*pwx2,zero,zero,zero,0.0,0.0);

  delay(tauxh 
      - gt7 - gstab -2.0e-6
      - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
      - pw_sl - WFG_STOP_DELAY - 2.0e-6 - POWER_DELAY); 

  delay(2.0e-6);
  zgradpulse(gzlvl7,gt7);
  delay(gt7);
  delay(gstab);

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,one,2.0e-6,0.0);
  obspower(tpwr);
  delay(2.0e-6); txphase(zero);
  /* shaped pulse */

  rgpulse(pw,one,0.0,0.0);

  delay(2.0e-6);
  zgradpulse(gzlvl8,gt8);
  delay(gstab);

  txphase(t6);

  if(phase3 == 1)
    dec2rgpulse(pwx2,t4,4.0e-6,0.0);
  if(phase3 == 2)
    dec2rgpulse(pwx2,t5,4.0e-6,0.0);

  decphase(zero); 

  if(tau3 - 0.5*(WFG_START_DELAY
                 + pwc_ad + WFG_STOP_DELAY)
          < 0.2e-6) {

  delay(tau3);
  delay(tau3);

  }

  else {

  delay(tau3 - 0.5*(WFG_START_DELAY
               + pwc_ad + WFG_STOP_DELAY));

  decshaped_pulse(sh_ad,pwc_ad,zero,0.0,0.0); 

  delay(tau3 - 0.5*(WFG_START_DELAY
               + pwc_ad + WFG_STOP_DELAY));

  }

  delay(2.0e-6);
  zgradpulse(-1.0*gzlvl11,gt11);
  delay(100.0e-6);

  delay(BigT - 4.0/PI*pwx2 + pw - 2.0*GRADIENT_DELAY - gt11
        - 102.0e-6);

  dec2rgpulse(2.0*pwx2,zero,0.0,0.0);

  delay(2.0e-6);
  zgradpulse(gzlvl11,gt11);
  delay(100.0e-6);

  delay(BigT - 2.0*GRADIENT_DELAY - gt11
        - 102.0e-6);

  rgpulse(pw,t6,0.0,0.0);

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,t7,2.0e-6,0.0);
  delay(2.0e-6); txphase(zero);
  obspower(tpwr);
  /* shaped pulse */

  delay(2.0e-6);
  zgradpulse(gzlvl9,gt9);
  delay(100.0e-6);

  delay(tauxh 
      - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
      - pw_sl - WFG_STOP_DELAY - 2.0e-6 - POWER_DELAY 
      - gt9 - 102.0e-6);

  sim3pulse(2.0*pw,0.0,2.0*pwx2,zero,zero,zero,0.0,0.0);
  dec2phase(t8);

  delay(2.0e-6);
  zgradpulse(gzlvl9,gt9);
  delay(100.0e-6);

  delay(tauxh 
      - gt9 - 102.0e-6
      - POWER_DELAY - 2.0e-6 - WFG_START_DELAY
      - pw_sl - WFG_STOP_DELAY - 2.0e-6 - POWER_DELAY); 

  /* shaped pulse */
  obspower(tpwrsl);
  shaped_pulse(shape,pw_sl,zero,2.0e-6,0.0);
  obspower(tpwr);
  delay(2.0e-6); txphase(zero);
  /* shaped pulse */

  sim3pulse(pw,0.0,pwx2,zero,zero,t8,0.0,0.0);

  dec2phase(zero);

  delay(2.0e-6);
  zgradpulse(gzlvl10,gt10);
  delay(2.0e-6);

  delay(tauxh - gt10 - 4.0e-6);

  sim3pulse(2*pw,0.0e-6,2*pwx2,zero,zero,zero,2.0e-6,2.0e-6);  

  delay(2.0e-6);
  zgradpulse(gzlvl10,gt10);
  delay(100.0e-6);

  delay(tauxh
        - gt10 - 102.0e-6
        + 2.0/PI*pw - pwx2 + 0.5*(pwx2-pw));

  dec2rgpulse(pwx2,zero,0.0,0.0);

  dec2power(dpwr2);  /* Very Important */
  decpower(dpwr);

  delay(BigT1 - 2.0*POWER_DELAY);

  rgpulse(2.0*pw,zero,0.0,0.0); 

  delay(2.0e-6);
  zgradpulse(-1.0*icosel*gzlvl12,gt12);
  delay(50.0e-6);

  delay(BigT1 - 2.0*GRADIENT_DELAY - 52.0e-6 - gt12);

/* acquire data */

status(C);
     setreceiver(t10);
}
Esempio n. 12
0
pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            mag_flg[MAXSTR],                            /*magic angle gradient*/
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            codecseq[MAXSTR];       /* sequence for 13C' decoupling */
 
int         icosel1,          			  /* used to get n and p type */
            icosel2,
	    t1_counter,  		        /* used for states tppi in t1 */
	    ni2 = getval("ni2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    del = getval("del"),     /* time delays for CH coupling evolution */
	    del1 = getval("del1"),
	    del2 = getval("del2"),
            del3 = getval("del3"),
            del4 = getval("del4"),
            TC = getval("TC"),
            satpwr = getval("satpwr"),
            waltzB1 = getval("waltzB1"),
            spinlock = getval("spinlock"),
            pwco,copwr, cores,codmf,
            kappa,

	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* p_d is used to calculate the isotropic mixing on the Cab region            */
        p_d,                  	       /* 50 degree pulse for DIPSI-2 at rfd  */
        rfd,                    /* fine power for 7 kHz rf for 500MHz magnet  */
	ncyc = getval("ncyc"), 			  /* no. of cycles of DIPSI-3 */


   compC = getval("compC"),         /* adjustment for C13 amplifier compression */


	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

        pwHd,                           /* H1 90 degree pulse length at tpwrd */
        tpwrd,                             /*rf for WALTZ decoupling */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
	gzcal = getval("gzcal"),               /* G/cm to DAC coversion factor*/
        gstab = getval("gstab"),
        gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt3 = getval("gt3"),				   /* other gradients */
	gt5 = getval("gt5"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6");

    getstr("mag_flg",mag_flg);
    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("codecseq",codecseq);

/*   LOAD PHASE TABLE    */

	settable(t1,2,phi1);
	settable(t2,1,phi2);
	settable(t3,1,phi3);
	settable(t4,1,phi4);
	settable(t11,2,rec);

        

/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

   /* dipsi-3 decoupling on CbCa */	
 	p_d = (5.0)/(9.0*4.0*spinlock); /* DIPSI-3*/
 	rfd = (compC*4095.0*pwC*5.0)/(p_d*9.0);
	rfd = (int) (rfd + 0.5);
  	ncyc = (int) (ncyc + 0.5);


   /* power level and pulse time for WALTZ 1H decoupling */
        pwHd = 1/(4.0 * waltzB1) ;    
        tpwrd = tpwr - 20.0*log10(pwHd/(pw));
        tpwrd = (int) (tpwrd + 0.5);

/* activate auto-calibration flags */
setautocal();
  if (autocal[0] == 'n')
  {
    codmf= getval("codmf");
    pwco = 1.0/codmf; /* pw for 13C' decoupling field */
    copwr = getval("copwr"); /* power level for 13C' decoupling */
    cores = getval("cores"); /* power level for 13C' decoupling */
  }
  else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
  {
    strcpy(codecseq,"Pdec_154p");
    if(FIRST_FID)                                            /* call Pbox */
    {
      ppm = getval("dfrq");
      bw=20.0*ppm; ofs=154*ppm;
      Pdec_154p = pbox_Dsh("Pdec_154p", "WURST2", bw, ofs, compC*pwC, pwClvl);
      bw=30*ppm; ofs=0.0*ppm; nst = 1000; pws = 0.001;
      me180 = pbox_makeA("me180", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
    }

    copwr = Pdec_154p.pwr; pwco = 1.0/Pdec_154p.dmf;
    cores = Pdec_154p.dres;
    pwme180 = me180.pw; me180pwr= me180.pwr; me180pwrf = me180.pwrf;

  }
/* CHECK VALIDITY OF PARAMETER RANGES */

    if( gt1 > 0.5*del - 1.0e-4)
    {
        printf(" gt1 is too big. Make gt1 less than %f.\n", (0.5*del - 1.0e-4));
        psg_abort(1);
    }

    if( dm[A] == 'y' )
    {
        printf("incorrect dec1 decoupler flag! Should be 'nny' or 'nnn' ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[C] == 'y'))
    {
        printf("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }
    if((dm3[A] == 'y' || dm3[C] == 'y'))
    {
        printf("incorrect dec3 decoupler flags! Should be 'nnn' or 'nyn' ");
        psg_abort(1);
    }

    if( dpwr > 52 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( pw > 50.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 
  
    if( pwN > 100.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 
 

/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    icosel1 = 1; icosel2 = 1;
    if (phase1 == 2) 
	{ tsadd(t2,2,4); icosel1 = -1;}
    if (phase2 == 2) 
	{ tsadd(t4,2,4); icosel2 = -1; tsadd(t2,2,4);}

/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;


/* Calculate modifications to phases for States-TPPI acquisition  */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t1,2,4); tsadd(t11,2,4); }

   
   if(ni > 1)
           kappa = (double)(t1_counter*(del2)) / ( (double) (ni-1) );
      else kappa = 0.0;   

/*   BEGIN PULSE SEQUENCE   */

status(A);

        decoffset(dof-140*dfrq);
	obspower(tpwr);
	decpower(pwClvl);
 	dec2power(pwNlvl);
	decpwrf(rf0);
	obsoffset(tof);
	txphase(zero);
	delay(1.0e-5);

  if (satmode[A] == 'y')
    {
      obspower(satpwr);
      txphase(zero);
      rgpulse(d1,zero,20.0e-6,20.0e-6);
      obspower(tpwr);            /* Set power for hard pulses  */
    }
  else  
    {
      obspower(tpwr); /* Set power for hard pulses  */ 
      delay(d1);
    }

	decrgpulse(pwC, zero, 0.0, 0.0);	   /*destroy C13 magnetization*/
	zgradpulse(gzlvl1, 0.5e-3);
	delay(gstab);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl1, 0.5e-3);
	delay(1.1*gstab);

   if(dm3[B] == 'y')				  /*optional 2H decoupling on */
        { 
          dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
         } 
	rgpulse(pw, zero, 0.0, 0.0);                    /* 1H pulse excitation */

	zgradpulse(gzlvl3, gt3);
        decphase(zero);
	delay(0.5*del - gt3);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl3, gt3);
        txphase(one);
        decphase(t1);
	delay(0.5*del - gt3);

        rgpulse(pw,one,0.0,0.0);
        zgradpulse(1.8*gzlvl3, gt3);
        txphase(zero);
        delay(150e-6);
	decrgpulse(pwC, t1, 0.0, 0.0);
        
      /* decoupling on for carbonyl carbon */
         decpwrf(4095.0);
         decpower(copwr);
         decprgon(codecseq,pwco,cores);
         decon();
      /* decoupling on for carbonyl carbon */

        delay(tau1);

        dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
 
        zgradpulse(icosel1*gzlvl4, gt1);

	delay(0.5*del2 - 2.0*pwN - gt1 - 2.0*pw);

        rgpulse(2.0*pw,zero,0.0,0.0);

        delay(tau1 - (kappa*tau1));

      /* co-decoupling off */
         decoff();
         decprgoff();
      /* co-decoupling off */
         decpower(pwClvl);

	decrgpulse(2.0*pwC, zero, 0.0, 0.0);

      /* decoupling on for carbonyl carbon */
         decpwrf(4095.0);
         decpower(copwr);
         decprgon(codecseq,pwco,cores);
         decon();
      /* decoupling on for carbonyl carbon */

	delay(0.5*del2 - kappa*tau1);

      /* co-decoupling off */
         decoff();
         decprgoff();
      /* co-decoupling off */
         decpower(pwClvl);

        decphase(t2);

	decrgpulse(pwC, t2, 0.0, 0.0);

	decpwrf(rfd);
	delay(2.0e-6);
	initval(ncyc, v2);
	starthardloop(v2);
     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);
     decrgpulse(5.0*p_d,one,0.0,0.0);
     decrgpulse(5.5*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.6*p_d,three,0.0,0.0);
     decrgpulse(7.2*p_d,one,0.0,0.0);
     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.4*p_d,one,0.0,0.0);
     decrgpulse(6.8*p_d,three,0.0,0.0);
     decrgpulse(7.0*p_d,one,0.0,0.0);
     decrgpulse(5.2*p_d,three,0.0,0.0);
     decrgpulse(5.4*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.5*p_d,one,0.0,0.0);
     decrgpulse(7.3*p_d,three,0.0,0.0);
     decrgpulse(5.1*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);

     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);
     decrgpulse(5.0*p_d,three,0.0,0.0);
     decrgpulse(5.5*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.6*p_d,one,0.0,0.0);
     decrgpulse(7.2*p_d,three,0.0,0.0);
     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.4*p_d,three,0.0,0.0);
     decrgpulse(6.8*p_d,one,0.0,0.0);
     decrgpulse(7.0*p_d,three,0.0,0.0);
     decrgpulse(5.2*p_d,one,0.0,0.0);
     decrgpulse(5.4*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.5*p_d,three,0.0,0.0);
     decrgpulse(7.3*p_d,one,0.0,0.0);
     decrgpulse(5.1*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);

     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);
     decrgpulse(5.0*p_d,three,0.0,0.0);
     decrgpulse(5.5*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.6*p_d,one,0.0,0.0);
     decrgpulse(7.2*p_d,three,0.0,0.0);
     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.4*p_d,three,0.0,0.0);
     decrgpulse(6.8*p_d,one,0.0,0.0);
     decrgpulse(7.0*p_d,three,0.0,0.0);
     decrgpulse(5.2*p_d,one,0.0,0.0);
     decrgpulse(5.4*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.5*p_d,three,0.0,0.0);
     decrgpulse(7.3*p_d,one,0.0,0.0);
     decrgpulse(5.1*p_d,three,0.0,0.0);
     decrgpulse(7.9*p_d,one,0.0,0.0);

     decrgpulse(4.9*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);
     decrgpulse(5.0*p_d,one,0.0,0.0);
     decrgpulse(5.5*p_d,three,0.0,0.0);
     decrgpulse(0.6*p_d,one,0.0,0.0);
     decrgpulse(4.6*p_d,three,0.0,0.0);
     decrgpulse(7.2*p_d,one,0.0,0.0);
     decrgpulse(4.9*p_d,three,0.0,0.0);
     decrgpulse(7.4*p_d,one,0.0,0.0);
     decrgpulse(6.8*p_d,three,0.0,0.0);
     decrgpulse(7.0*p_d,one,0.0,0.0);
     decrgpulse(5.2*p_d,three,0.0,0.0);
     decrgpulse(5.4*p_d,one,0.0,0.0);
     decrgpulse(0.6*p_d,three,0.0,0.0);
     decrgpulse(4.5*p_d,one,0.0,0.0);
     decrgpulse(7.3*p_d,three,0.0,0.0);
     decrgpulse(5.1*p_d,one,0.0,0.0);
     decrgpulse(7.9*p_d,three,0.0,0.0);
	endhardloop();

        txphase(one);
	decpwrf(rf0);
        decphase(t3);
        obspower(tpwrd);
        decrgpulse(pwC,t3,0.0,0.0);
        decoffset(dof - 155*dfrq);
        rgpulse(pwHd,one,0.0,2.0e-6);
        txphase(zero);
        obsunblank();
        obsprgon("waltz16", pwHd, 90.0);              /* PRG_START_DELAY */
        xmtron();

	delay(TC - OFFSET_DELAY - POWER_DELAY - PRG_START_DELAY - tau2);

	decrgpulse(2.0*pwC, zero, 0.0, 0.0);

        delay(TC + tau2 - POWER_DELAY - PRG_STOP_DELAY - 2*gt1 - gstab - 2.0*pw);

        xmtroff();
        obsprgoff();
        obsblank();
        rgpulse(pwHd,three,2.0e-6,0.0);
        obspower(tpwr);

    if (mag_flg[A] =='y')
        magradpulse(gzcal*icosel2*gzlvl2, gt1);
    else
        zgradpulse(icosel2*gzlvl2, gt1);
        delay(gstab/2.0);
        rgpulse(2.0*pw,zero,0.0,0.0);
    if (mag_flg[A] =='y')
        magradpulse(gzcal*icosel2*gzlvl2, gt1);
    else
        zgradpulse(icosel2*gzlvl2, gt1);
        delay(gstab/2.0);

        decphase(zero);
        simpulse(0.0,pwC, two, zero, 0.0, 0.0);

        zgradpulse(gzlvl5, gt5);
        delay(0.5*del1 - gt5);

        simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

        zgradpulse(gzlvl5, gt5);
        txphase(one);
        decphase(t4);
        delay(0.5*del1 - gt5);

	simpulse(pw, pwC, one, t4, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	txphase(zero);
	decphase(zero);
	delay(0.5*del4 - gt5);

	simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl6, gt5);
	delay(0.5*del4 - gt5);

	simpulse(pw,pwC,zero,zero,0.0,0.0);
        zgradpulse(2.3*gzlvl6, gt1);

   if (autocal[A] == 'y')
       {
        decpower(me180pwr); decpwrf(me180pwrf);
	delay(0.5*del3 - gt1 - 0.0005 -2.0*POWER_DELAY- WFG2_START_DELAY);
	simshaped_pulse("","me180",2.0*pw,0.001, zero, zero, 0.0, 0.0);
        decpwrf(rf0);
        decphase(zero);

       }
   else
       {
	delay(0.5*del3 - 0.5*pwC - gt1);
	simpulse(2.0*pw,2.0*pwC, zero, zero, 0.0, 0.0);
       }


   decpower(dpwr);
        if (mag_flg[A] == 'y')
            magradpulse(gzcal*((2.3*gzlvl6)+gzlvl1), gt1);
        else
            zgradpulse(((2.3*gzlvl6)+gzlvl1), gt1);

   if (autocal[A] == 'y')
   {
     if(dm3[B] == 'y')
       delay(0.5*del3 - 0.0005 -gt1 -1/dmf3 - 2.0*GRADIENT_DELAY - 2.0*POWER_DELAY);
        else
       delay(0.5*del3 -  0.0005 -gt1 - 2.0*GRADIENT_DELAY - 2.0*POWER_DELAY);
   }
   else
   {
     if(dm3[B] == 'y') 
      delay(0.5*del3  - gt1 -1/dmf3 - 2.0*GRADIENT_DELAY - POWER_DELAY);
         else
      delay(0.5*del3  - gt1 - 2.0*GRADIENT_DELAY - POWER_DELAY);
   }

   if(dm3[B] == 'y')			         /*optional 2H decoupling off */
        {
          dec3rgpulse(1/dmf3, three, 0.0, 0.0); 
          setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
          dec3blank();
        }
 if (dm3[B]=='y') lk_sample();
status(C); 
 setreceiver(t11);
}
Esempio n. 13
0
void pulsesequence()
{
/* DECLARE VARIABLES */

char     
  aliph[MAXSTR],	/* aliphatic CHn groups only */
  arom[MAXSTR],		/* aromatic CHn groups only */
  N15refoc[MAXSTR],	/* flag for refocusing 15N during indirect H1 evolution */

  f1180[MAXSTR],	/* Flag to start t1 @ halfdwell */
  mag_flg[MAXSTR],	/* magic angle gradient */
  f2180[MAXSTR],	/* Flag to start t2 @ halfdwell */
  stCshape[MAXSTR],	/* C13 inversion pulse shape name */
  STUD[MAXSTR],		/* Flag to select adiabatic decoupling */
  stCdec[MAXSTR],	/* contains name of adiabatic decoupling shape */
  auto_dof[MAXSTR];	/* automatically adjust dof for aromatic, aliphatic, all carbon */

int         
  
  icosel,		/* used to get n and p type */
  t1_counter,		/* used for states tppi in t1 */ 
  t2_counter;		/* used for states tppi in t2 */ 

double    

  JCH1 = getval("JCH1"),	/* smallest coupling that you wish to purge */
  JCH2 = getval("JCH2"),	/* largest coupling that you wish to purge */
  taud,				/* 1/(2JCH1)   */
  taue,				/* 1/(2JCH2)   */

/* N15 purging */
  tauNH  = 1/(4.0*getval("JNH")),		/* HN coupling constant */

  gt4 = getval("gt4"),
  gt14 = getval("gt14"),
  gt7 = getval("gt7"),
  gt17 = getval("gt17"),
  gt8 = getval("gt8"),
  gt9 = getval("gt9"),

  gzlvl4 = getval("gzlvl4"),
  gzlvl14 = getval("gzlvl14"),
  gzlvl7 = getval("gzlvl7"),
  gzlvl17 = getval("gzlvl17"),
  gzlvl8 = getval("gzlvl8"),
  gzlvl9 = getval("gzlvl9"),

  bw, pws, ofs, ppm, nst,  /* bandwidth, pulsewidth, offset, ppm, # steps */

  ni2 = getval("ni2"),
  dofa = 0.0,			/* actual 13C offset (depends on aliph and arom)*/
  rf200 = getval("rf200"), 	/* rf in Hz for 200ppm STUD+ */
  dmf200 = getval("dmf200"),     /* dmf for 200ppm STUD+ */
  rf30 = getval("rf30"),	/* rf in Hz for 30ppm STUD+ */
  dmf30 = getval("dmf30"),	/* dmf for 30ppm STUD+ */

  stdmf = 1.0,			/* dmf for STUD decoupling initialized */ 
  studlvl = 0.0,		/* coarse power for STUD+ decoupling initialized */

  rffil = 0.0,			/* fine power level for 200ppm adiabatic pulse */

  rfst = 0.0,			/* fine power level for adiabatic pulse initialized */
  rf0,				/* full fine power */

  /*compH = getval("compH"),       adjustment for H1  amplifier compression */
  compC = getval("compC"),      /* adjustment for C13 amplifier compression */
  compN = getval("compN"),      /* adjustment for N15 amplifier compression */

  tau1,				/*  t1 delay */
  tau2,				/*  t2 delay */

  JCH = getval("JCH"),		/*  CH coupling constant */
  Cfil = getval("Cfil"),		/*  CH coupling constant */

  pwC = getval("pwC"),		/* PW90 for 13C nucleus @ pwClvl */
  pwClvl = getval("pwClvl"),	/* high power for 13C hard pulses on dec1  */
  pwC180 = getval("pwC180"),	/* PW180 for 13C nucleus in INEPT transfers */
  pwN = getval("pwN"),		/* PW90 for 15N nucleus @ pwNlvl */
  pwNlvl = getval("pwNlvl"),	/* high power for 15N hard pulses on dec2 */

  pwClw=getval("pwClw"), 
  pwNlw=getval("pwNlw"),
  pwZlw=0.0,			/* largest of pwNlw and 2*pwClw */

  mix  = getval("mix"),		/* noesy mix time */
  sw1  = getval("sw1"),		/* spectral width in t1 (H) */
  sw2  = getval("sw2"),		/* spectral width in t2 (C) */
  gstab = getval("gstab"),	/* gradient recovery delay (300 us recom.) */
  gsign = 1.0,
  gzcal = getval("gzcal"),	/* dac to G/cm conversion factor */
  gt0 = getval("gt0"),
  gt1 = getval("gt1"),
  gt2 = getval("gt2"),
  gt3 = getval("gt3"),
  gt5 = getval("gt5"),
  gt6 = getval("gt6"),
  gzlvl0 = getval("gzlvl0"),
  gzlvl1 = getval("gzlvl1"),
  gzlvl2 = getval("gzlvl2"),
  gzlvl3 = getval("gzlvl3"),
  gzlvl5 = getval("gzlvl5"),
  gzlvl6 = getval("gzlvl6");


/* LOAD VARIABLES */

  getstr("aliph",aliph);
  getstr("arom",arom);
  getstr("N15refoc",N15refoc);

  getstr("mag_flg",mag_flg);
  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("STUD",STUD);

  getstr("auto_dof",auto_dof);

/* LOAD PHASE TABLE */
  settable(t1,8,phi1);
  settable(t2,4,phi2);
  settable(t3,2,phi3);
  settable(t5,1,phi5);

  settable(t6,16,phi6);
  settable(t7,32,phi7);

  if (Cfil == 1) settable(t4,8,rec1);
    else settable(t4,32,rec2);

/* CHECK VALIDITY OF PARAMETER RANGES */

    if ( (arom[A]=='n' && aliph[A]=='n') || (arom[A]=='y' && aliph[A]=='y') )
      { 
	printf("You need to select one and only one of arom or aliph options  ");
	psg_abort(1); 
      }

    if((dm[A] == 'y' || dm[C] == 'y' ))
    {
        printf("incorrect 13C decoupler flags! dm='nnnn' or 'nnny' only  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[C] == 'y' ))
    {
        printf("incorrect 15N decoupler flags! No decoupling in relax or mix periods  ");
        psg_abort(1);
    }

    if( dpwr > 49 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 49 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 

    if( pwN > 200.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 

    if( pwC > 200.0e-6 )
    {
        printf("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( gt0 > 15e-3 || gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 ) 
    {
        printf("gti values < 15e-3\n");
        psg_abort(1);
    } 

/*   if( gzlvl3*gzlvl4 > 0.0 )*/ 

    if (phase1 == 2)
      tsadd(t3,1,4);

    if (phase2 == 1)  {tsadd(t5,2,4);  icosel = +1;}
        else 			       icosel = -1;    

/*  Set up f1180  tau1 = t1               */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) tau1 += 1.0/(2.0*sw1);
    if(tau1 < 0.2e-6) tau1 = 4.0e-7;
    tau1 = tau1/2.0;

/*  Set up f2180  tau2 = t2               */

    tau2 = d3;
    if((f2180[A] == 'y') && (ni2 > 1.0)) tau2 += ( 1.0 / (2.0*sw2) ); 
    tau2 = tau2/2.0;

/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if (t1_counter % 2) 
     { tsadd(t3,2,4); tsadd(t4,2,4);}

   if( ix == 1) d3_init = d3 ;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if (t2_counter % 2)  
     {tsadd(t2,2,4); tsadd(t4,2,4);}
    

/* calculate 3db lower power hard pulses for simultaneous CN decoupling during
   indirect H1 evoluion pwNlw and pwClw should be calculated by the macro that 
   calls the experiment. */

  if (N15refoc[A] == 'y')
    {
     if (pwNlw==0.0) pwNlw = compN*pwN*exp(3.0*2.303/20.0);
     if (pwClw==0.0) pwClw = compC*pwC*exp(3.0*2.303/20.0);
     if (pwNlw > 2.0*pwClw) 
	 pwZlw=pwNlw;
      else
	 pwZlw=2.0*pwClw;
/* Uncomment to check pwClw and pwNlw
     if (d2==0.0 && d3==0.0) printf(" pwClw = %.2f ; pwNlw = %.2f\n", pwClw*1e6,pwNlw*1e6);
*/
    }


/* make sure that gt3 and gt1 are of opposite sign to help dephasing H2O */
   if (gzlvl3*icosel*gzlvl1 > 0.0) gsign=-1.0;
     else gsign=1.0; 


/* if coupling constants are input by user use them to calculate delays */
   if (Cfil == 1)
     {
      taud = 1.0/(2.0*JCH1);
      taue = 1.0/(2.0*JCH2);
     }
    else
     {
       taud = 1.0/(4.0*JCH1);
       taue = 1.0/(4.0*JCH2);
     }


/* maximum fine power for pwC pulses */
   rf0 = 4095.0;

   setautocal();                        /* activate auto-calibration flags */ 
        
   if (autocal[0] == 'n') 
   {
     if (arom[A]=='y')  /* AROMATIC spectrum */
     {
       /* 30ppm sech/tanh inversion */
       rfst = (compC*4095.0*pwC*4000.0*sqrt((4.5*sfrq/600.0+3.85)/0.41));   
       rfst = (int) (rfst + 0.5);
     }
  
     if (aliph[A]=='y')  /* ALIPHATIC spectrum */
     {
       /* 200ppm sech/tanh inversion pulse */
       if (pwC180>3.0*pwC) 
	 {
	   rfst = (compC*4095.0*pwC*4000.0*sqrt((12.07*sfrq/600+3.85)/0.35));
	   rfst = (int) (rfst + 0.5);
       }
       else rfst=4095.0;

       if( pwC > (20.0e-6*600.0/sfrq) )
	 { printf("Increase pwClvl so that pwC < 20*600/sfrq");
	  psg_abort(1); 
       }
     }

     if (Cfil > 1)  /* 200ppm pulse for C13 filtering */
     {
       /* 200ppm sech/tanh inversion pulse */
       if (pwC180>3.0*pwC) 
	 {
	   rffil = (compC*4095.0*pwC*4000.0*sqrt((12.07*sfrq/600+3.85)/0.35));
	   rffil = (int) (rffil + 0.5);
       }
       else rfst=4095.0;

       if( pwC > (20.0e-6*600.0/sfrq) )
	 { printf("Increase pwClvl so that pwC < 20*600/sfrq");
	  psg_abort(1); 
       }
     }

   }
   else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
   {
     if(FIRST_FID)                                            /* call Pbox */
     {
       ppm = getval("dfrq"); 
       bw = 118.0*ppm; ofs = 139.0*ppm;
       if (arom[A]=='y')  /* AROMATIC spectrum */
       {
         bw = 30.0*ppm; pws = 0.001; ofs = 0.0; nst = 500.0;    
         stC30 = pbox_makeA("stC30", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
       }
       if ((aliph[A]=='y') || (Cfil > 1))
       {
         bw = 200.0*ppm; pws = 0.001; ofs = 0.0; nst = 1000.0;    
         stC200 = pbox_makeA("stC200", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
       }
       ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
     }
     if (arom[A]=='y')  rfst = stC30.pwrf;
     if (aliph[A]=='y') 
     {
      if (pwC180>3.0*pwC) rfst = stC200.pwrf;
      else rfst = 4095.0;
     }
     if (Cfil > 1)
     {
      if (pwC180>3.0*pwC) rffil = stC200.pwrf;
      else rffil = 4095.0;
     }
   }

   if (arom[A]=='y')  
   {
     dofa=dof+(125-43)*dfrq;

     strcpy(stCshape, "stC30");
     /* 30 ppm STUD+ decoupling */
     strcpy(stCdec, "stCdec30");             
     stdmf = dmf30;
     studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf30);
     studlvl = (int) (studlvl + 0.5);
   }

   if (aliph[A]=='y')
   {
     dofa=dof;
       
     strcpy(stCshape, "stC200");
     /* 200 ppm STUD+ decoupling */
     strcpy(stCdec, "stCdec200");
     stdmf = dmf200;
     studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf200);
     studlvl = (int) (studlvl + 0.5);
   }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);

   if (auto_dof[A]=='y') decoffset(dofa);

   obspower(tpwr);		/* Set transmitter power for hard 1H pulses */
   decpower(pwClvl);		/* Set Dec1 power for hard 13C pulses */
   dec2power(pwNlvl);		/* Set Dec2 power for decoupling during tau1 */
   dec2pwrf(rf0);       

   initval(135.0,v1);
   obsstepsize(1.0);


   delay(d1);

/* destroy N15 and C13 magnetization */
   if (N15refoc[A] == 'y') dec2rgpulse(pwN, zero, 0.0, 0.0);
   decrgpulse(pwC, zero, 0.0, 0.0);
   zgradpulse(gzlvl0, 0.5e-3);
   delay(gstab);
   if (N15refoc[A] == 'y') dec2rgpulse(pwN, one, 0.0, 0.0);
   decrgpulse(pwC, one, 0.0, 0.0);
   zgradpulse(0.7*gzlvl0, 0.5e-3);

   decphase(zero);       
   dec2phase(zero);       
   rcvroff();
   delay(gstab);


status(B);

if (Cfil == 1) 
  {
   xmtrphase(v1);
   rgpulse(pw, t1, rof1 , 0.0);  
   txphase(zero); 
   xmtrphase(zero); 

/* CN FILTER BEGINS */
      zgradpulse(gzlvl8, gt8);
      txphase(zero); xmtrphase(zero);
      delay(taud -gt8 -2.0*GRADIENT_DELAY -2.0*SAPS_DELAY);

      simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0);

      zgradpulse(gzlvl8, gt8);
      delay(taue -gt8 -2.0*GRADIENT_DELAY);

      decrgpulse(pwC, zero, 0.0, 0.0);

      delay(taud -taue -pwC);

/* CN FILTER ENDS */

   }
else if (Cfil == 2)
   {
      txphase(t6);
      rgpulse(pw, t6, rof1, 0.0);                  /* 90 deg 1H pulse */
/* BEGIN 1st FILTER */
      txphase(zero);

      zgradpulse(gzlvl8,gt8);
      decpwrf(rffil);
      delay(taud -gt8 -2.0*GRADIENT_DELAY -WFG2_START_DELAY -0.5e-3 +70.0e-6);

      simshaped_pulse("", "stC200", 2.0*pw, pwC180, zero, zero, 0.0, 0.0);

      zgradpulse(gzlvl8,gt8);
      decpwrf(rf0);
      delay(taud -gt8 -2.0*GRADIENT_DELAY -0.5e-3 +70.0e-6);

      simpulse(pw, pwC, zero, zero, 0.0, 0.0);

      zgradpulse(gzlvl4,gt4);
      txphase(t7);
      delay(gstab);

      rgpulse(pw, t7, 0.0, 0.0);
/* BEGIN 2nd FILTER */

      zgradpulse(gzlvl9,gt9);
      decpwrf(rffil);
      delay(taue -gt9 -2.0*GRADIENT_DELAY -WFG2_START_DELAY -0.5e-3 +70.0e-6);

      simshaped_pulse("", "stC200", 2.0*pw, pwC180, zero, zero, 0.0, 0.0);

      zgradpulse(gzlvl9,gt9);
      decpwrf(rf0);
      delay(taue -gt9 -2.0*GRADIENT_DELAY -0.5e-3 +70.0e-6);

      simpulse(pw, pwC, zero, zero, 0.0, 0.0);

      zgradpulse(gzlvl7,gt7);
      txphase(t1); xmtrphase(v1);
      delay(gstab);

      rgpulse(pw, t1, 0.0, 0.0);
      txphase(zero); xmtrphase(zero);
   }
else if (Cfil == 3)
   {
      txphase(t6);
      rgpulse(pw, t6, rof1, 0.0);                  /* 90 deg 1H pulse */
/* BEGIN 1st FILTER */
      txphase(zero);

      zgradpulse(gzlvl8,gt8);
      delay(tauNH -gt8 -2.0*GRADIENT_DELAY);

      sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

      decpwrf(rffil);
      delay(tauNH -taud -0.5e-3 -WFG_START_DELAY -PWRF_DELAY);

      decshaped_pulse("stC200", pwC180, zero, 0.0, 0.0);

      zgradpulse(gzlvl8,gt8);
      decpwrf(rf0);
      delay(taud -gt8 -2.0*GRADIENT_DELAY -0.5e-3 -PWRF_DELAY);

      sim3pulse(pw, pwC, pwN, zero, zero, zero, 0.0, 0.0);
      zgradpulse(gzlvl14,gt14);
      txphase(t7);
      delay(gstab);

      rgpulse(pw, t7, 0.0, 0.0);
/* BEGIN 2nd FILTER */

      zgradpulse(gzlvl9,gt9);
      delay(tauNH -gt9 -2.0*GRADIENT_DELAY);

      sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

      decpwrf(rffil);
      delay(tauNH -taue -0.5e-3 -WFG_START_DELAY -PWRF_DELAY);

      decshaped_pulse("stC200", pwC180, zero, 0.0, 0.0);

      zgradpulse(gzlvl9,gt9);
      decpwrf(rf0);
      delay(taue -gt9 -2.0*GRADIENT_DELAY -0.5e-3 -PWRF_DELAY);

      sim3pulse(pw, pwC, pwN, zero, zero, zero, 0.0, 0.0);
      zgradpulse(gzlvl17,gt17);
      txphase(t1); xmtrphase(v1);
      delay(gstab);

      rgpulse(pw, t1, 0.0, 0.0);
      txphase(zero); xmtrphase(zero);
   }

/* H1 INDIRECT EVOLUTION BEGINS */
   if (ni > 0) 
    txphase(t3);
    {
     if ( (N15refoc[A]=='y') && ((tau1 -pwN -2.0*pw/PI -rof1 -SAPS_DELAY) > 0.0) )
      {
       delay(tau1 -pwN -2.0*pw/PI -SAPS_DELAY);
       dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
       delay(tau1 -pwN -2.0*pw/PI -rof1);
      }     
     else if (tau1 > 2.0*pw/PI +rof1 +SAPS_DELAY)
       delay(2.0*tau1 -4.0*pw/PI -2.0*rof1 -SAPS_DELAY);
    }
/* H1 INDIRECT EVOLUTION ENDS */
   rgpulse(pw, t3, rof1, rof1);             /*  2nd 1H 90 pulse   */

status(C);

   delay(mix -pwC -gt0 -PWRF_DELAY -gstab -2.0*GRADIENT_DELAY); 

   decrgpulse(pwC,zero,0.0,0.0); 
   zgradpulse(gzlvl0, gt0);
   decpwrf(rfst);                           /* fine power for inversion pulse */
   delay(gstab);

/* FIRST HSQC INEPT TRANSFER */
   rgpulse(pw,zero,0.0,0.0);
   zgradpulse(gzlvl4, gt4);
   delay(1/(4.0*JCH) -gt4 -2.0*GRADIENT_DELAY -WFG2_START_DELAY -pwC180*0.45);

   simshaped_pulse("",stCshape,2*pw,pwC180,zero,zero,0.0,0.0);

   zgradpulse(gzlvl4, gt4);
   decpwrf(rf0);
   txphase(one);
   delay(1/(4.0*JCH) -gt4 -2.0*GRADIENT_DELAY -pwC180*0.45 -PWRF_DELAY -SAPS_DELAY);

   rgpulse(pw,one,0.0,0.0);
   zgradpulse(gsign*gzlvl3, gt3);
   txphase(zero);
   delay(gstab);

/* C13 EVOLUTION */
   decrgpulse(pwC,t2,0.0,0.0);   

   delay(tau2);
   rgpulse(2.0*pw,zero,0.0,0.0);
   delay(tau2);

   decphase(zero);
   delay(gt1 +2.0*GRADIENT_DELAY +gstab -2.0*pw -SAPS_DELAY);
   decrgpulse(2*pwC,zero,0.0,0.0);

   if (mag_flg[A] == 'y')  magradpulse(icosel*gzcal*gzlvl1, gt1);
     else  zgradpulse(icosel*gzlvl1, gt1);
   decphase(t5);
   delay(gstab);

   decrgpulse(pwC,t5,0.0,0.0);
   delay(pw);
   rgpulse(pw,zero,0.0,0.0);

   zgradpulse(gzlvl5, gt5);
   decphase(zero);
   delay(1/(8.0*JCH) -gt5 -SAPS_DELAY -2.0*GRADIENT_DELAY);		/* d3 = 1/8*Jch */

   decrgpulse(2.0*pwC,zero,0.0,2.0e-6);
   rgpulse(2.0*pw,zero,0.0,0.0);

   zgradpulse(gzlvl5, gt5);
   decphase(one);
   txphase(one);
   delay(1/(8.0*JCH) -gt5 -2.0*SAPS_DELAY -2.0*GRADIENT_DELAY);		/* d3 = 1/8*Jch */

   delay(pwC);
   decrgpulse(pwC,one,0.0,2.0e-6);
   rgpulse(pw,one,0.0,0.0);

   zgradpulse(gzlvl6, gt6);
   decpwrf(rfst);                           /* fine power for inversion pulse */
   decphase(zero);
   txphase(zero);
   delay(1/(4.0*JCH) -gt6 -pwC180*0.45 -PWRF_DELAY 
		-WFG2_START_DELAY -2.0*SAPS_DELAY -2.0*GRADIENT_DELAY);	/* d2 = 1/4*Jch */

   simshaped_pulse("",stCshape,2*pw,pwC180,zero,zero,0.0,0.0);

   zgradpulse(gzlvl6, gt6);
   decpwrf(rf0);
   delay(1/(4.0*JCH) -gt6 -pwC180*0.45 -PWRF_DELAY -2.0*GRADIENT_DELAY);	/* d2 = 1/4*Jch */

   rgpulse(pw,zero,0.0,0.0);  

   delay(gt2 +gstab +2.0*GRADIENT_DELAY +POWER_DELAY);

   rgpulse(2*pw,zero,0.0,0.0);  

   if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl2, gt2);
     else  zgradpulse(gzlvl2, gt2);
   delay(gstab);

  setreceiver(t4);
   rcvron();
   if ((STUD[A]=='y') && (dm[D] == 'y'))
    {
     decpower(studlvl);
     decprgon(stCdec, 1.0/stdmf, 1.0);
     decon();
    }
   else	
    { 
     decpower(dpwr);
     status(D);
    }
}
Esempio n. 14
0
pulsesequence()
{
    /* DECLARE VARIABLES */
    char     satmode[MAXSTR],f1180[MAXSTR],sspul[MAXSTR],comm[MAXSTR],
             pwx180ad[MAXSTR],pwx180adR[MAXSTR],pwx180ref[MAXSTR];
    int	  phase,satmove,maxni,t1_counter,icosel=1,
                                         prgcycle = (int)(getval("prgcycle")+0.5);
    double   tau1,tauxh, tauxh1, taucc,av180,
             hsgt   = getval("hsgt"),
             gt1    = getval("gt1"),
             gt2    = getval("gt2"),
             gt3    = getval("gt3"),
             hsglvl = getval("hsglvl"),
             gzlvl1 = getval("gzlvl1"),
             gzlvl2 = getval("gzlvl2"),
             gzlvl3 = getval("gzlvl3"),
             pwx    = getval("pwx"),
             pwxlvl = getval("pwxlvl"),
             j1xh   = getval("j1xh"),
             jcc    = getval("jcc"),
             satdly = getval("satdly"),
             satpwr = getval("satpwr"),
             satfrq = getval("satfrq"),
             sw1    = getval("sw1"),
             gstab  = getval("gstab"),
             kappa  = getval("kappa"),
             dofdec = getval("dofdec"),
             pwx180 = getval("pwx180"),
             pwxlvl180  = getval("pwxlvl180");

    getstr("f1180",f1180);
    getstr("satmode",satmode);
    getstr("sspul",sspul);
    getstr("pwx180ad", pwx180ad);
    ni = getval("ni");
    av180 = (double)((int)(1e6*(9.45*4*pwx/1.54+0.5e-6))/1e6); /* round it to 1usec */
    phase = (int) (getval("phase") + 0.5);
    satmove = ( fabs(tof - satfrq) >= 0.1 );

    /* construct a command line for Pbox */

    if((getval("arraydim") < 1.5) || (ix==1))        /* execute only once */
    {   sprintf(comm, "Pbox ad180 -u %s -w \"cawurst-10 %.1f/%.6f\" -s 1.0 -0\n",
                userdir, 1.0/pwx, 30*pwx);
        system(comm);                         /* create adiabatic 180 pulse */
        sprintf(comm, "Pbox av180 -u %s -w \"av180b %.6f\" -s 1.0 -0\n", userdir, av180);
        system(comm);                        /* create refocusing 180 pulse */
    }

    /* LOAD VARIABLES */

    settable(t1, 1, phi1);
    settable(t2, 1, phi2);
    settable(t4, 2, phi4);
    settable(t5, 4, phi5);
    settable(t6, 4, phi6);
    settable(t8, 1, phi8);
    settable(t9, 8, phi9);
    settable(t10, 16, phi10);
    settable(t11, 1, phi11);
    settable(t31, 16, phi31);

    /* INITIALIZE VARIABLES */
    if (j1xh != 0.0)
    {
        tauxh = 1/(4*j1xh);
        tauxh1 = 1/(6*j1xh);
    }
    else
    {
        tauxh = 1.80e-3;
        tauxh1 = 1.80e-3;
    }

    if ( jcc != 0.0 ) taucc = 1/(4*jcc);
    else  taucc = 1/(4*40);

    /*  Phase incrementation for hypercomplex echo-antiecho 2D data */

    if (phase == 2)
    {
        tsadd(t6,2,4);
        icosel=-1;
    }
    else icosel=1;

    /* Calculate modifications to phases for States-TPPI acquisition          */

    if( ix == 1) d2_init = d2 ;
    t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
    if(t1_counter % 2)
    {
        tsadd(t9,2,4);
        tsadd(t31,2,4);
    }

    /* Check constant-time conditions */
    if (kappa == 1.0)
    {
        maxni = (int) (taucc*sw1*2.0);
        if (maxni < ni)
        {
            abort_message("too many increments! maxni = %d   ",maxni);
        }
    }

    /* SET UP FOR (-90,180) PHASE CORRECTIONS IF f1180='y' */
    tau1 = d2;
    if(f1180[A] == 'y')  tau1 += ( 1.0/(2.0*sw1) ); /* Wait half a dwell time */
    tau1 = tau1/2.0;

    /* BEGIN ACTUAL PULSE SEQUENCE */

    status(A);
    decpower(pwxlvl);
    decoffset(dof);     /* Set decoupler power to pwxlvl */

    delay(5.0e-5);
    if (getflag("sspul"))
        steadystate();

    if (satmode[0] == 'y')
    {
        if ((d1-satdly) > 0.02)
            delay(d1-satdly);
        else
            delay(0.02);
        if (getflag("slpsat"))
        {
            shaped_satpulse("relaxD",satdly,v4);
            if (getflag("prgflg"))
                shaped_purge(v1,v4,v18,v19);
        }
        else
        {
            satpulse(satdly,v4,rof1,rof1);
            if (getflag("prgflg"))
                purge(v1,v4,v18,v19);
        }

    }
    else
        delay(d1);

    if (getflag("wet"))
        wet4(zero,one);

    status(B);
    rcvroff();
    rgpulse(pw,t1,1.0e-6,0.0);
    txphase(t1);
    decphase(t1);
    delay(tauxh-15.0*pwx);                        /* delay=1/4J(XH) */
    simshaped_pulse("","ad180",2*pw,30*pwx,t1,t1,0.0,0.0);
    txphase(t2);
    decphase(t4);
    delay(tauxh-15.0*pwx);
    simpulse(pw,pwx,t2,t4,0.0,0.0);
    decphase(t8);
    delay(taucc);
    decshaped_pulse("av180",av180,t8,0.0,0.0);
    decphase(t9);
    delay(taucc);
    decrgpulse(pwx,t9,0.0,0.0);
    delay(tau1);
    rgpulse(2*pw,t1,1.0e-6,0.0);
    delay(tau1);
    delay(gt1 + gstab + 2*GRADIENT_DELAY - 2*pw -1.0e-6);
    decshaped_pulse("av180",av180,t11,1.0e-6,0.0);
    zgradpulse(gzlvl1, gt1);
    delay(gstab);
    decrgpulse(pwx*1.3333,t10,1.0e-6,0.0);   /* 120 Grad pulse */
    decphase(t11);
    delay(taucc - kappa*tau1);
    decshaped_pulse("av180",av180,t11,0.0,0.0);
    delay(10.0e-6);
    zgradpulse(gzlvl2,gt2);
    delay(gstab);
    delay(taucc - 10.0e-6 - gstab - gt2 - 2*GRADIENT_DELAY - 1.0e-6);
    rgpulse(kappa*2*pw,t1,1.0e-6,0.0);
    delay(kappa*tau1);
    simpulse(pw,pwx,t1,t5,1.0e-6,0.0);
    txphase(t1);
    decphase(t1);
    delay(tauxh1);                        /* delay=1/4J (XH);1/6J XH,XH2, XH3) */
    simshaped_pulse("","av180",2*pw,av180,t1,t1,0.0,0.0);
    txphase(t2);
    decphase(t6);
    delay(tauxh1);
    simpulse(pw,pwx,t2,t6,0.0,0.0);
    txphase(t1);
    decphase(t1);
    delay(tauxh-15.0*pwx);
    simshaped_pulse("","ad180",2*pw,30*pwx,t1,t1,0.0,0.0);
    txphase(t1);
    delay(tauxh-15.0*pwx-0.5e-6);
    rgpulse(pw,t1,0.0,0.0);
    decpower(dpwr);
    decoffset(dofdec);  /* lower decoupler power for decoupling */
    delay(gt3 + gstab + 2*GRADIENT_DELAY-POWER_DELAY-1.0e-6);
    rgpulse(2*pw,t1,1.0e-6,0.0);
    zgradpulse(icosel*gzlvl3, gt3);
    delay(gstab);
    rcvron();
    status(C);
    setreceiver(t31);
}
Esempio n. 15
0
void pulsesequence()
{
/* DECLARE VARIABLES */

  char  aliph[MAXSTR],	        /* aliphatic CHn groups only */
        arom[MAXSTR],		/* aromatic CHn groups only */
        wudec[MAXSTR],		/* automatic WURST decoupling */
        CNrefoc[MAXSTR],	/* flag for refocusing 15N during indirect H1 evolution */
        SBSUPR[MAXSTR],	        /* flag for side-band suppression (use 8 step phase cycle) */

        f1180[MAXSTR],	        /* Flag to start t1 @ halfdwell */
        mag_flg[MAXSTR],	/* magic angle gradient */
        f2180[MAXSTR];	        /* Flag to start t2 @ halfdwell */

  int   icosel,		        /* used to get n and p type */
        PRexp,                  /* projection-reconstruction flag */
        t1_counter,		/* used for states tppi in t1 */ 
        t2_counter;		/* used for states tppi in t2 */ 

  double csa, sna, tau1, tau2,	/*  t1 and t2 delays */   
         bw, ofs, ppm, pwd, nst,

        rfst = 0.0,			/* fine power level for adiabatic pulse initialized */
        slpwr = getval("slpwr"),        /* spinlock power level */
        slofs = getval("slofs"),        /* spinlock offset (in Hz) from carrier frequency */

        compC = getval("compC"),        /* adjustment for C13 amplifier compression */
        compN = getval("compN"),        /* adjustment for N15 amplifier compression */

        pra = M_PI*getval("pra")/180.0,
        jch = getval("jch"),		/*  CH coupling constant */
        ni2 = getval("ni2"),

        pwC = getval("pwC"),		/* PW90 for 13C nucleus @ pwClvl */
        pwClvl = getval("pwClvl"),	/* high power for 13C hard pulses on dec1  */
        pwC180 = getval("pwC180"),	/* PW180 for 13C nucleus in INEPT transfers */
        pwN = getval("pwN"),		/* PW90 for 15N nucleus @ pwNlvl */
        pwNlvl = getval("pwNlvl"),	/* high power for 15N hard pulses on dec2 */

        pwClw=getval("pwClw"), 
        pwNlw=getval("pwNlw"),
        pwZlw=0.0,			/* largest of pwNlw and 2*pwClw */

        mix  = getval("mix"),		/* tocsy mix time */
        sw1  = getval("sw1"),		/* spectral width in t1 (H) */
        sw2  = getval("sw2"),		/* spectral width in t2 (C) */
        gstab = getval("gstab"),	/* gradient recovery delay (300 us recom.) */
        gsign = 1.0,
        gzcal = getval("gzcal"),	/* dac to G/cm conversion factor */
        gt0 = getval("gt0"),
        gt1 = getval("gt1"),
        gt2 = getval("gt2"),
        gt3 = getval("gt3"),
        gt4 = getval("gt4"),
        gt5 = getval("gt5"),
        gt6 = getval("gt6"),
        gzlvl0 = getval("gzlvl0"),
        gzlvl1 = getval("gzlvl1"),
        gzlvl2 = getval("gzlvl2"),
        gzlvl3 = getval("gzlvl3"),
        gzlvl4 = getval("gzlvl4"),
        gzlvl5 = getval("gzlvl5"),
        gzlvl6 = getval("gzlvl6");

/* LOAD VARIABLES */

  getstr("aliph",aliph);
  getstr("arom",arom);
  getstr("wudec",wudec);
  getstr("CNrefoc",CNrefoc);

  getstr("mag_flg",mag_flg);
  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("SBSUPR",SBSUPR);


/* LOAD PHASE TABLE */
  settable(t1,2,phi1);
  settable(t2,4,phi2);
  settable(t3,8,phi3);
  settable(t4,4,rec);
  settable(t5,1,phi5);

/* CHECK VALIDITY OF PARAMETER RANGES */

    if((dm[A] == 'y' || dm[C] == 'y' ))
    {
        printf("incorrect 13C decoupler flags! dm='nnnn' or 'nnny' only  ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[C] == 'y' ))
    {
        printf("incorrect 15N decoupler flags! No decoupling in relax or mix periods  ");
        psg_abort(1);
    }

    if( dpwr > 49 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 49 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 

    if( pwN > 200.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 

    if( slpwr > 49.0 )
    {
        printf("dont fry the probe, spinlock strength too high ! ");
        psg_abort(1);
    } 

    if( pwC > 200.0e-6 )
    {
        printf("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( gt0 > 15e-3 || gt1 > 15e-3 || gt2 > 15e-3 || gt3 > 15e-3 || gt4 > 15e-3 || gt5 > 15e-3 || gt6 > 15e-3 ) 
    {
        printf("gti values < 15e-3\n");
        psg_abort(1);
    } 

   if( gzlvl3*gzlvl4 > 0.0 ) 

    if (phase1 == 2)
      tsadd(t1,1,4);

    if (phase2 == 1)  {tsadd(t5,2,4);  icosel = +1;}
        else 			       icosel = -1;    

/* set up Projection-Reconstruction experiment */
   
    PRexp = 0;      
    if((pra > 0.0) && (pra < 90.0)) PRexp = 1;

    csa = cos(pra);
    sna = sin(pra);
    
    if(PRexp)
    {
      tau1 = d2*csa;
      tau2 = d2*sna;
    }
    else
    {
      tau1 = d2;
      tau2 = d3;
    }

    if((f1180[A] == 'y') && (ni > 1.0))    /*  Set up f1180  tau1 = t1 */
      tau1 += 1.0/(2.0*sw1);
    tau1 = tau1/2.0;

    if((PRexp == 0) && (f2180[A] == 'y') && (ni2 > 1.0)) /*  Set up f2180  tau2 = t2 */
      tau2 += 1.0/(2.0*sw2);     
    tau2 = tau2/2.0;

    if(tau1 < 0.2e-7) tau1 = 2.0e-7;

/* Calculate modifications to phases for States-TPPI acquisition */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ((d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t4,2,4); }

   if(PRexp==0)
   {
     if( ix == 1) d3_init = d3 ;
     t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
     if(t2_counter % 2) { tsadd(t2,2,4); tsadd(t4,2,4); } 
   }
    

/* calculate 3db lower power hard pulses for simultaneous CN decoupling during
   indirect H1 evoluion pwNlw and pwClw should be calculated by the macro that 
   calls the experiment. */

   if (CNrefoc[A] == 'y')
   {
     if (pwNlw==0.0) pwNlw = compN*pwN*exp(3.0*2.303/20.0);
     if (pwClw==0.0) pwClw = compC*pwC*exp(3.0*2.303/20.0);
     if (pwNlw > 2.0*pwClw) pwZlw=pwNlw;
     else  pwZlw=2.0*pwClw;
   }


/* make sure gt3 and gt1 have always opposite sign to help dephasing H2O */

   if (gzlvl3*gzlvl1 > 0.0) gsign=-1.0;
     else gsign=1.0; 

   ppm = getval("dfrq"); ofs = 0.0; nst = 1000;     /* number of steps */       

   if(arom[A]=='y')                /* AROMATIC spectrum only */
     bw = 40.0*ppm;
   else if(aliph[A]=='y')          /* ALIPHATIC spectrum only */
     bw = 80.0*ppm;
   else    
   {
     bw = 0.1/(pwC*compC);       /* maximum bandwidth */
     bw = pwC180*bw*bw;  
   } 
     
   if(FIRST_FID) 
   {      
     adC180 = pbox_makeA("adC180", "wurst2i", bw, pwC180, ofs, compC*pwC, pwClvl, nst);   
     wuHmix = pbox_Adec("adsl", "amwurst", 0.0, mix, slofs, 0.0, 0.0);
     pwd = 0.0013;
     if(wudec[A]=='y') 
       wuCdec = pbox_Adec("wurstC", "WURST40", bw, pwd, ofs, compC*pwC, pwClvl);
   }          
   rfst = adC180.pwrf;
   wuHmix.pwr = slpwr;
   wuHmix.pwrf = 4095.0;

/* BEGIN ACTUAL PULSE SEQUENCE */


status(A);

   presat();
   obspower(tpwr);		/* Set transmitter power for hard 1H pulses */
   decpower(pwClvl);		/* Set Dec1 power for hard 13C pulses */
   dec2power(pwNlvl);		/* Set Dec2 power for decoupling during tau1 */
   decpwrf(4095.0);       
   dec2pwrf(4095.0);       

/* destroy N15 and C13 magnetization */
   if (CNrefoc[A] == 'y') dec2rgpulse(pwN, zero, 0.0, 0.0);
   decrgpulse(pwC, zero, 0.0, 0.0);
   zgradpulse(gzlvl0, 0.5e-3);
   delay(gstab);
   if (CNrefoc[A] == 'y') dec2rgpulse(pwN, one, 0.0, 0.0);
   decrgpulse(pwC, one, 0.0, 0.0);
   zgradpulse(0.7*gzlvl0, 0.5e-3);

   decphase(zero);       
   dec2phase(zero);       
   rcvroff();
   delay(gstab);


status(B);
   rgpulse(pw, t1, rof1 ,rof1);                  /* 90 deg 1H pulse */
   txphase(zero); 

   if (ni > 0) 
    {
     if ((CNrefoc[A]=='y') && (tau1 > pwZlw +2.0*pw/PI +3.0*SAPS_DELAY +2.0*POWER_DELAY +2.0*rof1))
      {
       decpower(pwClvl-3.0); dec2power(pwNlvl-3.0);
       delay(tau1 -pwNlw -2.0*pw/PI -3.0*SAPS_DELAY -2.0*POWER_DELAY -2.0*rof1);

       if (pwNlw > 2.0*pwClw)
         {
	  dec2rgpulse(pwNlw -2.0*pwClw,zero,rof1,0.0);
	  sim3pulse(0.0,pwClw,pwClw,zero,zero,zero,0.0,0.0);
          decphase(one);
	  sim3pulse(0.0,2*pwClw,2*pwClw,zero,one,zero,0.0,0.0);
          decphase(zero);
	  sim3pulse(0.0,pwClw,pwClw,zero,zero,zero,0.0,0.0);
	  dec2rgpulse(pwNlw -2.0*pwClw,zero,0.0,rof1);
         }
	else
         {
	  decrgpulse(2.0*pwClw-pwNlw,zero,rof1,0.0);
	  sim3pulse(0.0,pwNlw-pwClw,pwNlw-pwClw,zero,zero,zero,0.0,0.0);
          decphase(one);
	  sim3pulse(0.0,2.0*pwClw,2.0*pwClw,zero,one,zero,0.0,0.0);
          decphase(zero);
	  sim3pulse(0.0,pwNlw-pwClw,pwNlw-pwClw,zero,zero,zero,0.0,0.0);
	  decrgpulse(2.0*pwClw-pwNlw,zero,0.0,rof1);
         }

       decpower(pwClvl); dec2power(pwNlvl);
       delay(tau1 -pwZlw -2.0*pw/PI -SAPS_DELAY -2.0*POWER_DELAY -2.0*rof1);
      }     
     else if (tau1 > 2.0*pwC +2.0*pw/PI +3.0*SAPS_DELAY +2.0*rof1)
      {
       delay(tau1 -2.0*pwC -2.0*pw/PI -3.0*SAPS_DELAY -2.0*rof1);

       decrgpulse(pwC, zero, rof1, 0.0);
       decphase(one);
       decrgpulse(2.0*pwC, one, 0.0, 0.0);
       decphase(zero);
       decrgpulse(pwC, zero, 0.0, rof1);

       delay(tau1 -2.0*pwC -2.0*pw/PI -SAPS_DELAY -2.0*rof1);
      }
     else if (tau1 > 2.0*pw/PI +2.0*SAPS_DELAY +rof1)
	  delay(2.0*tau1 -4.0*pw/PI -2.0*SAPS_DELAY -2.0*rof1);
    }

   rgpulse(pw, zero, rof1, rof1);             /*  2nd 1H 90 pulse   */
status(C);

   zgradpulse(gzlvl0,gt0);
   delay(gstab);
   
   obspower(slpwr);
   xmtron();
   obsprgon(wuHmix.name, 1.0/wuHmix.dmf, wuHmix.dres);
   delay(mix);
   obsprgoff(); xmtroff();

   decrgpulse(pwC,zero,2.0e-6,2.0e-6); 
   zgradpulse(-gzlvl0,gt0);
   obspower(tpwr);
   decpwrf(rfst);                           /* fine power for inversion pulse */
   delay(gstab);

/* FIRST HSQC INEPT TRANSFER */
   rgpulse(pw,zero,0.0,0.0);
   zgradpulse(gzlvl4, gt4);
   delay(1/(4.0*jch) -gt4 -2.0*GRADIENT_DELAY -WFG2_START_DELAY -pwC180*0.45);

   simshaped_pulse("","adC180",2*pw,pwC180,zero,zero,0.0,0.0);
   decphase(zero);

   zgradpulse(gzlvl4, gt4);
   decpwrf(4095.0);
   txphase(one);
   delay(1/(4.0*jch) -gt4 -2.0*GRADIENT_DELAY -pwC180*0.45 -PWRF_DELAY -SAPS_DELAY);

   rgpulse(pw,one,0.0,0.0);
   zgradpulse(gsign*gzlvl3, gt3);
   txphase(zero);
   delay(gstab);

/* C13 EVOLUTION */
   decrgpulse(pwC,t2,0.0,0.0);   

   delay(tau2);
   rgpulse(2.0*pw,zero,0.0,0.0);
   delay(tau2);

   decphase(zero);
   delay(gt1 +2.0*GRADIENT_DELAY +gstab -2.0*pw -SAPS_DELAY);
   decrgpulse(2*pwC,zero,0.0,0.0);

   if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl1, gt1);
     else  zgradpulse(gzlvl1, gt1);
   decphase(t5);
   delay(gstab);

   decrgpulse(pwC,t5,0.0,0.0);
   delay(pw);
   rgpulse(pw,zero,0.0,0.0);

   zgradpulse(gzlvl5, gt5);
   decphase(zero);
   delay(1/(8.0*jch) -gt5 -SAPS_DELAY -2.0*GRADIENT_DELAY);		/* d3 = 1/8*Jch */

   decrgpulse(2.0*pwC,zero,0.0,2.0e-6);
   rgpulse(2.0*pw,zero,0.0,0.0);

   zgradpulse(gzlvl5, gt5);
   decphase(one);
   txphase(one);
   delay(1/(8.0*jch) -gt5 -2.0*SAPS_DELAY -2.0*GRADIENT_DELAY);		/* d3 = 1/8*Jch */

   delay(pwC);
   decrgpulse(pwC,one,0.0,2.0e-6);
   rgpulse(pw,one,0.0,0.0);

   zgradpulse(gzlvl6, gt6);
   decpwrf(rfst);                           /* fine power for inversion pulse */
   decphase(zero);
   txphase(zero);
   delay(1/(4.0*jch) -gt6 -pwC180*0.45 -PWRF_DELAY 
		-WFG2_START_DELAY -2.0*SAPS_DELAY -2.0*GRADIENT_DELAY);	/* d2 = 1/4*Jch */

   simshaped_pulse("","adC180",2*pw,pwC180,zero,zero,0.0,0.0);
   decphase(zero);

   zgradpulse(gzlvl6, gt6);
   decpwrf(4095.0);
   delay(1/(4.0*jch) -gt6 -pwC180*0.45 -PWRF_DELAY -2.0*GRADIENT_DELAY);	/* d2 = 1/4*Jch */

   rgpulse(pw,zero,0.0,0.0);  

   if (SBSUPR[A]=='y') delay(gt2 +gstab +2.0*GRADIENT_DELAY +2.0*pwC 
					+SAPS_DELAY +rof2 +POWER_DELAY);
   else delay(gt2 +gstab +2.0*GRADIENT_DELAY +POWER_DELAY);

   rgpulse(2*pw,zero,0.0,0.0);  

   if (mag_flg[A] == 'y')  magradpulse(icosel*gzcal*gzlvl2, gt2);
     else  zgradpulse(icosel*gzlvl2, gt2);
   delay(gstab);

   if (SBSUPR[A]=='y') {
       decrgpulse(pwC,zero,0.0,0.0);     
       decphase(t3);
       decrgpulse(pwC,t3,0.0,rof2);     
      }

   setreceiver(t4);
   rcvron();
   if ((wudec[A]=='y') && (dm[D] == 'y'))
   {
     decpower(wuCdec.pwr+3.0);
     decprgon("wurstC", 1.0/wuCdec.dmf, wuCdec.dres);
     decon();
   }
   else	
   { 
     decpower(dpwr);
     status(D);
   }
}
Esempio n. 16
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

char        abfilter[MAXSTR],  /* flag for selection of inner or outer pair of doublets */
            NH2[MAXSTR],      /* flag for selection of NH2 */
            f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
	    C13refoc[MAXSTR];		/* C13 sech/tanh pulse in middle of t1*/
	    
 
int         icosel,          			  /* used to get n and p type */
            t1_counter;  		        /* used for states tppi in t1 */
	    
double      tau1,         				         /*  t1 delay */
	    lambda = 0.91/(4.0*getval("JNH")), 	   /* 1/4J H1 evolution delay */
	            
   pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
   pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
   rf0,            	          /* maximum fine power when using pwC pulses */
   rfst,	                           /* fine power for the stCall pulse */

   compH = getval("compH"),        /* adjustment for H1 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

	calH = getval("calH"), /* multiplier on a pw pulse for H1 calibration */
   	pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
        tpwrsf_u = getval("tpwrsf_u"),/* fine power correction for flipback(up)*/
        tpwrsf_d = getval("tpwrsf_d"),/* fine power correction for flipback(down)*/
   	tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */
	calN = getval("calN"),   /* multiplier on a pwN pulse for calibration */

	sw1 = getval("sw1"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal = getval("gzcal"),               /* dac to G/cm conversion      */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gstab = getval("gstab"),			   /* field recovery  */
	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt5 = getval("gt5"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl5 = getval("gzlvl5");

    getstr("NH2",NH2);
    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("C13refoc",C13refoc);
    getstr("abfilter",abfilter);


/*   LOAD PHASE TABLE    */
	
        settable(t3,2,phi3);
	settable(t4,1,phx);
        settable(t1,1,phx);
	settable(t9,8,phi9);
 	settable(t10,1,phx);
        settable(t12,4,rec);


/*   INITIALIZE VARIABLES   */

/* maximum fine power for pwC pulses (and initialize rfst) */
	rf0 = 4095.0;    rfst=0.0;

/* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
     if (C13refoc[A]=='y')
       {rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
	rfst = (int) (rfst + 0.5);
	if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
           { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	    (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) ); psg_abort(1); }}

/* selective H20 one-lobe sinc pulse */
    tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));   /*needs 1.69 times more*/
    tpwrs = (int) (tpwrs);                   	  /*power than a square pulse */
    if (tpwrsf_d<4095.0) tpwrs=tpwrs+6;   /* nominal tpwrsf_d ~ 2048 */
         /* tpwrsf_d,tpwrsf_u can be used to correct for radiation damping  */

/* reset calH and calN for 2D if inadvertently left at 2.0 */
  if (ni>1.0) {calH=1.0; calN=1.0;}



/* CHECK VALIDITY OF PARAMETER RANGES */

  if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
  { text_error("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' ))
  { text_error("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); }

  if((NH2[A] != 'y') && (NH2[A] != 'n'))
  { text_error("NH2 should be 'y' or 'n'!"); psg_abort(1); }

  if((abfilter[A] != 'a') && (abfilter[A] != 'b'))
  { text_error("abfilter should be 'a' or 'b'!"); psg_abort(1); }

  if( dpwr2 > 46 )
  { text_error("don't fry the probe, DPWR2 too large!  "); psg_abort(1); }

  if( pw > 50.0e-6 )
  { text_error("dont fry the probe, pw too high ! "); psg_abort(1); } 
  
  if( pwN > 100.0e-6 )
  { text_error("dont fry the probe, pwN too high ! "); psg_abort(1); }



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */


    if (phase1 == 1)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;


/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }


/* BEGIN PULSE SEQUENCE */

status(A);

	obspower(tpwr);
	decpower(pwClvl);
	decpwrf(rf0);
 	dec2power(pwNlvl);
	txphase(zero);
        decphase(zero);
        dec2phase(zero);

	delay(d1);

 
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
        rcvroff();
	dec2rgpulse(pwN, zero, 0.0, 0.0);  
	decrgpulse(pwC, zero, 0.0, 0.0);   /*destroy N15 and C13 magnetization*/
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	dec2rgpulse(pwN, one, 0.0, 0.0);
	decrgpulse(pwC, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	decpwrf(rfst);
	txphase(t1);
	delay(5.0e-4);

   if(dm3[B] == 'y')				  /*optional 2H decoupling on */
         {lk_hold();
	  dec3unblank();
          dec3rgpulse(1/dmf3, one, 0.0, 0.0); 
          dec3unblank();
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);} 

   	rgpulse(calH*pw,t1,0.0,0.0);                 /* 1H pulse excitation */

	txphase(zero);
   	dec2phase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

   	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

   	txphase(one);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0);

 	rgpulse(pw, one, 0.0, 0.0);
	txphase(two);
   	obspower(tpwrs); obspwrf(tpwrsf_d);
   	shaped_pulse("H2Osinc_d", pwHs, two, 5.0e-5, 0.0);
	obspower(tpwr); obspwrf(4095.0);
	zgradpulse(gzlvl3, gt3);
	dec2phase(t3);
	delay(gstab);
   	dec2rgpulse(calN*pwN, t3, 0.0, 0.0);
	txphase(zero);
	decphase(zero);

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

	txphase(zero);
	dec2phase(t9);

  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);
            decphase(zero);
            delay(tau1 - 0.5e-3);
            zgradpulse(-1*gzlvl1, 0.5*gt1);
            delay(gstab - 2.0*GRADIENT_DELAY);}
	else
           {delay(tau1);
            rgpulse(2.0*pw, zero, 0.0, 0.0);
            delay(tau1);
            zgradpulse(-1*gzlvl1, 0.5*gt1);
            delay(gstab - 2.0*GRADIENT_DELAY);
            }  

	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        zgradpulse(gzlvl1, 0.5*gt1);   	/* 2.0*GRADIENT_DELAY */
	txphase(t4);
	dec2phase(t10);
	delay(gstab - 2.0*GRADIENT_DELAY);

/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */

	sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

        obspower(tpwrs); obspwrf(tpwrsf_u);
   	shaped_pulse("H2Osinc_u", pwHs, two, 5.0e-5, 0.0);
	obspower(tpwr); obspwrf(4095.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	
	delay(lambda - 1.3*pwN - gt5 - pwHs - 5.0e-5 -2.0*POWER_DELAY);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	delay(lambda - 1.3*pwN - gt5);

if(abfilter[A] == 'a')
        {
         if (NH2[A] == 'n') 
          {
           dec2rgpulse(pwN,one,0.0,0.0);
          } 
         else
          {
           dec2rgpulse(pwN,zero,0.0,0.0);
          } 
        }
       else
        {
         if (NH2[A] == 'n') 
          {
           dec2rgpulse(pwN,three,0.0,0.0);
          } 
         else
          {
           dec2rgpulse(pwN,two,0.0,0.0);
          } 
        }

	delay(gt1/10.0 -pwN +gstab + 2.0*GRADIENT_DELAY + POWER_DELAY );

	rgpulse(2.0*pw, zero, 0.0, 0.0);

	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')	  magradpulse(gzcal*icosel*gzlvl2, 0.1*gt1);
        else   zgradpulse(icosel*gzlvl2, 0.1*gt1);		/* 2.0*GRADIENT_DELAY */
        delay(gstab);

  if (dm3[B] == 'y') {delay(1/dmf3); lk_sample();}

	setreceiver(t12);
}		 
Esempio n. 17
0
pulsesequence()
{
  void      makeHHdec(), makeCdec(); 	                  /* utility functions */
  int       ihh=1,        /* used in HH decouling to improve water suppression */
            t1_counter;
  char	    C13refoc[MAXSTR],		/* C13 sech/tanh pulse in middle of t1 */
	    Hdecflg[MAXSTR],                        /* HH-h**o decoupling flag */
	    Cdecflg[MAXSTR],                 /* low power C-13 decoupling flag */
	    IPAP[MAXSTR],		       /* Flag for anti-phase spectrum */
            wtg3919[MAXSTR];
  double    tauxh, tau1,
            pwNt = 0.0,               /* pulse only active in the TROSY option */
            gsign = 1.0,
            maxHpwr = 51.0,            /* maximum allowed H-H decoupling power */
            maxCpwr = 45.0,            /* maximum allowed C-H decoupling power */
            gzlvl0=getval("gzlvl0"),
            gzlvl1=getval("gzlvl1"),
            gzlvl2=getval("gzlvl2"),
            gzlvl3=getval("gzlvl3"),
            gt0=getval("gt0"),
            gt1=getval("gt1"),
            gt2=getval("gt2"),
            gt3=getval("gt3"),
            JNH = getval("JNH"),
            pwN = getval("pwN"),
            pwNlvl = getval("pwNlvl"),  
            pwHs, tpwrs=0.0, compH,      /* H1 90 degree pulse length at tpwrs */               
            sw1 = getval("sw1"),
            pwClvl = getval("pwClvl"), 	         /* coarse power for C13 pulse */
            pwC = getval("pwC"),       /* C13 90 degree pulse length at pwClvl */
            rfst = 4095.0,	            /* fine power for the stCall pulse */
            compC = getval("compC");   /* adjustment for C13 amplifier compr-n */


/* INITIALIZE VARIABLES */

    getstr("C13refoc",C13refoc);
    getstr("IPAP",IPAP);	       /* IPAP = 'y' for AP; IPAP = 'n' for IP */
    getstr("wtg3919",wtg3919);
    getstr("Hdecflg", Hdecflg);
    getstr("Cdecflg", Cdecflg);
    
    tauxh = ((JNH != 0.0) ? 1/(4*(JNH)) : 2.25e-3);

    if (C13refoc[A]=='y')  /* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
    {
      rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
      rfst = (int) (rfst + 0.5);
      if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
      { 
        text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	          (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) );    
	psg_abort(1); 
      }
    }

    if(wtg3919[0] != 'y')      /* selective H20 one-lobe sinc pulse needs 1.69  */
    { pwHs = getval("pwHs");            /* times more power than a square pulse */
      compH = getval("compH");
      if (pwHs > 1e-6) tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));  
      else tpwrs = 0.0;
      tpwrs = (int) (tpwrs); }
    else
      pwHs = pw*2.385+7.0*rof1+d3*2.5;                       	  

    if(Cdecflg[0] == 'y') makeCdec(maxCpwr);     /* make shapes for HH h**o-decoupling */
    if(Hdecflg[0] == 'y') makeHHdec(maxHpwr);
    if(Hdecflg[0] != 'n') ihh = -3;

/* check validity of parameter range */

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    { text_error("incorrect Dec1 decoupler flags!  "); psg_abort(1); } 

    if((dm2[A] == 'y' || dm2[B] == 'y') )
    { text_error("incorrect Dec2 decoupler flags!  "); psg_abort(1); } 

    if( dpwr > 0 )
    { text_error("don't fry the probe, dpwr too large!  "); psg_abort(1); }

    if( dpwr2 > 50 )
    { text_error("don't fry the probe, dpwr2 too large!  "); psg_abort(1); }

/* LOAD VARIABLES */

    if(ix == 1) d2_init = d2;
    t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5);
    
    tau1 = d2/2.0;
    if(tau1 < 0.0) tau1 = 0.0;

/* LOAD PHASE TABLES */

    settable(t1, 2, phi1);
    if (IPAP[A]=='y') settable(t2,4,phi2A);
    else settable(t2, 4, phi2); 
    settable(t3, 16, phi3);
    settable(t4, 16, phi4);
    if (IPAP[A]=='y') settable(t5,8,recA);
    else settable(t5, 4, rec);

    assign(one,v7); 
    assign(three,v8);     

    if ( phase1 == 2 )         /* Hypercomplex in t1 */
    {
      if (IPAP[A] == 'y') 
        tsadd(t3,1,4); 
      tsadd(t2, 1, 4); 
    } 
                                   
    if(t1_counter %2)          /* calculate modification to phases based on */
    { 			       /* current t1 values */
      tsadd(t2,2,4); 
      tsadd(t5,2,4); 
      if (IPAP[A] == 'y') 
        tsadd(t3,2,4); 
    }

    if(wtg3919[0] != 'y') 
    { add(one,v7,v7); add(one,v8,v8); }
         
                           /* sequence starts!! */
   status(A);
     
     obspower(tpwr);
     dec2power(pwNlvl);
     decpower(pwClvl);
     decpwrf(rfst);
     if(Hdecflg[0] != 'n')
     {
       delay(5.0e-5);
       rgpulse(pw,zero,rof1,0.0);                 
       rgpulse(pw,one,0.0,rof1);                 
       zgradpulse(1.5*gzlvl0, 0.5e-3);
       delay(5.0e-4);
       rgpulse(pw,zero,rof1,0.0);                 
       rgpulse(pw,one,0.0,rof1);                 
       zgradpulse(-gzlvl0, 0.5e-3);
     }
     
     delay(d1);
     rcvroff();
     
   status(B);

     dec2rgpulse(pwN,zero,rof1,rof1);
     zgradpulse(gzlvl0,gt0);
     delay(1e-3); 
     
     rgpulse(pw, zero, rof1, rof1);
     
     zgradpulse(gzlvl1,gt1);
     txphase(zero);
     dec2phase(zero);
     delay(tauxh-gt1);               /* delay=1/4J(XH)   */

     sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,rof1,rof1);

     zgradpulse(gzlvl1,gt1);
     dec2phase(t2);
     delay(tauxh-gt1 );               /* delay=1/4J(XH)   */
  
     rgpulse(pw, t1, rof1, rof1);

     zgradpulse(0.5*gsign*ihh*gzlvl2,gt2);
     delay(200.0e-6); 
     decphase(zero);
            
     txphase(t4);      
     dec2rgpulse(pwN, t2, rof1, 0.0);

     if (IPAP[A] == 'y') 
     {
      delay(tauxh-pwN); 
      sim3pulse(2*pw,0.0,2*pwN,zero,zero,t3,rof1,rof1);
      delay(tauxh-pwN);
      rgpulse(pw,t4,rof1,rof1);
     }	
        
     if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
     {
       delay(tau1 - 0.5e-3 - WFG2_START_DELAY); 
       simshaped_pulse("", "stC200", 0.0, 1.0e-3, zero, zero, 0.0, 0.0);  
       dec2phase(zero);  
       delay(tau1 - 0.5e-3 - WFG2_STOP_DELAY);
     }
     else 
       delay(2.0*tau1);
       
     dec2rgpulse(pwN, zero, 0.0, 0.0);
       
     zgradpulse(0.5*gzlvl2,gt2);
     delay(200.0e-6);
     rgpulse(pw, zero, rof1, rof1); 
     
     zgradpulse(gzlvl3,gt3);
     txphase(v7); dec2phase(zero);
     delay(tauxh-gt3-pwHs-rof1+5.0e-5);
     
     if(wtg3919[0] == 'y')
     {     	
       rgpulse(pw*0.231,v7,rof1,rof1);     
       delay(d3);
       rgpulse(pw*0.692,v7,rof1,rof1);
       delay(d3);
       rgpulse(pw*1.462,v7,rof1,rof1);

       delay(d3/2-pwN);
       dec2rgpulse(2*pwN, zero, rof1, rof1);
       txphase(v8);
       delay(d3/2-pwN);

       rgpulse(pw*1.462,v8,rof1,rof1);
       delay(d3);
       rgpulse(pw*0.692,v8,rof1,rof1);
       delay(d3);
       rgpulse(pw*0.231,v8,rof1,rof1); 
     }
     else
     {
       obspower(tpwrs);  
       shaped_pulse("H2Osinc", pwHs, v7, rof1, 0.0);
       obspower(tpwr);
       sim3pulse(2.0*pw, 0.0, 2.0*pwN, v8, zero, zero, 0.0, 0.0);
       obspower(tpwrs);
       shaped_pulse("H2Osinc", pwHs, v7, rof1, 0.0);
       obspower(tpwr);
     } 
        
     zgradpulse(gzlvl3,gt3);   

     if(Cdecflg[0] == 'y')
     {
       delay(tauxh-gt3-pwHs-rof1-pwNt-3.0*POWER_DELAY-PRG_START_DELAY); 
       dec2rgpulse(pwNt, zero, rof1, rof2); 
       dec2power(dpwr2);
       rcvron();

     statusdelay(C,5.0e-5);
       setreceiver(t5);  
       pbox_decon(&Cdseq);
      
       if(Hdecflg[0] == 'y')
         homodec(&HHdseq); 
     }
     else
     {
       delay(tauxh-gt3-pwHs-rof1-pwNt-POWER_DELAY); 
       dec2rgpulse(pwNt, zero, rof1, rof2); 
       dec2power(dpwr2);
       rcvron();

     statusdelay(C,5.0e-5);
       setreceiver(t5);  
      
       if(Hdecflg[0] == 'y')
         homodec(&HHdseq); 
     }       
}
Esempio n. 18
0
pulsesequence()
{

int     t1_counter;
char	    C13refoc[MAXSTR],		/* C13 sech/tanh pulse in middle of t1*/
	    IPAP[MAXSTR];		/* Flag for anti-phase spectrum */
double
   tau1, tauxh,
   gzlvl0=getval("gzlvl0"),
   gzlvl1=getval("gzlvl1"),
   gzlvl2=getval("gzlvl2"),
   gzlvl3 = getval("gzlvl3"),    /* watergate gradient DAC */
   gt0=getval("gt0"),
   gt1=getval("gt1"),
   gt2=getval("gt2"),
   gt3=getval("gt3"),            /* watergate gradient pulse (s) */
   JNH = getval("JNH"),           /* 1JNH coupling constant (near 92 Hz) */
   pwN = getval("pwN"),
   pwNlvl = getval("pwNlvl"),      
   sw1 = getval("sw1"),
   pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
   pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
   rf0,            	          /* maximum fine power when using pwC pulses */
   rfst,	                           /* fine power for the stCall pulse */

   compC = getval("compC");       /* adjustment for C13 amplifier compression */

   getstr("C13refoc",C13refoc);
   getstr("IPAP",IPAP);	 /* IPAP = 'y' for AP; IPAP = 'n' for IP */

/* maximum fine power for pwC pulses (and initialize rfst) */
	rf0 = 4095.0;    rfst=0.0;

/* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
     if (C13refoc[A]=='y')
       {rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
	rfst = (int) (rfst + 0.5);
	if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
           { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	    (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) ); psg_abort(1); }}

   initval(0.0,v1); /* x phase */
   initval(3.0,v2); /* -y watergate first 1H train phase */
   initval(1.0,v3); /* y watergate second 1H train phase */
   initval(2.0,v4); /* not used in the pulse seq */

/* check validity of parameter range */

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
	{
	printf("incorrect Dec1 decoupler flags!  ");
	psg_abort(1);
    } 

    if((dm2[A] == 'y' || dm2[B] == 'y') )
	{
	printf("incorrect Dec2 decoupler flags!  ");
	psg_abort(1);
    } 


    if( dpwr > 0 )
    {
	printf("don't fry the probe, dpwr too large!  ");
	psg_abort(1);
    }

    if( dpwr2 > 50 )
    {
	printf("don't fry the probe, dpwr2 too large!  ");
	psg_abort(1);
    }

/* LOAD VARIABLES */

  settable(t10, 2, phi10);
  settable(t1, 4, phi1);
  if (IPAP[A]=='y') settable(t2,8,phi2A);
  else settable(t2, 8, phi2); 
  settable(t3, 4, phi3);
  settable(t30, 4, phi30);
  settable(t4, 8, rec);

/* INITIALIZE VARIABLES */

  tauxh = ((JNH != 0.0) ? 1/(4*(JNH)) : 2.25e-3);

/* Phase incrementation for hypercomplex data */

   if ( phase1 == 2 ) tsadd(t2,1,4);  /* Hypercomplex in t1 */
	
/* calculate modification to phases based on current t1 values
   to achieve States-TPPI acquisition */
 
 
   if(ix == 1)
      d2_init = d2;
      t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5);

      if(t1_counter %2) {
        tsadd(t2,2,4);
        tsadd(t4,2,4);
      }
   tau1 = d2;
   tau1 = tau1/2.0 -rof1 -pw;
   if (tau1 < 0.0) tau1=0.0;

/*sequence starts!!*/


  status(A);
  obspower(tpwr);
  dec2power(pwNlvl);
  decpower(pwClvl);
  decpwrf(rfst);
  delay(d1);
  status(B);
  dec2rgpulse(pwN,v1,rof1,rof1);

  zgradpulse(gzlvl0,gt0);
  delay(1e-3);
  
  rgpulse(pw, v1, rof1, rof1);

  zgradpulse(gzlvl1,gt1);

  txphase(zero);
  dec2phase(zero);
  delay(tauxh-gt1);               /* delay=1/4J(XH)   */

  sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,rof1,rof1);

  zgradpulse(gzlvl1,gt1);

  txphase(t10);
  dec2phase(t1);
  delay(tauxh-gt1 );               /* delay=1/4J(XH)   */
 
  rgpulse(pw, t10, rof1, rof1);

  zgradpulse(gzlvl2,gt2);
  delay(200.0e-6);

  dec2rgpulse(pwN, t1, rof1, 0.0);

  delay(tauxh-pwN);

  sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,rof1,0.0);

  delay(tauxh-pwN);

  sim3pulse(pw,0.0,pwN,zero,zero,t3,rof1,0.0);

  if (IPAP[A] == 'n') 
  {
	delay(tauxh-pwN); 
	sim3pulse(2*pw,0.0,2*pwN,t3,zero,zero,rof1,rof1);
	delay(tauxh-pwN);
	dec2rgpulse(pwN, t30, rof1, rof1);
  }	

  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            simshaped_pulse("", "stC200", 0.0, 1.0e-3, zero, zero, 0.0, 0.0);
            delay(tau1 - 0.5e-3);}
	else
           delay(2*tau1);

  dec2rgpulse(pwN, t2, 0.0, 0.0);

  zgradpulse(gzlvl2,gt2);
  delay(200.0e-6);

  rgpulse(pw, v1, rof1, rof1);

  dec2phase(zero);
 
  zgradpulse(gzlvl3,gt3);
  txphase(v2);
  delay(200e-6);

  delay(tauxh-gt3-200e-6-pw*2.385-6.0*rof1 -d3*2.5);
 
  rgpulse(pw*0.231,v2,rof1,rof1);
  delay(d3);
  rgpulse(pw*0.692,v2,rof1,rof1);
  delay(d3);
  rgpulse(pw*1.462,v2,rof1,rof1);

  delay(d3/2-pwN);
  dec2rgpulse(2*pwN, zero, rof1, rof1);
  delay(d3/2-pwN);

  rgpulse(pw*1.462,v3,rof1,rof1);
  delay(d3);
  rgpulse(pw*0.692,v3,rof1,rof1);
  delay(d3);
  rgpulse(pw*0.231,v3,rof1,rof1);
  zgradpulse(gzlvl3,gt3);

  delay(tauxh-gt3-pw*2.385-6.0*rof1 -d3*2.5);

  dec2power(dpwr2);

status(C);
   setreceiver(t4);

}
Esempio n. 19
0
pulsesequence()
{



    /* DECLARE AND LOAD VARIABLES */

    char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
                CT[MAXSTR],
                refocN15[MAXSTR],
                refocCO[MAXSTR], COshape[MAXSTR],
                C180shape[MAXSTR];

    int         t1_counter,icosel;  		        /* used for states tppi in t1 */

    double      tau1,         				         /*  t1 delay */
                tauch =  getval("tauch"), 	   /* 1/4J   evolution delay */
                tauch1 =  getval("tauch1"),   /* 1/4J or 1/8JC13H   evolution delay */
                timeCC =  getval("timeCC"),  /* 13C constant-time if needed*/
                corrD, corrB, /* small  correction delays */

                dof_dec =  getval("dof_dec"), /*decoupler offset for decoupling during acq - folding */

                pwClvl = getval("pwClvl"),	              /* power for hard C13 pulses */
                pwC180lvl = getval("pwC180lvl"),           /*power levels for 180 shaped pulse */
                pwC180lvlF = getval("pwC180lvlF"),
                pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
                pwC180 = getval("pwC180"),   /* shaped 180 pulse on C13channl */

                sw1 = getval("sw1"),

                pwNlvl = getval("pwNlvl"),
                pwN = getval("pwN"),

                pwCOlvl = getval("pwCOlvl"),
                pwCO = getval("pwCO"),

                gstab = getval("gstab"),
                gstab1 = getval("gstab1"), /* recovery for club sandwitch, short*/
                gt0 = getval("gt0"),
                gt1 = getval("gt1"),
                gt2 = getval("gt2"),
                gt3 = getval("gt3"),                               /* other gradients */
                gt4 = getval("gt4"),
                gt5 = getval("gt5"),
                gt9 = getval("gt9"),

                gzlvl0 = getval("gzlvl0"),
                gzlvl2 = getval("gzlvl2"),
                gzlvl3 = getval("gzlvl3"),
                gzlvl4 = getval("gzlvl4"),
                gzlvl5 = getval("gzlvl5"),
                gzlvl9 = getval("gzlvl9");



    getstr("f1180",f1180);
    getstr("C180shape",C180shape);
    getstr("COshape",COshape);
    getstr("refocCO",refocCO);
    getstr("refocN15",refocN15);
    getstr("CT",CT);


    /*   LOAD PHASE TABLE    */


    settable(t2,2,phi2);
    settable(t3,1,phi3);
    settable(t4,1,phi4);
    settable(t10,1,phix);
    settable(t11,4,rec);


    /*   INITIALIZE VARIABLES   */




    /* CHECK VALIDITY OF PARAMETER RANGES */
    /* like in olde good times */

    if((dm[A] == 'y' || dm[B] == 'y'))
    {
        text_error("incorrect dec1 decoupler flags! Should be 'nnn' or 'nny' ");
        psg_abort(1);
    }

    if((dm2[A] != 'n' || dm2[B] != 'n' || dm2[C] != 'n'))
    {
        text_error("incorrect dec2 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }

    if( dpwr2 > 45 )
    {
        text_error("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }
    if( dpwr > 50 )
    {
        text_error("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( (pw > 30.0e-6) )
    {
        text_error("don't fry the probe, pw too high ! ");
        psg_abort(1);
    }

    if( (pwC > 200.0e-6)  )
    {
        text_error("don't fry the probe, pwC too high ! ");
        psg_abort(1);
    }


    /* PHASES AND INCREMENTED TIMES */

    /*  Phase incrementation for hypercomplex 2D data, States-TPPI-Haberkorn element */

    if (phase1 == 1)  {
        tsadd(t10,2,4);
        icosel = +1;
    }
    else       {
        icosel = -1;
    }
    /* Calculate modifications to phases for States-TPPI acquisition          */

    if( ix == 1)  d2_init = d2;
    t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
    if(t1_counter % 2)
    {
        tsadd(t2,2,4);
        tsadd(t11,2,4);
    }



    /*  Set up f1180  */

    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 0.0))
    {
        tau1 += ( 1.0 / (2.0*sw1) );
        if(tau1 < 0.2e-6) tau1 = 0.0;
    }
    tau1 = tau1/2.0;

    if(CT[A]=='y')   {
        refocN15[A]='y';
        refocCO[A]='y';

        if ( (timeCC-ni/sw1*0.5)*0.5 -pw -pwCO*0.5 -pwN-rof1  <0.2e-6 )
        {
            text_error("too many increments in t1 for a constant time");
            psg_abort(1);
        }
    }

    /*temporary*/
    /* correction delays */

    corrB=0.0;
    corrD=2.0/M_PI*pwC-pw-rof1;

    if (corrD < 0.0) {
        corrB=-corrD;
        corrD=0.0;
    }


    /* BEGIN PULSE SEQUENCE */

    status(A);
    obsoffset(tof);
    obspower(tpwr);
    decpower(pwClvl);
    decpwrf(4095.0);
    decoffset(dof);
    obspwrf(4095.0);
    delay(d1);

    txphase(zero);
    decphase(zero);

    decrgpulse(pwC, zero, rof1, rof1);
    zgradpulse(gzlvl0, gt0);
    delay(2.0*gstab);
    delay(5.0e-3);


    /************ H->C13 */
    txphase(zero);
    decphase(zero);

    rgpulse(pw,zero,rof1,rof1);

    decpower(pwC180lvl);
    decpwrf(pwC180lvlF);

    delay(gstab);
    zgradpulse(gzlvl5, gt5);
    delay(tauch - gt5 -gstab);


    simshaped_pulse("hard",C180shape,2.0*pw,pwC180,zero,zero, 0.0, 0.0);


    decpower(pwClvl);
    decpwrf(4095.0);
    txphase(one);
    delay(tauch - gt5-gstab);
    zgradpulse(gzlvl5, gt5);
    delay(gstab);

    rgpulse(pw, one, rof1,rof1);

    /*** purge   */
    dec2power(pwNlvl);
    dec2pwrf(4095.0);
    txphase(zero);
    decphase(t2);
    delay(gstab);
    zgradpulse(gzlvl2, gt2);

    delay(3.0*gstab);


    /*  evolution on t1 */

    /* real time here */
    if(CT[A]=='n')
    {
        decrgpulse(pwC, t2, 0.0, 0.0);
        decphase(zero);
        decpower(pwC180lvl);
        decpwrf(pwC180lvlF);

        delay(tau1);
        obsunblank();
        rgpulse(pw,one,rof1,0.0);
        rgpulse(2.0*pw,zero,0.0,0.0);
        rgpulse(pw,one,0.0,rof1);
        obsblank();

        if(refocN15[A]=='y') dec2rgpulse(2.0*pwN,zero,0.0,0.0); /*n15 refocusing */

        if(refocCO[A]=='y')
        {
            decpower(pwCOlvl);
            decshaped_pulse(COshape,pwCO,zero, 3.0e-6, 3.0e-6);
            decpower(pwC180lvl);
        }


        delay(tau1);


        /*************** CODING with CLUB sandwitches and BIPS */


        zgradpulse(gzlvl3*icosel, gt3);
        delay(gstab1);
        decshaped_pulse(C180shape,pwC180,zero, 0.0, 0.0);
        zgradpulse(-gzlvl3*icosel, gt3);

        delay(gstab1 +rof1*2.0+pw*4.0 +pwC*4.0/M_PI +2.0*POWER_DELAY+2.0*PWRF_DELAY);

        if(refocN15[A]=='y') delay(2.0*pwN); /*n15 refocusing */
        if(refocCO[A]=='y') /* ghost CO pulse */
        {
            decpower(pwCOlvl);
            decshaped_pulse(COshape,pwCO,zero, 3.0e-6, 3.0e-6);
            decpower(pwC180lvl);
        }


        zgradpulse(-gzlvl3*icosel, gt3);
        delay(gstab1);
        decshaped_pulse(C180shape,pwC180,zero, 0.0, 0.0);
        zgradpulse( gzlvl3*icosel, gt3);
        decpower(pwClvl);
        decpwrf(4095.0);
        delay(gstab1);
    }      /* end of if bracket  for real-time  */
    /*^^^^^^^ end of real time */


    /* CONSTANT TIME VESION: */
    if(CT[A]=='y')
    {
        decrgpulse(pwC, t2, 0.0, 0.0);

        /* timeCC-t1 evolution */
        decpower(pwC180lvl);
        decpwrf(pwC180lvlF);
        delay((timeCC-tau1)*0.5 -2.0*pw -pwCO*0.5 -pwN-rof1);

        obsunblank();
        rgpulse(pw,one,rof1,0.0);
        rgpulse(2.0*pw,zero,0.0,0.0);
        rgpulse(pw,one,0.0,rof1);
        obsblank();

        if(refocN15[A]=='y') dec2rgpulse(2.0*pwN,zero,0.0,0.0); /*n15 refocusing */
        if(refocCO[A]=='y' )
        {
            decpower(pwCOlvl);
            decshaped_pulse(COshape,pwCO,zero, 3.0e-6, 3.0e-6);
            decpower(pwC180lvl);
        }
        delay((timeCC-tau1)*0.5 -2.0*pw -pwCO*0.5 -pwN-rof1);
        /* end of timeCC-t1 evolution */
        /* 180 on carbons in T1 */

        decshaped_pulse(C180shape,pwC180,zero, 0.0, 0.0);

        /* timeCC+t1 evolution  + encoding */

        delay((timeCC+tau1)*0.5 -2.0*pw -pwCO*0.5 -pwN -rof1);

        obsunblank();
        rgpulse(pw,one,rof1,0.0);
        rgpulse(2.0*pw,zero,0.0,0.0);
        rgpulse(pw,one,0.0,rof1);
        obsblank();
        if(refocN15[A]=='y') dec2rgpulse(2.0*pwN,zero,0.0,0.0); /*n15 refocusing */
        if(refocCO[A]=='y' )
        {
            decpower(pwCOlvl);
            decshaped_pulse(COshape,pwCO,zero, 3.0e-6, 3.0e-6);
            decpower(pwC180lvl);
        }

        delay((timeCC+tau1)*0.5 -2.0*pw -pwCO*0.5 -pwN -rof1);

        zgradpulse(-gzlvl3*icosel, gt3*2.0); /* coding */
        delay(gstab +pwC*4.0/M_PI);
        decshaped_pulse(C180shape,pwC180,zero, 2e-6, 2e-6); /* ghost BIP pulse */
        zgradpulse(gzlvl3*icosel, gt3*2.0); /* coding */
        delay(gstab);

    } /*^^^^^^^ end of CONSTANT  time  bracket*/

    /*reverse INPET */



    simpulse(pw, pwC, zero, t10, 0.0, 0.0);
    delay(gstab);
    zgradpulse(gzlvl4,gt4);
    decpower(pwC180lvl);
    decpwrf(pwC180lvlF);
    delay(tauch - gt4 - gstab -corrD-pwC180 -POWER_DELAY-PWRF_DELAY);


    decshaped_pulse(C180shape,pwC180,zero, 0.0, 0.0);
    delay(corrD);
    rgpulse(2.0*pw,zero,rof1,rof1);

    zgradpulse(gzlvl4,gt4);
    delay(tauch - gt4 - gstab -corrB-pwC180 -POWER_DELAY-PWRF_DELAY);

    delay(gstab);

    decphase(one);
    txphase(one);
    decshaped_pulse(C180shape,pwC180,zero, 0.0, 0.0);
    decpower(pwClvl);
    decpwrf(4095.0);
    delay(corrB);


    simpulse(pw, pwC, one, one, 0.0, 0.0);

    decpower(pwC180lvl);
    decpwrf(pwC180lvlF);
    delay(gstab-POWER_DELAY-PWRF_DELAY -WFG_START_DELAY);
    zgradpulse(gzlvl5,gt5);
    delay(tauch1 - gt5 - gstab);

    simshaped_pulse("hard",C180shape,2.0*pw,pwC180,zero,zero, 0.0, 0.0);

    delay(tauch1- gt5 - gstab -  WFG_STOP_DELAY);
    zgradpulse(gzlvl5,gt5);
    delay(gstab-rof1);
    rgpulse(pw, zero,rof1,rof1);

    /* echo and decoding */

    delay(gstab+gt9-rof1+10.0e-6 + 2.0*POWER_DELAY+PWRF_DELAY +2.0*GRADIENT_DELAY);
    decoffset(dof_dec);
    rgpulse(2.0*pw, zero,rof1,rof1);
    delay(10.0e-6);
    zgradpulse(gzlvl9,gt9);
    decpower(dpwr);
    decpwrf(4095.0);
    decoffset(dof_dec);
    dec2power(dpwr2); /* POWER_DELAY EACH */
    delay(gstab);
    status(C);
    setreceiver(t11);
}
Esempio n. 20
0
pulsesequence()
{
/* DECLARE VARIABLES */

 char       fsat[MAXSTR],
	    fscuba[MAXSTR],
            f1180[MAXSTR],    /* Flag to start t1 @ halfdwell             */
            f2180[MAXSTR],    /* Flag to start t2 @ halfdwell             */
            ch_plane[MAXSTR];    /* Flag to start t2 @ halfdwell             */

 int         phase, phase2, ni, ni2, ncyc,
             t1_counter,   /* used for states tppi in t1           */ 
             t2_counter;   /* used for states tppi in t2           */ 

 double      tau1,         /*  t1 delay */
 	     tau2,         /*  t2 delay */
             taua,         /*  ~ 1/4JCH =  1.7 ms */
             taub,         /*  = 1/4JCH or 1/8JCH for editing */
             TC,           /*  ~ 1/2JCaCo =  9 ms */
             pw_ml,        /* PW90 for mlev 1H decoupling */
             pwN,          /* PW90 for 15N pulse  */
             pwC,          /* PW90 hard 13C pulse */
             pwc90,        /* PW90 for Ca or Co nucleus */
             pw_dip,       /* PW90 for Ca or Co nucleus */
             pwreb180,     /* PW180 for reburp */
             pwcon180,     /* PW for Ca or Co on-res 180 */
             pwcoff180,    /* PW for Ca or Co off-res 180 */
             satpwr,      /* low level 1H trans.power for presat  */
             tpwrml,       /* power for 1H decoupling */
             pwClvl,        /* power level for 13C pulses on dec1 - 64 us 
                              90 for part a of the sequence  */
             compH,        /* compression factor */
             compC,        /* compression factor */
             waltzB1,      /* power level for proton decoupling */
             d_c90,        /* power level for Ca or Co 90 pulse */
             d_c180,       /* power level for Ca or Co 180 pulse */
             d_coff180,    /* power level for shifted 180 */
             d_reb,        /* power level for reburp 180 pulse */
             dpwr_dip,     /* power level for reburp 180 pulse */
             pwNlvl,       /* high dec2 pwr for 15N hard pulses    */
             sw1,          /* sweep width in f1                    */             
             sw2,          /* sweep width in f2                    */             
             dof_coca,     /* offset between Co and Ca for comp180 */
             bw,ofs,ppm,   /* temporary Pbox parameters */



             zeta,
             zeta1,

             gt0,
             gt1,
             gt2,
             gt3,
             gt4,
             gt5,
             gt6,
             gt7,
             gt8,
             gstab,
             gzlvl0,
             gzlvl1,
             gzlvl2,
             gzlvl3,
             gzlvl4,
             gzlvl5,
             gzlvl6,
             gzlvl7,
             gzlvl8; 

/* LOAD VARIABLES */


  getstr("fsat",fsat);
  getstr("fscuba",fscuba);
  getstr("f1180",f1180);
  getstr("f2180",f2180);
  getstr("ch_plane",ch_plane);

  taua   = getval("taua"); 
  taub   = getval("taub"); 
  TC   = getval("TC"); 
  pwc90 = getval("pwc90");
  pwN = getval("pwN");
  pwC = getval("pwC");
  pwClvl = getval("pwClvl");
  compC = getval("compC");
  compH = getval("compH");
  waltzB1 = getval("waltzB1");
  tpwr = getval("tpwr");
  satpwr = getval("satpwr");
  d_c180 = getval("d_c180");
  d_reb = getval("d_reb");
  dpwr = getval("dpwr");
  pwNlvl = getval("pwNlvl");
  phase = (int) ( getval("phase") + 0.5);
  phase2 = (int) ( getval("phase2") + 0.5);
  sw1 = getval("sw1");
  sw2 = getval("sw2");
  ni  = getval("ni");
  ni2  = getval("ni2");
  ncyc = getval("ncyc");

  gt0 = getval("gt0");
  gt1 = getval("gt1");
  gt2 = getval("gt2");
  gt3 = getval("gt3");
  gt4 = getval("gt4");
  gt5 = getval("gt5");
  gt6 = getval("gt6");
  gt7 = getval("gt7");
  gt8 = getval("gt8");
  gstab = getval("gstab");

  gzlvl0 = getval("gzlvl0");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl3 = getval("gzlvl3");
  gzlvl4 = getval("gzlvl4");
  gzlvl5 = getval("gzlvl5");
  gzlvl6 = getval("gzlvl6");
  gzlvl7 = getval("gzlvl7");
  gzlvl8 = getval("gzlvl8");

/* LOAD PHASE TABLE */

  settable(t1,1,phi1);
  settable(t2,4,phi2);
  settable(t3,2,phi3);
  settable(t4,16,phi4);
  settable(t5,1,phi5);
  settable(t6,8,rec);

/* CHECK VALIDITY OF PARAMETER RANGES */

    if( satpwr > 6 )
    {
        printf("TSATPWR too large !!!  ");
        psg_abort(1);
    }

    if( dpwr > 46 )
    {
        printf("don't fry the probe, DPWR too large!  ");
        psg_abort(1);
    }

    if( dpwr2 > 46 )
    {
        printf("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pwNlvl > 63 )
    {
        printf("don't fry the probe, DHPWR2 too large!  ");
        psg_abort(1);
    }

    if( pw > 200.0e-6 )
    {
        printf("dont fry the probe, pw too high ! ");
        psg_abort(1);
    } 

    if( pwN > 200.0e-6 )
    {
        printf("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    } 

    if( pwC > 200.0e-6 )
    {
        printf("dont fry the probe, pwC too high ! ");
        psg_abort(1);
    } 

    if( ncyc > 9 )
    {
        printf("dont fry the probe, ncyc must be <= 9\n");
        psg_abort(1);
    }


    if( gt0 > 10.0e-3 || gt1 > 10.0e-3 || gt2 > 10.0e-3 || gt3 >10.0e-3 ||
       gt4 > 10.0e-3 || gt5 > 10.0e-3 || gt6 > 10.0e-3 || gt7 > 10.0e-3 )
    {
        printf("gt values are too long. Must be < 10.0e-3\n");
        psg_abort(1);
    } 

/*  Phase incrementation for hypercomplex 2D & 3D data */

    if (phase == 2)
      tsadd(t3,1,4);

    if (phase2 == 2)
      tsadd(t5,1,4);

/*  Set up f1180  tau1 = t1               */
   
    tau1 = d2;
    if(f1180[A] == 'y') {
        tau1 += 1.0 / (2.0*sw1) - 4.0*pwC - 4.0*2.0e-6 - 2.0*(2.0/PI)*pwN ;
        if(tau1 < 0.4e-6) {
           tau1 = 0.4e-6;
           printf("tau1 is negative; decrease sw1 for proper phasing \n");
        }
    }
        tau1 = tau1/2.0;

/*  Set up f2180  tau2 = t2               */

    tau2 = d3;
    if(f2180[A] == 'y') {
        tau2 += ( 1.0 / (2.0*sw2));
    }

    tau2 = tau2 / 2.0;


/* Calculate modifications to phases for States-TPPI acquisition in t1 & t2  */

   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
      tsadd(t3,2,4);     
      tsadd(t6,2,4);    
    }

   if( ix == 1) d3_init = d3 ;
   t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
   if(t2_counter % 2) {
      tsadd(t5,2,4);     
      tsadd(t6,2,4);    
    }
   pwc90 = 1/(4.0 * (4700*(dfrq/150))) ;  /*  4.7kHz at 150 MHz 13C */
   d_c90 = pwClvl - 20.0*log10(pwc90/(compC*pwC));
   d_c90 = (int) (d_c90 + 0.5);

   pwcon180 = 1/(4.0 * (10900*(dfrq/150))) ;  /*  10.9kHz at 150 MHz 13C */   d_c180 = pwClvl - 20.0*log10(pwcon180/(compC*pwC));
   d_c180 = (int) (d_c180 + 0.5);


/* Now include the Bax/Logan trick (shared time evolution in 13C) */

    if(ni2 != 1)
      zeta = (taub/2.0 + 2*pw) / ( (double)(ni2-1) );
    else
      zeta = 0.0;

    zeta1 = zeta*( (double)t2_counter );

 if (FIRST_FID)                                      /* call Pbox */
  {
          ppm = getval("dfrq");
          bw = 132.0*ppm; ofs = bw;   /* carrier at 42ppm, inversion at 174ppm */
          spco180 = pbox_make("spco180","square180n", bw, ofs, compC*pwC, pwClvl);
          spreb180 = pbox_make("spreb180","reburp", 20*dfrq, -4*dfrq, compC*pwC, pwClvl);
  }
  pwcoff180=spco180.pw; d_coff180=spco180.pwrf;
  pwreb180=spreb180.pw; d_reb=spreb180.pwrf;

    if (0.5*TC - 0.5*(ni2-1)/sw2 - pwcon180/2.0 - 2.0e-6 - pwcoff180 -2.0*2.0e-6 \
           - WFG_START_DELAY - WFG_STOP_DELAY - POWER_DELAY < 0.4e-6) {
	printf("ni2 too large !\n");
	psg_abort(1);
    }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);
   obsoffset(tof);
   decoffset(dof);
   dec2offset(dof2);
   obspower(satpwr);      /* Set transmitter power for 1H presaturation */
   decpower(pwClvl);        /* Set Dec1 power for hard 13C pulses         */
   dec2power(pwNlvl);      /* Set Dec2 power for 15N hard pulses         */

/* Presaturation Period */

status(B);
   if (fsat[0] == 'y')
   {
	delay(2.0e-5);
        rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */
   	obspower(tpwr);      /* Set transmitter power for hard 1H pulses */
	delay(2.0e-5);
	if(fscuba[0] == 'y')
	{
		delay(2.2e-2);
		rgpulse(pw,zero,2.0e-6,0.0);
		rgpulse(2*pw,one,2.0e-6,0.0);
		rgpulse(pw,zero,2.0e-6,0.0);
		delay(2.2e-2);
	}
   }
   else
   {
    delay(d1);
   }
   obspower(tpwr);           /* Set transmitter power for hard 1H pulses */
   txphase(zero);
   dec2phase(zero);
   delay(1.0e-5);

/* Begin Pulses */

status(B);

   rcvroff();
   delay(20.0e-6);

   decrgpulse(pwC,zero,0.0,0.0);

   delay(0.2e-6);
   zgradpulse(gzlvl0,gt0);
   delay(gstab);

   rgpulse(pw,zero,0.0,0.0);                    /* 90 deg 1H pulse */

   zgradpulse(gzlvl1,gt1);
   delay(taua - gt1);                /* taua <= 1/4JCH */ 
   simpulse(2*pw,2*pwC,zero,zero,0.0,0.0);
   zgradpulse(gzlvl1,gt1);
   delay(taua - gt1 );                /* taua <= 1/4JCH */ 

   rgpulse(pw,t1,0.0,0.0);

   zgradpulse(gzlvl2,gt2);
   delay(gstab);

   decrgpulse(pwC,t5,2.0e-6,0.0);

   txphase(zero); decphase(zero);

   delay(tau2);

   dec2rgpulse(2*pwN,zero,0.0,0.0);

   delay(taub/2.0 - 2*pwN);

   rgpulse(2*pw,zero,0.0,0.0);

   zgradpulse(gzlvl3,gt3);
   delay(tau2 - zeta1);

   decrgpulse(2.0*pwC,zero,0.0,0.0);
   zgradpulse(gzlvl3,gt3);

   delay(taub/2.0 - zeta1 + 2*pw);

   decrgpulse(pwC,one,0.0,2.0e-6);


   zgradpulse(gzlvl6,gt6/1.7);
   delay(gstab);

   pw_dip = 1/(4.0 * (6700*(dfrq/150))) ;  /*  6.7kHz at 150 MHz 13C */
   dpwr_dip = pwClvl - 20.0*log10(pw_dip/(compC*pwC));
   dpwr_dip = (int) (dpwr_dip + 0.5);
   decpower(dpwr_dip);

   if( (float) ncyc > 0.1) {
      decspinlock("FLOPSY8",pw_dip,1.0,zero,ncyc);
   }

   decphase(one); 
   decpower(d_c90);
   zgradpulse(gzlvl6,gt6);
   delay(gstab);

   pw_ml = 1/(4.0 * waltzB1) ;
   tpwrml = tpwr - 20.0*log10(pw_ml/(compH*pw));
   tpwrml = (int) (tpwrml + 0.5);

   obspower(tpwrml);

/* H decoupling on */
     rgpulse(pw_ml,one,2.0e-6,0.0);
     txphase(zero);
     delay(2.0e-6);
     obsprgon("waltz16",pw_ml,90.0);
     xmtron();
    
/* Cz */
   decrgpulse(pwc90,one,0.0,2.0e-6);

   decpower(d_c180);
   delay(0.5*TC - 2.0e-6 - POWER_DELAY  - 2.0*pwN - 2.0e-6);
   dec2rgpulse(2.0*pwN,zero,0.0,2.0e-6);
   decrgpulse(pwcon180,zero,0.0,0.0);
   delay(0.5*TC - POWER_DELAY );

   decphase(t2);
   decpower(d_c90);
   decrgpulse(pwc90,t2,0.0,0.0);

/* CzNz */

/* H decoupling off */
     xmtroff();
     obsprgoff();
     rgpulse(pw_ml,three,2.0e-6,2.0e-6);
     zgradpulse(gzlvl4,gt4);
     dec2phase(t3);
     delay(gstab);

     decpower(pwClvl);
     dof_coca=dof+(110-42)*dfrq;
     decoffset(dof_coca);	/* move C carrier for comp180 */
     decphase(one);

/* H decoupling on */
     obspower(tpwrml);
     rgpulse(pw_ml,one,2.0e-6,0.0);
     txphase(zero);
     delay(2.0e-6);
     obsprgon("waltz16",pw_ml,90.0);
     xmtron();
    
/* N evolution */

   dec2rgpulse(pwN,t3, 0.0, 2.0e-6);
   if(ch_plane[0] == 'y')
   {
     dec2phase(zero);
     delay(0.2e-6);
   }
   else {
       delay(tau1);
     decrgpulse(pwC, one, 0.0, 0.0);
     decrgpulse(2.0*pwC, zero, 2.0e-6, 2.0e-6);
     decrgpulse(pwC, one, 0.0, 0.0);
       delay(tau1);
   }
   dec2rgpulse(pwN, zero, 2.0e-6, 0.0);

/* H decoupling off */
     xmtroff();
     obsprgoff();
     rgpulse(pw_ml,three,2.0e-6,2.0e-6);
     obspower(tpwr);

     decpower(d_c90);
     decoffset(dof);		/* move back C carrier */
     decphase(t5);

/* clean-up before proceeding */

     zgradpulse(gzlvl5,gt5);
     delay(gstab);

   decrgpulse(pwc90,zero,0.0,0.0);

/* refocus Ca-N and Ca-H couplings */

     delay(0.5*TC - pwcon180/2.0 - pwcoff180  \
           - WFG_START_DELAY - WFG_STOP_DELAY - POWER_DELAY );

   decphase(zero);
   decpower(pwClvl); decpwrf(d_coff180);
   simshaped_pulse("","spco180",2.0*pw,pwcoff180,zero,zero,0.0e-6,0.0e-6);	/* Bloch siegert correction */
   decphase(zero); decpower(d_c180); decpwrf(4095.0);
   decrgpulse(pwcon180,t4,0.0e-6,0.0e-6);
   decpwrf(d_coff180); decpower(pwClvl);
   dec2rgpulse(2.0*pwN,zero,0.0,0.0);
   decshaped_pulse("spco180", pwcoff180, zero, 0.0e-6, 0.0e-6);
     delay(taub/2.0);
   rgpulse(2.0*pw,zero,0.0,0.0);
     decpower(d_c90); decpwrf(4095.0);
     decphase(zero);
     delay(0.5*TC - taub/2.0 - 2.0*pw  -pwcon180/2 - 2.0*pwN - pwcoff180 \
          - WFG_START_DELAY - WFG_STOP_DELAY \
          - 2.0*POWER_DELAY);

   decrgpulse(pwc90,zero,0.0,0.0);
 
   zgradpulse(gzlvl7,gt7);
   delay(gstab);
   rgpulse(pw,zero,0.0,0.0);
   zgradpulse(gzlvl8,gt8);
   txphase(zero);
   dec2phase(zero);
   decpwrf(d_reb); decpower(pwClvl);
   delay(taua - 2.0*POWER_DELAY - gt8  - 0.5*pwreb180 );
   simshaped_pulse("","spreb180",2.0*pw,pwreb180,zero,zero,0.0e-6,0.0e-6);	/* Purge all C outside 26-46 ppm */
   zgradpulse(gzlvl8,gt8);
   decphase(zero);
   dec2power(dpwr2);    /* set power for 15N decoupling */
   decpower(dpwr);      /* set power for 13C decoupling */
   decpwrf(4095.0);
   delay(taua - 0.5*pwreb180 - gt8 - 3.0*POWER_DELAY);

   rgpulse(pw,zero,0.0,0.0);



/* BEGIN ACQUISITION */

status(C);
   setreceiver(t6);

}
Esempio n. 21
0
pulsesequence()
{
/* DECLARE VARIABLES */

 char        f1180[MAXSTR],C13refoc[MAXSTR], C13filter[MAXSTR];
             
 int	     t1_counter;

 double 
	tau1,	      	    /* t1/2 */
	JNH = getval("JNH"),
  	tauNH  = 1/(4*JNH),         /* delay for 1H-15N INEPT   1/4JNH  */
  	tauNH1 = getval("tauNH1"),   /* 1/2JNH  */
  	tauNH2 = getval("tauNH2"),   /* 1/2JNH  */
  	tauCH1 = getval("tauCH1"),   /* 1/2JCH  */
  	tauCH2 = getval("tauCH2"),   /* 1/2JCH   tauCH2=2tauNH1-2tauCH1 */
  	fact = getval("fact"),       /* scale factor for spin-echo  */
  	pwN = getval("pwN"),
  	pwNlvl = getval("pwNlvl"), 	      	  	              
   pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
   pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
   compC = getval("compC"),
   rf0,            	          /* maximum fine power when using pwC pulses */
   rfst,	                           /* fine power for the stCall pulse */
   mix = getval("mix"),           /* mixing time for H2O - NH  */
        dofCHn = getval("dofCHn"),
        gt1 = getval("gt1"),
        gt2 = getval("gt2"),
        gt3 = getval("gt3"),
        gt4 = getval("gt4"),
        gt5 = getval("gt5"),
        gstab=getval("gstab"),
        gzlvl1 = getval("gzlvl1"),
        gzlvl2 = getval("gzlvl2"),
        gzlvl3 = getval("gzlvl3"),
        gzlvl4 = getval("gzlvl4"),
        gzlvl5 = getval("gzlvl5"),
 gzlvld1 = getval("gzlvld1"), /* remove radiation damping in spin-echo filter */ 
 gzlvld2 = getval("gzlvld2"); /* remove radiation damping in mixing time */

/* LOAD VARIABLES */

  getstr("f1180",f1180); 
  getstr("C13refoc",C13refoc);
  getstr("C13filter",C13filter);

/* maximum fine power for pwC pulses (and initialize rfst) */

	rf0 = 4095.0;    rfst=0.0;

/* 180 degree adiabatic C13 pulse from 0 to 200 ppm */

     if (C13refoc[A]=='y')
       {rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
	rfst = (int) (rfst + 0.5);
	if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
           { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	    (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) );    psg_abort(1); }}

   initval(3.0,v2);
   initval(1.0,v3);          
             
/* check validity of parameter range */

    if((dm[A] == 'y' || dm[B] == 'y' ))
	{
	printf("incorrect Dec1 decoupler flags!  ");
	psg_abort(1);
    } 

    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'n'))
	{
	printf("incorrect Dec2 decoupler flags!  dm2 Should be 'nny' ");
	psg_abort(1);
    } 

    if( dpwr > 50 )
    {
	printf("don't fry the probe, dpwr too large!  ");
	psg_abort(1);
    }

    if( dpwr2 > 50 )
    {
	printf("don't fry the probe, dpwr2 too large!  ");
	psg_abort(1);
    }
 
    if((gt1 > 5.0e-3) || (gt2 > 5.0e-3) || (gt3 > 5.0e-3))
    {
        printf("gti must be less than 5 ms \n");
        psg_abort(1);
    }
   
    if((gt4 > 5.0e-3) || (gt5 > 5.0e-3))
    {
        printf("gti must be less than 5 ms \n");
        psg_abort(1);
    }

  if(gzlvld1>200 || gzlvld2>200 )
    {
        printf("gzlvldi should not be larger than 200 DAC \n");
        psg_abort(1);
    }

/* LOAD VARIABLES */

  settable(t1, 4,  phi1);
  settable(t2, 2,  phi2);
  settable(t3, 4,  phi3);
  settable(t4, 8,  phi4);
  settable(t5, 2,  phi5);
  settable(t6, 4,  phi6);
  settable(t14,8, rec);

/* Phase incrementation for hypercomplex data */

   if ( phase1 == 2 )     /* Hypercomplex in t1 */
    {    
    tsadd(t2,1,4);
    }    
    
/* calculate modification to phases based on current t1 values
   to achieve States-TPPI acquisition */
 
   if(ix == 1)
    {
      d2_init = d2;
    }

      t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5);
      if(t1_counter %2) 
       {
        tsadd(t2,2,4);
        tsadd(t14,2,4);
       }

/* set up so that get (-90,180) phase corrects in F1 if f1180 flag is y */

    tau1=d2;
    if( (f1180[A] == 'y') && (ni >1.0) )  tau1 += (1.0/(2.0*sw1));
    tau1 = tau1/2.0 -pw -2*pwN/PI;
    if (tau1 < 0.0) tau1=0.0;
    

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);

   obspower(tpwr);               /* Set power for pulses  */
   dec2power(pwNlvl);            /* Set decoupler2 power to pwNlvl */
   decpower(pwClvl);
   decpwrf(rf0);
   obsoffset(tof); 
   decoffset(dofCHn);   
   delay(d1);
   
status(B);

   rcvroff();
  
   txphase(t1);
   delay(9.0e-5);

/* spin-echo filter and 15N/13C double filters */

  rgpulse(pw,t1,0.0,0.0);  

if(C13filter[A]=='y')   

{   
  decphase(t5);
  zgradpulse(gzlvl5,gt5); 
  delay(tauCH1-gt5); 
  decrgpulse(pwC,t5,0.0,0.0);
 
  txphase(t3); dec2phase(t5);
  delay(tauNH1-tauCH1-pwN*0.5);
  sim3pulse(2.0*pw,2*pwC,pwN,t3,zero,t5,0.0,0.0);
 
  decphase(t6);
  delay(tauCH2+tauCH1-tauNH1-pwN*0.5);
  decrgpulse(pwC,t6,0.0,0.0);
  
  delay(tauNH1+tauNH2-tauCH1-tauCH2-gt5-gstab);
  zgradpulse(gzlvl5,gt5);
  delay(gstab);     
}
 
 else
  
{  
 if (gzlvld1>0.0)
 {
  txphase(t3); dec2phase(t5); 
  delay(2.0e-6);
  zgradpulse(gzlvld1,0.5*fact*tauNH1-pwN*0.25-11.0e-6);
  delay(2.0e-5);
  zgradpulse(-gzlvld1,0.5*fact*tauNH1-pwN*0.25-11.0e-6);
  delay(2.0e-6);

  sim3pulse(2.0*pw,0.0e-6,pwN,t3,zero,t5,0.0,0.0);

  delay(2.0e-6);
  zgradpulse(gzlvld1,0.5*fact*tauNH2-pwN*0.25-11.0e-6);
  delay(2.0e-5);
  zgradpulse(-gzlvld1,0.5*fact*tauNH2-pwN*0.25-11.0e-6);
  delay(2.0e-6);
 }
 else
 {
  txphase(t3); dec2phase(t5); 
  delay(fact*tauNH1-pwN*0.5);

  sim3pulse(2.0*pw,0.0e-6,pwN,t3,zero,t5,0.0,0.0);

  delay(2.0e-6);
  delay(0.5*fact*tauNH2-pwN*0.25-3.0e-6);
  delay(2.0e-6);
  delay(0.5*fact*tauNH2-pwN*0.25-3.0e-6);
  delay(2.0e-6);
 }
}

  txphase(zero); dec2phase(t6);

  sim3pulse(pw,0.0e-6,pwN,zero,zero,t6,0.0,0.0);
  
  decoffset(dof);
  decpwrf(rfst);
 
/* mixing time */ 
  
   zgradpulse(gzlvl4,gt4);    
   delay(gstab); 
   if(mix - 4.0e-6 - 4.0*GRADIENT_DELAY - gt4> 0.0)
    {
     if (gzlvld2>0.0)
      {
        zgradpulse(gzlvld2,mix-gt4-gstab);
      }
     else
      delay(mix-gt4-gstab);
    }

/* H1-N15 INEPT */

  rgpulse(pw, zero, 0.0, 0.0);

  zgradpulse(gzlvl1,gt1);

  dec2phase(zero); decphase(zero);

  delay(tauNH-gt1);               /* delay=1/4J(XH)   */

  sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,rof1,rof1);

  zgradpulse(gzlvl1,gt1);

  txphase(one);
  dec2phase(t2);
  delay(tauNH-gt1 );               /* delay=1/4J(XH)   */
 
  rgpulse(pw, one, rof1, rof1);

  zgradpulse(gzlvl2,gt2);
  delay(gstab);

  dec2rgpulse(pwN, t2, 0.0, 0.0);

  txphase(zero); dec2phase(t4);

/* t1 evolution period  */

  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);
            delay(tau1 - 0.5e-3);}
	else
           {delay(tau1);
            rgpulse(2.0*pw, zero, 0.0, 0.0);
            delay(tau1);} 

  dec2rgpulse(pwN, t4, 0.0, 0.0);

  txphase(t1);
  zgradpulse(gzlvl2,gt2);
  delay(gstab);

  rgpulse(pw, t1, rof1, rof1);

  dec2phase(zero);

   zgradpulse(gzlvl3,gt3);
   txphase(v2);
   delay(gstab);

   delay(tauNH-gt3-gstab-pw*2.385-6.0*rof1 -d3*2.5);
 
   rgpulse(pw*0.231,v2,rof1,rof1);
   delay(d3);
   rgpulse(pw*0.692,v2,rof1,rof1);
   delay(d3);
   rgpulse(pw*1.462,v2,rof1,rof1);

   delay(d3/2-pwN);
   dec2rgpulse(2*pwN, zero, rof1, rof1);
   delay(d3/2-pwN);

   rgpulse(pw*1.462,v3,rof1,rof1);
   delay(d3);
   rgpulse(pw*0.692,v3,rof1,rof1);
   delay(d3);
   rgpulse(pw*0.231,v3,rof1,rof1);
   delay(tauNH-gt3-gstab-pw*2.385-6.0*rof1 -d3*2.5);
   dec2power(dpwr2);
   zgradpulse(gzlvl3,gt3);
   
   delay(gstab); 

/* acquire data */  

status(C);
   setreceiver(t14);

}
Esempio n. 22
0
pulsesequence()
{
   double  hsglvl = getval("hsglvl"),
             hsgt = getval("hsgt"),
           satpwr = getval("satpwr"),
           satdly = getval("satdly"),
           tpwr180 = getval("tpwr180"),
           pw180 = getval("pw180"),
           pp = getval("pp"),
           pplvl = getval("pplvl");
   int     prgcycle = (int)(getval("prgcycle")+0.5);
   char    sspul[MAXSTR],satmode[MAXSTR],wet[MAXSTR],pw180ad[MAXSTR];

   getstr("satmode",satmode);
   getstr("sspul", sspul);
   getstr("wet",wet);
   getstr("pw180ad",pw180ad);

  assign(ct,v17);

 
   settable(t1,4,ph1);     getelem(t1,v17,v1);
   settable(t2,8,ph2);     getelem(t2,v17,v2);
   assign(v1,oph);

/* BEGIN ACTUAL SEQUENCE */
   status(A);
      obspower(tpwr);
 
   delay(5.0e-5);
   if (getflag("sspul"))
	steadystate();

   if (satmode[0] == 'y')
     {
        if ((d1-satdly) > 0.02)
                delay(d1-satdly);
        else
                delay(0.02);
        if (getflag("slpsat"))
           {
                shaped_satpulse("relaxD",satdly,v4);
                if (getflag("prgflg"))
                   shaped_purge(v1,v4,v18,v19);
           }
        else
           {
                satpulse(satdly,v4,rof1,rof1);
                if (getflag("prgflg"))
                   purge(v1,v4,v18,v19);
           }

     }
   else
	delay(d1);

   if (getflag("wet"))
     wet4(zero,one);

   status(B);
      rgpulse(pw, v1, rof1, rof1);
      decpower(pplvl);
      obspower(tpwr180);
      delay(d2/2);
      simshaped_pulse(pw180ad,"",pw180,pp*2,v2,v2,rof1,2*rof1); 
      delay(d2/2);
      decpower(dpwr);
      obspower(tpwr);
   status(C);
}
Esempio n. 23
0
pulsesequence()
{
/* DECLARE VARIABLES */
  char        fsat[MAXSTR],
              fscuba[MAXSTR],
              f1180[MAXSTR],      /* Flag to start t1 @ halfdwell           */
              sh_reb[MAXSTR],
              codec[MAXSTR],
              MQ_flg[MAXSTR],
              filter_flg[MAXSTR];
  int          phase,
               t1_counter;    /* used for states tppi in t1          */
  double       tau1,          /* t1 delay */
               taua,          /* set to exactly 1/4JCH */
               tsatpwr,       /* low level 1H trans.power for presat */
               sw1,           /* sweep width in f1                   */
               tpwr_cp,       /* power level for 1H CPMG     */
               pw_cp,         /* 1H pw for CPMG      */
               ncyc_cp,       /* number of CPMG cycles */
               time_T2,       /* total time for CPMG trains   */
               tau_cpmg,
               dhpwr,
               pwc,
               dmf_co,
               dpwr_co,
               dresco,
              gt0,
              gt1,
              gt2,
              gt3,
              gt4,
              gt5,
              gt6,
              gzlvl0,
              gzlvl1,
              gzlvl2,
              gzlvl3,
              gzlvl4,
              gzlvl5,
              gzlvl6,
              tpwr,
              pw,
              d_reb,
              pwc_reb,
              dpwr3_D,
              pwd,
              pwd1,
              tau_eq,
              pwn,
              dhpwr2;
/* LOAD VARIABLES */
  getstr("fsat",fsat);
  getstr("f1180",f1180);
  getstr("fscuba",fscuba);
  getstr("sh_reb",sh_reb);
  getstr("codec",codec);
  getstr("MQ_flg",MQ_flg);
  getstr("filter_flg",filter_flg);
  taua    = getval("taua");
  tpwr = getval("tpwr");
  tsatpwr = getval("tsatpwr");
  dpwr = getval("dpwr");
  phase = (int) ( getval("phase") + 0.5);
  sw1 = getval("sw1");
  tpwr_cp  = getval("tpwr_cp");
  pw_cp =  getval("pw_cp");
  ncyc_cp  = getval("ncyc_cp");
  time_T2  = getval("time_T2");
  dhpwr = getval("dhpwr");
  pwc = getval("pwc");
  pwn = getval("pwn");
  dhpwr2 = getval("dhpwr2");
  dmf_co = getval("dmf_co");
  dpwr_co = getval("dpwr_co");
  dresco = getval("dresco");
  gt0  = getval("gt0");
  gt1  = getval("gt1");
  gt2  = getval("gt2");
  gt3  = getval("gt3");
  gt4  = getval("gt4");
  gt5  = getval("gt5");
  gt6 = getval("gt6");
  gzlvl0  = getval("gzlvl0");
  gzlvl1  = getval("gzlvl1");
  gzlvl2  = getval("gzlvl2");
  gzlvl3  = getval("gzlvl3");
  gzlvl4  = getval("gzlvl4");
  gzlvl5  = getval("gzlvl5");
  gzlvl6  = getval("gzlvl6");
  tpwr = getval("tpwr");
  pw = getval("pw");
  d_reb = getval("d_reb");
  pwc_reb = getval("pwc_reb");
  dpwr3_D = getval("dpwr3_D");
  pwd = getval("pwd");
  pwd1 = getval("pwd1");
  tau_eq = getval("tau_eq");
/* LOAD PHASE TABLE */
  settable(t1,4,phi1);
  settable(t2,2,phi2);
  settable(t4,8,phi4);
  settable(t5,4,rec);
/* CHECK VALIDITY OF PARAMETER RANGES */
    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    {
         printf("incorrect dec1 decoupler flags! ");
         abort(1);
    }
    if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y'))
    {
         printf("incorrect dec2 decoupler flags! ");
         abort(1);
    }
    if( tsatpwr > 6 )
    {
         printf("TSATPWR too large !!!  ");
         abort(1);
    }
    if( dpwr > 48 )
    {
         printf("don't fry the probe, DPWR too large!  ");
         abort(1);
    }
    if(tpwr_cp > 62)
    {
         printf("don't fry the probe, tpwr_cp too large: < 62! ");
         abort(1);
    }
    if(pw_cp < 9.5e-6) {
         printf("pw_cp is too low; > 9.5us\n");
         abort(1);
    }
    if( dpwr2 > -16 )
    {
         printf("don't fry the probe, DPWR2 too large!  ");
         abort(1);
    }
      if( pw > 20.0e-6 )
      {
            printf("dont fry the probe, pw too high ! ");
            abort(1);
      }
      if(gt1 > 3e-3 || gt2 > 3e-3 || gt3 > 3e-3 || gt4 > 3e-3
             || gt5 > 3e-3 || gt6 > 3e-3)
      {
            printf("gradients on for too long. Must be < 3e-3 \n");
            abort(1);
      }
      if(ncyc_cp > 80) {
            printf("ncyc_cp is too large; must be less than 81\n");
            abort(1);
      }
      if(time_T2 > .080) {
            printf("time_T2 is too large; must be less than 80 ms\n");
            abort(1);
      }
      if(ncyc_cp > 0) {
            tau_cpmg = time_T2/(4.0*ncyc_cp) - pw_cp;
            if(ix==1)
              printf("nuCPMG for curent experiment is (Hz): %5.3f\n",1/(4.0*(tau_cpmg+pw_cp)));
        }
        else {
            tau_cpmg = time_T2/(4.0) - pw_cp;
            if(ix==1)
              printf("nuCPMG for curent experiment is (Hz): not applicable");
        }
      if(tau_cpmg + pw_cp < 125e-6) {
           printf("tau_cpmg is too small; decrease ncyc_cp\n");
           abort(1);
      }
      if(dpwr_co > 42) {
           printf("dpwr_co is too high; < 42\n");
           abort(1);
    }
      if(dpwr3_D > 51) {
           printf("dpwr3_D is too high; < 52\n");
           abort(1);
      }
      if(dpwr3 > 59) {
           printf("dpwr3 is too high; < 60\n");
           abort(1);
    }
    if(ix==1)
        printf("If at 800 turn dpwr3=-16, pwd1=0\n");
/*    Phase incrementation for hypercomplex 2D data */
      if (phase == 2)
          tsadd(t1,1,4);
/*    Set up f1180    tau1 = t1               */
      tau1 = d2;
   if(MQ_flg[A] == 'n')
      tau1 = tau1 - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY
                - 2.0*pw - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY
                - 4.0e-6;
    else
      tau1 = tau1 - 4.0/PI*pwc - POWER_DELAY - PRG_START_DELAY
              - 2.0*pw - 2.0*pwn - PRG_STOP_DELAY - POWER_DELAY
              - 4.0e-6;
     if(f1180[A] == 'y') {
          tau1 += ( 1.0 / (2.0*sw1));
          if(tau1 < 0.4e-6) tau1 = 0.4e-6;
     }
     if(tau1 < 0.4e-6)
          tau1 = 0.4e-6;
       tau1 = tau1/2.0;
/* Calculate modifications to phases for States-TPPI acquisition              */
   if( ix == 1) d2_init = d2 ;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) {
        tsadd(t1,2,4);
        tsadd(t5,2,4);
     }
/* BEGIN ACTUAL PULSE SEQUENCE */
status(A);
   rlpower(tsatpwr,TODEV);       /* Set transmitter power for 1H presaturation */
   rlpower(dhpwr,DODEV);         /* Set Dec1 power for 13C pulses          */
   rlpower(dhpwr2,DO2DEV);       /* Set Dec2 power for 15N pulses       */
   obsoffset(tof);
/* Presaturation Period */
status(B);
   if (fsat[0] == 'y')
   {
          delay(2.0e-5);
          rgpulse(d1,zero,2.0e-6,2.0e-6); /* presaturation */
          rlpower(tpwr,TODEV);    /* Set transmitter power for hard 1H pulses */
          delay(2.0e-5);
          if(fscuba[0] == 'y')
          {
                  delay(2.2e-2);
                  rgpulse(pw,zero,2.0e-6,0.0);
                  rgpulse(2*pw,one,2.0e-6,0.0);
                  rgpulse(pw,zero,2.0e-6,0.0);
                  delay(2.2e-2);
          }
   }
   else
   {
     delay(d1);
   }
   rlpower(tpwr,TODEV);               /* Set transmitter power for 1H CPMG pulses */
   txphase(zero);
   dec2phase(zero);
   decphase(zero);
   delay(1.0e-5);
/* Begin Pulses */
status(C);
   rcvroff();
   delay(20.0e-6);
   decrgpulse(pwc,zero,4.0e-6,0.0);
delay(2.0e-6);
rgradient('z',gzlvl1);
delay(gt1);
rgradient('z',0.0);
delay(250.0e-6);
rgpulse(pw,zero,0.0,0.0);
decpower(d_reb);
delay(2.0e-6);
rgradient('z',gzlvl2);
delay(gt2);
rgradient('z',0.0);
delay(150.0e-6);
if(filter_flg[A] == 'y')
   delay(taua - POWER_DELAY - gt2 - 152e-6
     - WFG2_START_DELAY - 0.5*pwc_reb - 4.0/PI*pw);
else
   delay(taua - POWER_DELAY - gt2 - 152e-6
     - WFG2_START_DELAY - 0.5*pwc_reb);
simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0);
txphase(one);
decpower(dhpwr);
decphase(t4);
delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - POWER_DELAY - gt2 - 152e-6 );
delay(2.0e-6);
rgradient('z',gzlvl2);
delay(gt2);
rgradient('z',0.0);
delay(150.0e-6);
if(filter_flg[A] == 'n')
  rgpulse(pw,one,0.0,0.0);
if(filter_flg[A] == 'y') {
decrgpulse(pwc,t4,0.,0.);
decpower(d_reb);
decphase(zero);
delay(2.0e-6);
rgradient('z',gzlvl0);
delay(gt0);
rgradient('z',0.0);
delay(150.0e-6);
delay(taua - POWER_DELAY - gt0 - 152e-6
     - WFG2_START_DELAY - 0.5*pwc_reb);
simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0);
txphase(one);
decpower(dhpwr);
decphase(t4);
delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - POWER_DELAY - gt0 - 152e-6 );
delay(2.0e-6);
rgradient('z',gzlvl0);
delay(gt0);
rgradient('z',0.0);
delay(150.0e-6);
decrgpulse(pwc,t4,0.0,0.0);
rgpulse(pw,one,0.0,0.0);
}
  decphase(t1);
  delay(2.0e-6);
  rgradient('z',gzlvl3);
  delay(gt3);
  rgradient('z',0.0);
  delay(250.0e-6);
  /* turn on 2H decoupling */
  dec3phase(one);
  dec3power(dpwr3);
  dec3rgpulse(pwd1,one,4.0e-6,0.0);
  dec3phase(zero);
  dec3unblank();
  dec3power(dpwr3_D);
  dec3prgon(dseq3,pwd,dres3);
  dec3on();
  /* turn on 2H decoupling */
  if(MQ_flg[A] == 'y') {
     rgpulse(pw,zero,2.0e-6,0.0);
     delay(2.0*pwn - PRG_START_DELAY - PRG_STOP_DELAY);
  }
  decrgpulse(pwc,t1,4.0e-6,0.0);
  decphase(zero);
  /* 13CO decoupling on */
  decpower(dpwr_co);
  decprgon(codec,1.0/dmf_co,dresco);
  decon();
  /* 13CO decoupling on */
  delay(tau1);
  rgpulse(2.0*pw,zero,0.0,0.0);
  dec2rgpulse(2.0*pwn,zero,0.0,0.0);
  delay(tau1);
  /* 13CO decoupling off */
  decoff();
  decprgoff();
  /* 13CO decoupling off */
  decpower(dhpwr);
  decrgpulse(pwc,zero,4.0e-6,0.0);
  if(MQ_flg[A] == 'y')
    rgpulse(pw,zero,0.0,0.0);
  /* turn off decoupling */
  dec3off();
  dec3prgoff();
  dec3blank();
  dec3phase(three);
  dec3power(dpwr3);
  dec3rgpulse(pwd1,three,4.0e-6,0.0);
  /* turn off decoupling */
  obspower(tpwr_cp);
  if(MQ_flg[A] == 'n') {
    delay(2.0e-6);
    rgradient('z',gzlvl4);
    delay(gt4);
    rgradient('z',0.0);
    delay(250.0e-6);
  }
  else {
    delay(2.0e-6);
    rgradient('z',-1.0*gzlvl4);
    delay(gt4);
    rgradient('z',0.0);
    delay(250.0e-6);
}
    /* now include a delay to allow the spin system to equilibrate */
    delay(tau_eq);
    rgpulse(pw_cp,t2,4.0e-6,0.0);
    txphase(one);
    /* start of the CPMG period 1    */
    if(ncyc_cp == 1) {
        delay(tau_cpmg - (2.0/PI)*pw_cp);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
    }
    if(ncyc_cp == 2) {
        delay(tau_cpmg - (2.0/PI)*pw_cp);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
        delay(tau_cpmg);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
    }
    if(ncyc_cp > 2) {
        delay(tau_cpmg - (2.0/PI)*pw_cp);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
        initval(ncyc_cp-2,v4);
        loop(v4,v5);
          delay(tau_cpmg);
          rgpulse(2.0*pw_cp,one,0.0,0.0);
          delay(tau_cpmg);
         endloop(v5);
        delay(tau_cpmg);
        rgpulse(2.0*pw_cp,one,0.0,0.0);
        delay(tau_cpmg);
      }
    txphase(t4); decphase(zero);
    rgpulse(2.0*pw_cp,t4,2.0e-6,2.0e-6);
    txphase(one);
    if(ncyc_cp == 1) {
        delay(tau_cpmg);
        rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one);
        delay(tau_cpmg - 2.0/PI*pw_cp);
    }
    if(ncyc_cp == 2) {
        delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0);
       delay(tau_cpmg);
       delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one);
       delay(tau_cpmg - 2.0/PI*pw_cp);
   }
   if(ncyc_cp > 2) {
       delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0);
       delay(tau_cpmg);
       initval(ncyc_cp-2,v4);
       loop(v4,v5);
         delay(tau_cpmg);
         rgpulse(2.0*pw_cp,one,0.0,0.0);
         delay(tau_cpmg);
        endloop(v5);
       delay(tau_cpmg);
       rgpulse(2.0*pw_cp,one,0.0,0.0); txphase(one);
       delay(tau_cpmg - 2.0/PI*pw_cp);
     }
     rgpulse(pw_cp,zero,0.0,0.0);
     delay(2.0e-6);
     rgradient('z',gzlvl5);
     delay(gt5);
     rgradient('z',0.0);
     delay(250.0e-6);
     obspower(tpwr);
     rgpulse(pw,zero,4.0e-6,0.0);
     decpower(d_reb);
   delay(2.0e-6);
   rgradient('z',gzlvl6);
   delay(gt6);
   rgradient('z',0.0);
   delay(150.0e-6);
   delay(taua - POWER_DELAY - gt6 - 152e-6
          - WFG2_START_DELAY - 0.5*pwc_reb);
   simshaped_pulse("hard",sh_reb,2.0*pw,pwc_reb,zero,zero,0.0,0.0);
   delay(taua - 0.5*pwc_reb - WFG2_STOP_DELAY - 2.0*POWER_DELAY - gt6 - 152e-6);
     rlpower(dpwr,DODEV); /* Set power for decoupling */
     rlpower(dpwr2,DO2DEV); /* Set power for decoupling */
     delay(2.0e-6);
     rgradient('z',gzlvl6);
     delay(gt6);
     rgradient('z',0.0);
     delay(150.0e-6);
     rgpulse(pw,zero,0.0,0.0);
/*     rcvron();  */          /* Turn on receiver to warm up before acq */
/* BEGIN ACQUISITION */
status(D);
     setreceiver(t5);
}
Esempio n. 24
0
pulsesequence()
{

/* DECLARE AND LOAD VARIABLES */

void        makeHHdec(), makeCdec(); 	                /* utility functions */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
	    C13refoc[MAXSTR],		/* C13 sech/tanh pulse in middle of t1*/
	    NH2only[MAXSTR],		       /* spectrum of only NH2 groups */
	    T1[MAXSTR],				/* insert T1 relaxation delay */
	    T1rho[MAXSTR],		     /* insert T1rho relaxation delay */
	    T2[MAXSTR],				/* insert T2 relaxation delay */
	    TROSY[MAXSTR],			    /* do TROSY on N15 and H1 */
	    Hdecflg[MAXSTR],                       /* HH-h**o decoupling flag */
	    Cdecflg[MAXSTR];                /* low power C-13 decoupling flag */
 
int         icosel,          			  /* used to get n and p type */
            ihh=1,       /* used in HH decouling to improve water suppression */
            t1_counter,  		        /* used for states tppi in t1 */
	    rTnum,			/* number of relaxation times, relaxT */
	    rTcounter;		    /* to obtain maximum relaxT, ie relaxTmax */

double      tau1,         				         /*  t1 delay */
	    lambda = 0.91/(4.0*getval("JNH")), 	   /* 1/4J H1 evolution delay */
	    tNH = 1.0/(4.0*getval("JNH")),	  /* 1/4J N15 evolution delay */
	    relaxT = getval("relaxT"),		     /* total relaxation time */
	    rTarray[1000], 	    /* to obtain maximum relaxT, ie relaxTmax */
            maxrelaxT = getval("maxrelaxT"),    /* maximum relaxT in all exps */
	    ncyc,			 /* number of pulsed cycles in relaxT */
            pwr_dly,                 /* power delay */
        
/* the sech/tanh pulse is automatically calculated by the macro "proteincal", */  
/* and is called directly from your shapelib.                  		      */
   pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
   pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
   rf0,            	          /* maximum fine power when using pwC pulses */
   rfst,	                           /* fine power for the stCall pulse */

   compH = getval("compH"),        /* adjustment for H1 amplifier compression */
   compN = getval("compN"),       /* adjustment for N15 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

	calH = getval("calH"), /* multiplier on a pw pulse for H1 calibration */
   	tpwrsf = getval("tpwrsf"),    /* fine power adustment for soft pulse  */
   	pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
   	pwHH = 0.0,                     /* pwHH = pwHs for HH h**o-decoupling */
   	tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */
	calN = getval("calN"),   /* multiplier on a pwN pulse for calibration */
	slNlvl,					   /* power for N15 spin lock */
        slNrf = 1500.0,        /* RF field in Hz for N15 spin lock at 600 MHz */

	sw1 = getval("sw1"),

	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal = getval("gzcal"),               /* dac to G/cm conversion      */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),
        BPpwrlimits,                        /*  =0 for no limit, =1 for limit */

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gstab = getval("gstab"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5");

    P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1);

    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("C13refoc",C13refoc);
    getstr("NH2only",NH2only);
    getstr("T1",T1);
    getstr("T1rho",T1rho);
    getstr("T2",T2);
    getstr("TROSY",TROSY);
    getstr("Hdecflg", Hdecflg);
    getstr("Cdecflg", Cdecflg);

/*   LOAD PHASE TABLE    */
	
        settable(t3,2,phi3);
	settable(t4,1,phx);
   if (TROSY[A]=='y')
       {settable(t1,1,ph_x);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,2,recT);}
    else
       {settable(t1,1,phx);
	settable(t9,8,phi9);
 	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}



/*   INITIALIZE VARIABLES   */

/* maximum fine power for pwC pulses (and initialize rfst) */
	rf0 = 4095.0;    rfst=0.0;

/* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
     if (C13refoc[A]=='y')
       {rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
	rfst = (int) (rfst + 0.5);
	if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
           { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	    (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) ); psg_abort(1); }}

/* selective H20 one-lobe sinc pulse */
    if(pwHs > 1e-6)
      tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));  /* needs 1.69 times more */
    else                    	                    /* power than a square pulse */
      tpwrs = 0.0;
    tpwrs = (int) (tpwrs);    
    if (tpwrsf<4095.0) tpwrs = tpwrs + 6.0;
    if (tpwrsf < 4095.0) 
    {
      tpwrs = tpwrs + 6.0;   
      pwr_dly = POWER_DELAY + PWRF_DELAY;
    }
    else pwr_dly = POWER_DELAY;

/* power level for N15 spinlock (90 degree pulse length calculated first) */
	slNlvl = 1/(4.0*slNrf*sfrq/600.0) ;
	slNlvl = pwNlvl - 20.0*log10(slNlvl/(pwN*compN));
	slNlvl = (int) (slNlvl + 0.5);

/* use 1/8J times for relaxation measurements of NH2 groups */
  if ( (NH2only[A]=='y') && ((T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y')) )	
     {  tNH = tNH/2.0;  }

/* reset calH and calN for 2D if inadvertently left at 2.0 */
  if (ni>1.0) {calH=1.0; calN=1.0;}

/* make shapes and set up parameters for HH h**o-decoupling */
    if(Cdecflg[0] == 'y') makeCdec();
    if(Hdecflg[0] == 'y') makeHHdec();
    if(Hdecflg[0] != 'n')
    { 
      pwHH = pwHs; 
      pwHs = 0.0; 
    }


/* CHECK VALIDITY OF PARAMETER RANGES */

  if ((TROSY[A]=='y') && (gt1 < -2.0e-4 + pwHs + 1.0e-4 + 2.0*POWER_DELAY))
  { text_error( " gt1 is too small. Make gt1 equal to %f or more.\n",    
    (-2.0e-4 + pwHs + 1.0e-4 + 2.0*POWER_DELAY) ); psg_abort(1); }

  if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
  { text_error("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1); }

  if((dm2[A] == 'y' || dm2[B] == 'y'))
  { text_error("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1); }

  if( dpwr2 > 50 )
  { text_error("don't fry the probe, DPWR2 too large!  ");   	    psg_abort(1); }

  if( pw > 50.0e-6 )
  { text_error("dont fry the probe, pw too high ! ");               psg_abort(1); } 
  
  if( pwN > 100.0e-6 )
  { text_error("dont fry the probe, pwN too high ! ");              psg_abort(1); }



/*  RELAXATION TIMES AND FLAGS */  

/* evaluate maximum relaxT, relaxTmax chosen by the user */
  rTnum = getarray("relaxT", rTarray);
  relaxTmax = rTarray[0];
  for (rTcounter=1; rTcounter<rTnum; rTcounter++)
      if (relaxTmax < rTarray[rTcounter]) relaxTmax = rTarray[rTcounter];


/* compare relaxTmax with maxrelaxT */
  if (maxrelaxT > relaxTmax)  relaxTmax = maxrelaxT; 


if ( ((T1rho[A]=='y') || (T2[A]=='y')) && (relaxTmax > d1) )
{ text_error("Maximum relaxation time, relaxT, is greater than d1 ! "); psg_abort(1);}

if ( ((T1[A]=='y') && (T1rho[A]=='y'))   ||   ((T1[A]=='y') && (T2[A]=='y')) ||
    ((T1rho[A]=='y') && (T2[A]=='y')) )
{ text_error("Choose only one relaxation measurement ! ");          psg_abort(1); } 


if ( ((T1[A]=='y') || (T1rho[A]=='y')) && 
       ((relaxT*100.0 - (int)(relaxT*100.0+1.0e-4)) > 1.0e-6) )
 { text_error("Relaxation time, relaxT, must be zero or multiple of 10msec"); psg_abort(1);}
 

 if ( (T2[A]=='y') && 
           (((relaxT+0.01)*50.0 - (int)((relaxT+0.01)*50.0+1.0e-4)) > 1.0e-6) )
{ text_error("Relaxation time, relaxT, must be odd multiple of 10msec"); psg_abort(1);}

if ( ((T1rho[A]=='y') || (T2[A]=='y'))  &&  (relaxTmax > 0.25) && (ix==1) ) 
{ printf("WARNING, sample heating will result for relaxT>0.25sec"); }

if ( ((T1rho[A]=='y') ||  (T2[A]=='y'))  &&  (relaxTmax > 0.5) ) 
{ text_error("relaxT greater than 0.5 seconds will heat sample"); psg_abort(1);}


if ( ((NH2only[A]=='y') || (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y'))
   &&  (TROSY[A]=='y') ) 
{ text_error("TROSY not implemented with NH2 spectrum, or relaxation exps."); psg_abort(1);} 


if ((TROSY[A]=='y') && (dm2[C] == 'y'))
{ text_error("Choose either TROSY='n' or dm2='n' ! ");              psg_abort(1); }
/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (TROSY[A]=='y')
	 {  if (phase1 == 2)   				      icosel = -1;
            else 	  {  tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = +1;  }
	 }
    else {  if (phase1 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }

    if(Hdecflg[0] != 'n') ihh = icosel;

/*  Set up f1180  */
   
    tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if( ix == 1) d2_init = d2;
   t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }



/*  Correct inverted signals for NH2 only spectra  */

   if ((NH2only[A]=='y') && (T1[A]=='n')  &&  (T1rho[A]=='n')  && (T2[A]=='n'))
      { tsadd(t3,2,4); }



/* BEGIN PULSE SEQUENCE */

status(A);

	obspower(tpwr);
	decpower(pwClvl);
	decpwrf(rf0);
 	dec2power(pwNlvl);
	txphase(zero);
        decphase(zero);
        dec2phase(zero);
        if(Hdecflg[0] != 'n')
        {
          delay(5.0e-5);
          rgpulse(pw,zero,rof1,0.0);                 
          rgpulse(pw,one,0.0,rof1);                 
          zgradpulse(1.5*gzlvl0, 0.5e-3);
          delay(5.0e-4);
          rgpulse(pw,zero,rof1,0.0);                 
          rgpulse(pw,one,0.0,rof1);                 
          zgradpulse(-gzlvl0, 0.5e-3);
        }
        
	delay(d1);

 
/*  xxxxxxxxxxxxxxxxx  CONSTANT SAMPLE HEATING FROM N15 RF xxxxxxxxxxxxxxxxx  */

 if  (T1rho[A]=='y')
 	{dec2power(slNlvl);
         dec2rgpulse(relaxTmax-relaxT, zero, 0.0, 0.0);
    	 dec2power(pwNlvl);}
	
 if  (T2[A]=='y')      
 	{ncyc = 8.0*100.0*(relaxTmax - relaxT);
         if (BPpwrlimits > 0.5)
          {
           dec2power(pwNlvl-3.0);    /* reduce for probe protection */
           pwN=pwN*compN*1.4;
          }
    	 if (ncyc > 0)
       	    {initval(ncyc,v1);
             loop(v1,v2);
       	     delay(0.625e-3 - pwN);
      	     dec2rgpulse(2*pwN, zero, 0.0, 0.0);
      	     delay(0.625e-3 - pwN);
            endloop(v2);}
         if (BPpwrlimits > 0.5)
          {
           dec2power(pwNlvl);         /* restore normal value */
           pwN=getval("pwN");
          }
 	}
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
        rcvroff();
	if (TROSY[A]=='n')   
	dec2rgpulse(pwN, zero, 0.0, 0.0);   /*destroy N15 magnetization*/
	zgradpulse(gzlvl0, 0.5e-3);
	delay(1.0e-4);
	if (TROSY[A]=='n')    dec2rgpulse(pwN, one, 0.0, 0.0);
	zgradpulse(0.7*gzlvl0, 0.5e-3);
	decpwrf(rfst);
	txphase(t1);
	delay(5.0e-4);

      if ( dm3[B] == 'y' )     /* begins optional 2H decoupling */
        {
          lk_hold();
          dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6);
          dec3unblank();
          dec3phase(zero);
          delay(2.0e-6);
          setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
        }

   	rgpulse(calH*pw,t1,0.0,0.0);                 /* 1H pulse excitation */

	txphase(zero);
   	dec2phase(zero);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0 - pwHH);
	
	if(Hdecflg[0] != 'n')
	{
	  obspower(tpwrs);
          if (tpwrsf<4095.0) obspwrf(tpwrsf); 
	  shaped_pulse("H2Osinc", pwHH, two, 5.0e-5, 0.0);
	  obspower(tpwr);
          if (tpwrsf<4095.0) obspwrf(4095.0);
   	  sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
   	  obspower(tpwrs);
          if (tpwrsf<4095.0) obspwrf(tpwrsf);
   	  shaped_pulse("H2Osinc", pwHH, two, 5.0e-5, 0.0);
   	  obspower(tpwr);
          if (tpwrsf<4095.0) obspwrf(4095.0); 
   	}
   	else 
   	  sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
   	
   	txphase(one);
	zgradpulse(gzlvl0, gt0);
	delay(lambda - gt0 - pwHH);        
 	rgpulse(pw, one, 0.0, 0.0);
	txphase(two);
        obspower(tpwrs);
        if (tpwrsf<4095.0) obspwrf(tpwrsf);
        shaped_pulse("H2Osinc", pwHs, two, 5.0e-5, 0.0);
	obspower(tpwr);
	if (tpwrsf<4095.0) obspwrf(4095.0);

        if (TROSY[A]=='y')
	  zgradpulse(ihh*gzlvl3, gt3);           
	else
	  zgradpulse(-ihh*gzlvl3, gt3);
	dec2phase(t3);
	delay(2.0e-4);
   	dec2rgpulse(calN*pwN, t3, 0.0, 0.0);
	txphase(zero);
	decphase(zero);

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 RELAXATION    xxxxxxxxxxxxxxxxxxxx  */

if ( (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y') )
   {
    dec2phase(one);
    zgradpulse(gzlvl4, gt4);				/* 2.0*GRADIENT_DELAY */
    delay(tNH - gt4 - 2.0*GRADIENT_DELAY);

    sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, one, 0.0, 0.0);

    zgradpulse(gzlvl4, gt4);				/* 2.0*GRADIENT_DELAY */
    delay(tNH - gt4 - 2.0*GRADIENT_DELAY);
   }

		/*   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx    */

if  (T1[A]=='y')
   {
    dec2rgpulse(pwN, one, 0.0, 0.0);
    dec2phase(three);

    zgradpulse(gzlvl0, gt0);				/* 2.0*GRADIENT_DELAY */
    delay(2.5e-3 - gt0 - 2.0*GRADIENT_DELAY - pw);
    rgpulse(2.0*pw, zero, 0.0, 0.0);
    delay(2.5e-3 - pw);

    ncyc = (100.0*relaxT);
    initval(ncyc,v4);
    if (ncyc > 0)
	{loop(v4,v5);

	 delay(2.5e-3 - pw);
    	 rgpulse(2.0*pw, two, 0.0, 0.0);
   	 delay(2.5e-3 - pw);

	 delay(2.5e-3 - pw);
    	 rgpulse(2.0*pw, zero, 0.0, 0.0);
   	 delay(2.5e-3 - pw);

	 endloop(v5);}

    dec2rgpulse(pwN, three, 0.0, 0.0);
   }

		/*   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx    */

			     /* Theory suggests 8.0 is better than 2PI as RF  */
			     /* field multiplier and experiment confirms this.*/
if  (T1rho[A]=='y')          /* Shift evolution of 2.0*pwN/PI for one pulse   */
   {		             /* at end left unrefocused as for normal sequence*/
    delay(1.0/(8.0*slNrf) - pwN);
    decrgpulse(pwN, zero, 0.0, 0.0);
    dec2power(slNlvl);
           				   /* minimum 5ms spinlock to dephase */
    dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);	         /*  spins not locked */
    sim3pulse(2.0*pw, 0.0, 2.0*pw, zero, zero, zero, 0.0, 0.0);
    dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);

    ncyc = 100.0*relaxT;
    initval(ncyc,v4);	    if (ncyc > 0)
	  {loop(v4,v5);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
   	   sim3pulse(2.0*pw, 0.0, 2.0*pw, two, zero, zero, 0.0, 0.0);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
   	   sim3pulse(2.0*pw, 0.0, 2.0*pw, zero, zero, zero, 0.0, 0.0);
           dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0);
           endloop(v5);} 

    dec2power(pwNlvl);	
    decrgpulse(pwN, zero, 0.0, 0.0);
    delay(1.0/(8.0*slNrf) + 2.0*pwN/PI - pwN);
   }
		/*   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx    */

if  (T2[A]=='y')
   {
    dec2phase(zero);
    initval(0.0,v3);   initval(180.0,v4);
    if (BPpwrlimits > 0.5)
     {
      dec2power(pwNlvl-3.0);    /* reduce for probe protection */
      pwN=pwN*compN*1.4;
     }

    ncyc = 100.0*relaxT;
    initval(ncyc,v5);

    loop(v5,v6);

      initval(3.0,v7);
      loop(v7,v8);
       	delay(0.625e-3 - pwN);
      	dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      	delay(0.625e-3 - pwN);
      endloop(v8);

      delay(0.625e-3 - pwN - SAPS_DELAY);
      add(v4,v3,v3);  obsstepsize(1.0);  xmtrphase(v3);	   	/* SAPS_DELAY */
      dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      delay(0.625e-3 - pwN - pw);

      rgpulse(2*pw, zero, 0.0, 0.0);

      delay(0.625e-3 - pwN - pw );
      dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      xmtrphase(zero);						/* SAPS_DELAY */
      delay(0.625e-3 - pwN - SAPS_DELAY);
  
      initval(3.0,v9);
      loop(v9,v10);
      	delay(0.625e-3 - pwN);
      	dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
      	delay(0.625e-3 - pwN);
      endloop(v10);

    endloop(v6);
    if (BPpwrlimits > 0.5)
     {
      dec2power(pwNlvl);    /* restore normal value */
      pwN=getval("pwN");
     }
   }

/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */
	txphase(zero);
	dec2phase(t9);

if ( (NH2only[A]=='y') || (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y') )	
{      
    	delay(tau1);
         			  /* optional sech/tanh pulse in middle of t1 */
    	if (C13refoc[A]=='y') 				   /* WFG_START_DELAY */
           {decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0);
            delay(tNH - 1.0e-3 - WFG_START_DELAY - 2.0*pw);}
    	else
           {delay(tNH - 2.0*pw);}
    	rgpulse(2.0*pw, zero, 0.0, 0.0);
    	if (tNH < gt1 + 1.99e-4)  delay(gt1 + 1.99e-4 - tNH);

    	delay(tau1);

    	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl1, gt1);
        else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	txphase(t4);
    	dec2phase(t10);
   	if (tNH > gt1 + 1.99e-4)  delay(tNH - gt1 - 2.0*GRADIENT_DELAY);
   	else   delay(1.99e-4 - 2.0*GRADIENT_DELAY);
}

else if (TROSY[A]=='y')
{
  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0);
            delay(tau1 - 0.5e-3);}
	else    delay(2.0*tau1);

        if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl1, gt1);
        else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	delay(2.0e-4 - 2.0*GRADIENT_DELAY);

	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

	txphase(three);

        delay(gt1 + 2.0e-4 - pwHs - 1.0e-4 - 2.0*pwr_dly);
        obspower(tpwrs);
	if (tpwrsf<4095.0) obspwrf(tpwrsf);
        shaped_pulse("H2Osinc", pwHs, three, 5.0e-5, 0.0);
        obspower(tpwr);
	if (tpwrsf<4095.0) obspwrf(4095.0);

	txphase(t4);
	delay(5.0e-5);
}

else
{					  	    /* fully-coupled spectrum */
        if (dm2[C]=='n')  {rgpulse(2.0*pw, zero, 0.0, 0.0);  pw=0.0;}		

  	if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
           {delay(tau1 - 0.5e-3 - WFG2_START_DELAY);     /* WFG2_START_DELAY */
            simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);
            delay(tau1 - 0.5e-3);
            delay(gt1 + 2.0e-4);}
	else
           {delay(tau1);
            rgpulse(2.0*pw, zero, 0.0, 0.0);
            delay(gt1 + 2.0e-4 - 2.0*pw);
            delay(tau1);} 
 
	pw=getval("pw");
	dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        if (mag_flg[A] == 'y')  magradpulse(gzcal*gzlvl1, gt1);
        else  zgradpulse(gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	txphase(t4);
	dec2phase(t10);
	delay(2.0e-4 - 2.0*GRADIENT_DELAY);
}

	if  (T1rho[A]=='y')   delay(POWER_DELAY); 


/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
	if (TROSY[A]=='y')  rgpulse(pw, t4, 0.0, 0.0);
	else                sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 0.65*(pw + pwN) - gt5);
	else   delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(t11);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(1.5*gzlvl5, gt5);
	delay(lambda - 1.3*pwN - gt5);

        sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	dec2phase(t10);
	zgradpulse(1.5*gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 1.6*pwN - gt5);
	else   delay(lambda - 0.65*pwN - gt5);

	if (TROSY[A]=='y')   dec2rgpulse(pwN, t10, 0.0, 0.0); 
	else    	     rgpulse(pw, zero, 0.0, 0.0); 

	delay((gt1/10.0) + 1.0e-4 +gstab - 0.65*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

        if ( dm3[B] == 'y' )   /* turns off 2H decoupling  */
           {
           setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3);
           dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6);
           dec3blank();
           lk_autotrig();   /* resumes lock pulsing */
           }

	rgpulse(2.0*pw, zero, 0.0, 0.0);

	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')	  magradpulse(icosel*gzcal*gzlvl2, 0.1*gt1);
        else   zgradpulse(icosel*gzlvl2, 0.1*gt1);		/* 2.0*GRADIENT_DELAY */
        

        if(Cdecflg[0] == 'y')
        {
          delay(gstab-2.0*POWER_DELAY-PRG_START_DELAY+rof2);
          rcvron();
                           
          statusdelay(C,1.0e-4);		

          if (dm3[B] == 'y') 
          {
            delay(1/dmf3); 
            lk_sample();
          }
	  setreceiver(t12);
          pbox_decon(&Cdseq);
          
          if(Hdecflg[0] == 'y')
            homodec(&HHdseq);  
        }
        else
        {
          delay(gstab+rof2);
          rcvron();
                             
          statusdelay(C,1.0e-4);		

          if (dm3[B] == 'y') 
          {
            delay(1/dmf3); 
            lk_sample();
          }
	  setreceiver(t12);

          if(Hdecflg[0] == 'y')
            homodec(&HHdseq);        
        }
}		 
Esempio n. 25
0
pulsesequence()
{
  void      makeHHdec(), makeCdec(); 	                  /* utility functions */
  int       ihh=1,        /* used in HH decoupling to improve water suppression */
            t1_counter;
  char	    C13refoc[MAXSTR],		/* C13 sech/tanh pulse in middle of t1 */
	    Hdecflg[MAXSTR],                        /* HH-h**o decoupling flag */
	    Cdecflg[MAXSTR],                 /* low power C-13 decoupling flag */
            TROSY[MAXSTR],
            wtg3919[MAXSTR];
  double    tauxh, tau1,
            pwNt = 0.0,               /* pulse only active in the TROSY option */
            gsign = 1.0,
                               /* temporary Pbox parameters */
            bw, pws, ofs, ppm, nst,  /* bandwidth, pulsewidth, offset, ppm, # steps */
            gzlvl3=getval("gzlvl3"),
            gt3=getval("gt3"),
            JNH = getval("JNH"),
            pwN = getval("pwN"),
            pwNlvl = getval("pwNlvl"),  
            pwHs, tpwrs=0.0, compH=1.0,  /* H1 90 degree pulse length at tpwrs */               
            sw1 = getval("sw1"),
            pwClvl = getval("pwClvl"), 	         /* coarse power for C13 pulse */
            pwC = getval("pwC"),       /* C13 90 degree pulse length at pwClvl */
            rfst = 4095.0,	            /* fine power for the stCall pulse */
            compC = getval("compC"),   /* adjustment for C13 amplifier compr-n */
            tpwrsf = getval("tpwrsf");   /* adjustment for soft pulse power*/


/* INITIALIZE VARIABLES */

    getstr("C13refoc",C13refoc);
    getstr("TROSY",TROSY);
    getstr("wtg3919",wtg3919);
    getstr("Hdecflg", Hdecflg);
    getstr("Cdecflg", Cdecflg);

    if(wtg3919[0] != 'y')      /* selective H20 one-lobe sinc pulse needs 1.69  */
    {                                   /* times more power than a square pulse */
      pwHs = getval("pwHs");            
      compH = getval("compH");
    }
    else 
      pwHs = pw*2.385+7.0*rof1+d3*2.5; 

    tauxh = ((JNH != 0.0) ? 1/(4*(JNH)) : 2.25e-3);

    setautocal();                        /* activate auto-calibration flags */ 
        
    if (autocal[0] == 'n') 
    {
      if (C13refoc[A]=='y') 
      {
        /* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
        rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)); 
        rfst = (int) (rfst + 0.5);
        if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
           { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	     (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) ); psg_abort(1); }
      }

      if(wtg3919[0] != 'y')      /* selective H20 one-lobe sinc pulse needs 1.69  */
      {                                   /* times more power than a square pulse */
        if (pwHs > 1e-6) tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));  
        else tpwrs = 0.0;
        tpwrs = (int) (tpwrs); 
      }	  
    }
    else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
    {
      if(FIRST_FID)                                            /* call Pbox */
      {
        if (C13refoc[A]=='y') 
        {
          ppm = getval("dfrq"); ofs = 0.0;   pws = 0.001;  /* 1 ms long pulse */
          bw = 200.0*ppm;       nst = 1000;          /* nst - number of steps */
          stC200 = pbox_makeA("stC200", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
          C13ofs = 100.0;
        }
        if(wtg3919[0] != 'y')
          H2Osinc = pbox_Rsh("H2Osinc", "sinc90", pwHs, 0.0, compH*pw, tpwr);
        ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
      }
      if (C13refoc[A]=='y') rfst = stC200.pwrf;
      if (wtg3919[0] != 'y') 
      { 
        pwHs = H2Osinc.pw; tpwrs = H2Osinc.pwr-1.0;  /* 1dB correction applied */ 
      }
    }
    if (tpwrsf<4095.0) tpwrs = tpwrs + 6.0;

    tauxh = ((JNH != 0.0) ? 1/(4*(JNH)) : 2.25e-3);

    if(Cdecflg[0] == 'y') makeCdec();     /* make shapes for HH h**o-decoupling */
    if(Hdecflg[0] == 'y') makeHHdec();
    if(Hdecflg[0] != 'n') ihh = -3;

/* check validity of parameter range */

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    { text_error("incorrect Dec1 decoupler flags!  "); psg_abort(1); } 

    if((dm2[A] == 'y' || dm2[B] == 'y') )
    { text_error("incorrect Dec2 decoupler flags!  "); psg_abort(1); } 

    if( dpwr > 0 )
    { text_error("don't fry the probe, dpwr too large!  "); psg_abort(1); }

    if( dpwr2 > 50 )
    { text_error("don't fry the probe, dpwr2 too large!  "); psg_abort(1); }

    if ((TROSY[A]=='y') && (dm2[C] == 'y'))
    { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1); }

/* LOAD VARIABLES */

    if(ix == 1) d2_init = d2;
    t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5);
    
    tau1 = d2/2.0 - pw;
    if(tau1 < 0.0) tau1 = 0.0;

/* LOAD PHASE TABLES */

      settable(t6, 4, recT); 
    if (TROSY[A] == 'y')
    { gsign = -1.0;
      pwNt = pwN;
      assign(zero,v7); 
      assign(two,v8);
      settable(t1, 1, phT1);
      settable(t2, 4, phT2);
      settable(t3, 1, phT4); 
      settable(t4, 1, phT4);
      settable(t5, 4, recT); }
    else
    { assign(one,v7); 
      assign(three,v8);
      settable(t1, 4, phi1);
      settable(t2, 2, phi2);
      settable(t3, 8, phi3);
      settable(t4, 1, phi4);
      settable(t5, 8, rec); } 

      if ( phase1 == 2 )                  /* Hypercomplex in t1 */
      { if (TROSY[A] == 'y')          
        { tsadd(t3, 2, 4); tsadd(t5, 2, 4); }                      
        else tsadd(t2, 1, 4); }
                                   
    if(t1_counter %2)          /* calculate modification to phases based on */
    { tsadd(t2,2,4); tsadd(t5,2,4); tsadd(t6,2,4); }   /* current t1 values */

    if(wtg3919[0] != 'y') 
    { add(one,v7,v7); add(one,v8,v8); }
         
                           /* sequence starts!! */
   status(A);
     
     obspower(tpwr);
     dec2power(pwNlvl);
     decpower(pwClvl);
     decpwrf(rfst);
     if(Hdecflg[0] != 'n')
     {
       delay(5.0e-5);
       rgpulse(pw,zero,rof1,0.0);                 
       rgpulse(pw,one,0.0,rof1);                 
       zgradpulse(1.5*gzlvl3, 0.5e-3);
       delay(5.0e-4);
       rgpulse(pw,zero,rof1,0.0);                 
       rgpulse(pw,one,0.0,rof1);                 
       zgradpulse(-gzlvl3, 0.5e-3);
     }
     
     delay(d1);
     rcvroff();
     
   status(B);

     rgpulse(pw, zero, rof1, rof1);
     
     zgradpulse(0.3*gzlvl3,gt3);
     txphase(zero);
     dec2phase(zero);
     delay(tauxh-gt3);               /* delay=1/4J(XH)   */

     sim3pulse(2*pw,0.0,2*pwN,t4,zero,zero,rof1,rof1);

     zgradpulse(0.3*gzlvl3,gt3);
     dec2phase(t2);
     delay(tauxh-gt3 );               /* delay=1/4J(XH)   */
  
     rgpulse(pw, t1, rof1, rof1);

     zgradpulse(0.5*gsign*ihh*gzlvl3,gt3);
     delay(200.0e-6); 
     decphase(zero);
            
     if (TROSY[A] == 'y')
     { 
       txphase(t3);       
       if ( phase1 == 2 ) 
         dec2rgpulse(pwN, t6, rof1, 0.0);
       else 
         dec2rgpulse(pwN, t2, rof1, 0.0);              
       if ( (C13refoc[A]=='y') && (d2 > 1.0e-3 + 2.0*WFG2_START_DELAY) )
       {
         delay(d2/2.0 - 0.5e-3 - WFG2_START_DELAY);     
         decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0);
         delay(d2/2.0 - 0.5e-3 - WFG2_STOP_DELAY);
       }
       else
         delay(d2);

       rgpulse(pw, t3, 0.0, rof1);         
       zgradpulse(0.65*gzlvl3,gt3);
       delay(tauxh-gt3 );
       
       sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,rof1,rof1);
       
       zgradpulse(0.65*gzlvl3,gt3);
       delay(tauxh-gt3 );       
       sim3pulse(pw,0.0,pwN,zero,zero,t3,rof1,rof1);
     }
     else
     {         
       txphase(t4);      
       dec2rgpulse(pwN, t2, rof1, 0.0);
        
       if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
       {
         delay(tau1 - 0.5e-3 - WFG2_START_DELAY); 
         simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, t4, zero, 0.0, 0.0);  
         dec2phase(t3);  
         delay(tau1 - 0.5e-3 - WFG2_STOP_DELAY);
       }
       else 
       {
         delay(tau1);
         rgpulse(2.0*pw, t4, 0.0, 0.0);
         dec2phase(t3);
         delay(tau1);
       }
       
       dec2rgpulse(pwN, t3, 0.0, 0.0);
       
       zgradpulse(0.5*gzlvl3,gt3);
       delay(200.0e-6);
       rgpulse(pw, two, rof1, rof1);
     } 
     
     zgradpulse(gzlvl3,gt3);
     txphase(v7); dec2phase(zero);
     delay(tauxh-gt3-pwHs-rof1+5.0e-5);
     
     if(wtg3919[0] == 'y')
     {     	
       rgpulse(pw*0.231,v7,rof1,rof1);     
       delay(d3);
       rgpulse(pw*0.692,v7,rof1,rof1);
       delay(d3);
       rgpulse(pw*1.462,v7,rof1,rof1);

       delay(d3/2-pwN);
       dec2rgpulse(2*pwN, zero, rof1, rof1);
       txphase(v8);
       delay(d3/2-pwN);

       rgpulse(pw*1.462,v8,rof1,rof1);
       delay(d3);
       rgpulse(pw*0.692,v8,rof1,rof1);
       delay(d3);
       rgpulse(pw*0.231,v8,rof1,rof1); 
     }
     else
     {
       obspower(tpwrs); if (tpwrsf<4095.0) obspwrf(tpwrsf);  
       shaped_pulse("H2Osinc", pwHs, v7, rof1, 0.0);
       obspower(tpwr); if (tpwrsf<4095.0) obspwrf(4095.0);
       sim3pulse(2.0*pw, 0.0, 2.0*pwN, v8, zero, zero, 0.0, 0.0);
       obspower(tpwrs); if (tpwrsf<4095.0)obspwrf(tpwrsf);
       shaped_pulse("H2Osinc", pwHs, v7, rof1, 0.0);
       obspower(tpwr); if (tpwrsf<4095.0)obspwrf(4095.0);
     } 
        
     zgradpulse(gzlvl3,gt3);   

     if(Cdecflg[0] == 'y')
     {
       delay(tauxh-gt3-pwHs-rof1-pwNt-3.0*POWER_DELAY-PRG_START_DELAY); 
       dec2rgpulse(pwNt, zero, rof1, rof1); 
       dec2power(dpwr2);
       rcvron();

     statusdelay(C,5.0e-5);
       setreceiver(t5);  
       pbox_decon(&Cdseq);
      
       if(Hdecflg[0] == 'y')
         homodec(&HHdseq); 
     }
     else
     {
       delay(tauxh-gt3-pwHs-rof1-pwNt-POWER_DELAY); 
       dec2rgpulse(pwNt, zero, rof1, rof1); 
       dec2power(dpwr2);
       rcvron();

     statusdelay(C,5.0e-5);
       setreceiver(t5);  
      
       if(Hdecflg[0] == 'y')
         homodec(&HHdseq); 
     }       
}
Esempio n. 26
0
pulsesequence()
     
{
  double        cpw,cpwr,jch,gtime1,gtime2,gtime,gdel,gzlvl1,
                gzlvl2,gzlvl,gzlvl0,gtime0,gstab0,hsw180,
                csw180,delt;
  
  int           iphase,icosel,ifad;
  
  char          p1pat[MAXSTR],hsweep[MAXSTR],csweep[MAXSTR];
  
  cpw = getval("cpw");
  cpwr = getval("cpwr");
  jch = getval("jch"); 
  gtime0 = getval("gtime0");
  gtime1 = getval("gtime1");
  gtime2 = getval("gtime2");
  gtime = getval("gtime");
  gzlvl0 = getval("gzlvl0");
  gzlvl1 = getval("gzlvl1");
  gzlvl2 = getval("gzlvl2");
  gzlvl = getval("gzlvl");
  gdel = getval("gdel");
  gstab0 = getval("gstab0");
  hsw180 = getval("hsw180");
  csw180 = getval("csw180");
  delt = getval("delt"); 
  
  getstr("p1pat",p1pat);
  getstr("hsweep",hsweep);
  getstr("csweep",csweep);
  
  iphase=(int)(getval("phase")+0.5);
  
  if(iphase==2)
    {
      icosel=-1;
    }
  
  else
    {
      icosel=1;
    }
  
  ifad=(int)(getval("ifad")+0.5);      /* if ifad != 0 do FAD */
  
  /* STEADY-STATE PHASECYCLING */
  /* This section determines if the phase calculations trigger off of (SS - SSCTR)
     or off of CT */
  
  ifzero(ssctr);
  assign(ct,v14);
  elsenz(ssctr);
  sub(ssval,ssctr,v14); /* v14 = 0,1,2,...,ss-1 */
  endif(ssctr);
  
  /* PHASE CYCLING */
  
  mod2(v14,v1);
  dbl(v1,v1);   /* v1=0202 */
  hlv(v14,v14);
  mod2(v14,v2);
  dbl(v2,v2);           /* v2=0022 */
  add(v1,v2,oph);
  hlv(v14,v14);
  mod2(v14,v3);
  dbl(v3,v3);
  add(one,v3,v3);       /* v3=4x1,4x3 */
  hlv(v14,v14);
  add(v14,v1,v1);
  add(v14,v2,v2);
  add(v14,v3,v3);
  add(v14,oph,oph);
  assign(v14,v12);
  add(one,v14,v13);
  
  if(ifad != 0)
    {
      initval(2.0*(double)(((int)(d2*sw1+0.5)%2)),v10);
      add(v10,oph,oph);
      add(v10,v12,v12); 
      add(v10,v1,v1);
    }
 
  /* check parameters */ 

   if((delt-gtime0-gstab0)<0.0)
     { 
       text_error("ABORT: delt-gtime0-gstab0 is negative");
       psg_abort(1);
     }                /* gtime has to be shorter than 1/(4j) */
 

   if((1.0/(4.0*jch)-gtime)<=0.0)
     { 
       text_error("ABORT: gtime too long!");
       psg_abort(1);
     }                /* gtime has to be shorter than 1/(4j) */
 
   
   if( (dpwr > 50) || (at > 1.2) )
     { 
       text_error("don't fry the probe!!!");
       psg_abort(1);
     }
   

   /* equilibrium period */
   
   status(A);
   
   delay(10.0e-6);
   decpower(cpwr);
   decoffset(dof);         /*Middle of the X spectrum*/
   delay(d1-delt-(10.0e-6));
   rgpulse(pw,zero,rof1,rof2);
   delay(1.0/(2.0*jch));
   simshaped_pulse(p1pat,csweep,p1,csw180,one,one,rof1,rof2);
   delay(1.0/(2.0*jch));
   rgpulse(pw,zero,rof1,rof2); 
   rgradient('z',gzlvl0);
   delay(gtime0);            
   rgradient('z',0.0); 
   delay(gstab0);
   delay(delt-gtime0-gstab0);
   
   /*   Normal BIRDy presat for carbon-12 protons.  Probably not
        strictly necessary, but doesn't hurt.  */
   
   
   status(B);
   
   /*  Start of pulse sequence. INEPT in: */
   
   rgpulse(pw,v14,rof1,rof2);
   delay(1.0/(4.0*jch));
   simshaped_pulse(p1pat,csweep,p1,csw180,v14,v12,rof1,rof2);
   delay(1.0/(4.0*jch));
   rgpulse(pw,v13,rof1,rof2);
   
   /* a short x or y gradient can be added right here to
      dephase any tranvserse magnetization */
   
   decrgpulse(cpw,v1,rof1,1.0e-6);
   
   delay(d2/2.0);
   shaped_pulse(hsweep,hsw180,v3,1.0e-6,1.0e-6);
   delay(d2/2.0);
   
   /*   CLUB sandwich: */
   
   zgradpulse(gzlvl1*(double)icosel,gtime1);
   delay(gdel);   
   decshaped_pulse(csweep,csw180,v14,rof1,rof2);
   zgradpulse(-gzlvl1*(double)icosel,gtime1);
   delay(gdel);    
   delay(hsw180+(4.0*cpw/3.1416)+(4.0e-6)+WFG_START_DELAY+WFG_STOP_DELAY);
   zgradpulse(-gzlvl2*(double)icosel,gtime2);
   delay(gdel);    
   decshaped_pulse(csweep,csw180,v14,rof1,rof2);
   zgradpulse(gzlvl2*(double)icosel,gtime2);
   delay(gdel);    
   
   /* INEPT out */
   decrgpulse(cpw,v2,1.0e-6,rof2);
   rgpulse(pw,v14,rof1,rof2);
   delay(1.0/(4.0*jch));
   simshaped_pulse(p1pat,csweep,p1,csw180,v14,v14,rof1,rof2);
   zgradpulse(gzlvl,gtime);
   delay(1.0/(4.0*jch)-gtime); 
   
   decpower(dpwr);  /* CAUTION set dpwr to 47dB and acquire for < 1 sec */
   
   status(C);
   
}
Esempio n. 27
0
void pulsesequence()
{
/* DECLARE VARIABLES */

 char      
 	     f1180[MAXSTR],f2180[MAXSTR],satmode[MAXSTR];

 int	     icosel,t1_counter,t2_counter,first_FID;

 double      /* DELAYS */
             tau1,                                 /* t1/2 */
             tau2,                                 /* t2/2 */

             /* COUPLINGS */
             jhn = getval("jhn"), tauhn,
             jnco = getval("jnco"), taunco,
             jcoca = getval("jcoca"), taucoca,
             jnca = getval("jnca"), taunca,
             jhaca = getval("jhaca"), tauhaca,
             jcaha = getval("jcaha"), taucaha,
             jcacb = getval("jcacb"), taucacb,
   
             /* PULSES */
             pwN = getval("pwN"),               /* PW90 for N-nuc */
             pwC = getval("pwC"),               /* PW90 for C-nuc */
             pwHs = getval("pwHs"),           /* pw for water selective pulse at twprsl */

             /* POWER LEVELS */
             satpwr = getval("satpwr"),       /* low power level for presat */
             tpwrsf_d = getval("tpwrsf_d"),   /* fine power level "down" flipback pulse*/
             tpwrsf_u = getval("tpwrsf_u"),   /* fine power level "up" flipback pulse*/
	     tpwrs,                          /* power level for selective pulse for water */
             tpwrd,pwHd,                     /* power/pulse width for decoupling */
             pwClvl = getval("pwClvl"),         /* power level for C hard pulses */ 
             compH = getval("compH"),           /* compression factor   */
             compC = getval("compC"),           /* compression factor   */
             pwNlvl = getval("pwNlvl"),         /* power level for N hard pulses */
             rf90onco, pw90onco,          /* power level/width for CO 90 pulses */ 
             rf180onco, pw180onco,        /* power level/width for CO 180 pulses */
             rf180offca, pw180offca,      /* power level/width for off-res Ca 180 pulses */

             /* CONSTANTS */
             lambda = getval("lambda"),     /* J scaling factor */
             kappa,                         /* semi constant-time factor */
             ni2=getval("ni2"),
             waltzB1 = getval("waltzB1"),  /* waltz16 field strength (in Hz)     */

             /* GRADIENT DELAYS AND LEVES */
             gt0 = getval("gt0"),       /* gradient time */
             gt1 = getval("gt1"),       /* gradient time */
             gt3 = getval("gt3"),       /* gradient time */
             gt5 = getval("gt5"),
             gstab = getval("gstab"),
             gzlvl0 = getval("gzlvl0"), /* level of gradient */
             gzlvl1 = getval("gzlvl1"),
             gzlvl2 = getval("gzlvl2"),
             gzlvl3 = getval("gzlvl3"),
             gzlvl5 = getval("gzlvl5");

    /* power level and pulse time for WALTZ 1H decoupling */
	pwHd = 1/(4.0 * waltzB1);                          
	tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw));
	tpwrd = (int) (tpwrd + 0.5);
 

/* LOAD VARIABLES */

  getstr("satmode",satmode); 
  getstr("f1180",f1180);
  getstr("f2180",f2180);

/* check validity of parameter range */

    if ((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
	{
	printf("incorrect Dec1 decoupler flags!  ");
	psg_abort(1);
    } 

    if ((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' ))
	{
	printf("incorrect Dec2 decoupler flags!  ");
	psg_abort(1);
    } 

    if ( satpwr > 8 )
    {
	printf("satpwr too large !!!  ");
	psg_abort(1);
    }

    if ( dpwr > 50 )
    {
	printf("don't fry the probe, dpwr too large!  ");
	psg_abort(1);
    }

    if ( dpwr2 > 50 )
    {
	printf("don't fry the probe, dpwr2 too large!  ");
	psg_abort(1);
    }

/* LOAD VARIABLES */

  settable(t1, 1, phi1);
  settable(t2, 1, phi2);
  settable(t3, 1, phi3);
  settable(t4, 2, phi4);
  settable(t5, 4, phi5);
  settable(t6, 8, phi6);
  settable(t7, 4, phi7);

/* INITIALIZE VARIABLES */

  tauhn   = ((jhn != 0.0)  ? 1/(4*(jhn)) : 2.75e-3);
  taunco  = ((jnco !=0.0)  ? 1/(4*(jnco)) : 16.6e-3);
  taucoca = ((jcoca !=0.0) ? 1/(4*(jcoca)) : 4.5e-3);
  taunca  = ((jnca  !=0.0) ? 1/(4*(jnca))  : 12e-3);
  tauhaca = ((jhaca !=0.0) ? 1/(4*(jhaca)) : 12e-3);
  taucaha = ((jcaha !=0.0) ? 1/(4*(jcaha)) : 12e-3);
  taucacb = ((jcacb !=0.0) ? 1/(4*(jcacb)) : 12e-3);


       if((getval("arraydim") < 1.5) || (ix==1))
         first_FID = 1;
       else
         first_FID = 0;

    /* 90 degree pulse on CO, null at Ca 118ppm away */

        pw90onco = sqrt(15.0)/(4.0*118.0*dfrq);
        rf90onco = (4095.0*pwC*compC)/pw90onco;
        rf90onco = (int) (rf90onco + 0.5);
        if(rf90onco > 4095.0)
        {
          if(first_FID)
            printf("insufficient power for pw90onco -> rf90onco (%.0f)\n", rf90onco);
          rf90onco = 4095.0;
          pw90onco = pwC;
        }

    /* 180 degree pulse on CO, null at Ca 118ppm away */

        pw180onco = sqrt(3.0)/(2.0*118.0*dfrq);
        rf180onco = (4095.0*pwC*compC*2.0)/pw180onco;
        rf180onco = (int) (rf180onco + 0.5);
        if(rf180onco > 4095.0)
        {
          if(first_FID)
            printf("insufficient power for pw180onco -> rf180onco (%.0f)\n", rf180onco);
          rf180onco = 4095.0;
          pw180onco = pwC*2.0;
        }
        pw180offca = pw180onco;        rf180offca = rf180onco;


/* Phase incrementation for hypercomplex data */

   if (phase1 == 2)     	/* Hypercomplex in t1 */
      {
        tsadd(t4, 1, 4);
      }  
   
  if (phase1 == 4)           /* Hypercomplex in t1 */
     {
        tsadd(t4, 1, 4);
     }
   
     kappa=(taunco - tauhn)/(0.5*ni2/sw2)-0.001;
         if (kappa > 1.0) 
     {  
	                      kappa=1.0-0.01;
     }   
   
          if (phase2 == 1) /* Hypercomplex in t2 */
     {
	                        icosel = -1;
	                        tsadd(t2, 2, 4);
	                        tsadd(t3, 2, 4);
     }  
         else icosel = 1;   
         
         if (ix == 1)
           printf("semi constant time factor %4.6f\n",kappa);
   
/* calculate modification to phases based on current t1 values
   to achieve States-TPPI acquisition */
 
 
   if (ix == 1)
      d2_init = d2;
      t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5);

      if (t1_counter %2)  /* STATES-TPPI */
      {
        tsadd(t4,2,4);
        tsadd(t7,2,4);
      }

    if(ix==1)
     d3_init = d3;
     t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5);
      
     if(t2_counter %2) 
     {
       tsadd(t1,2,4);
       tsadd(t7,2,4);
     }   
   
/* set up so that get (-90,180) phase corrects in F1 if f1180 flag is y */

   tau1 = d2;
   if (f1180[A] == 'y')  tau1 += ( 1.0/(2.0*sw1));
   tau1 = tau1/2.0;
   
/* set up so that get (-90,180) phase corrects in F2 if f2180 flag is y */
      
   tau2 = d3;
   if(f2180[A] == 'y')  tau2 += ( 1.0/(2.0*sw2) );
   tau2 = tau2/2.0;   
   
/* selective H20 one-lobe sinc pulse */
    tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));   /*needs 1.69 times more*/
    tpwrs = (int) (tpwrs);                   	  /*power than a square pulse */
    if (tpwrsf_d<4095.0) tpwrs=tpwrs+6;   /* nominal tpwrsf_d ~ 2048 */
         /* tpwrsf_d,tpwrsf_u can be used to correct for radiation damping  */

/* BEGIN ACTUAL PULSE SEQUENCE */


status(A);
   obspower(satpwr);            /* Set power for presaturation    */
   decpower(pwClvl);             /* Set decoupler1 power to pwClvl  */
   decpwrf(rf90onco);
   dec2power(pwNlvl);            /* Set decoupler2 power to pwNlvl */

/* Presaturation Period */


  if (satmode[0] == 'y')
    {
      rgpulse(d1,zero,rof1,0.0);
      obspower(tpwr);                   /* Set power for hard pulses  */
    }
  else  
    {
      obspower(tpwr);                   /* Set power for hard pulses  */
      delay(d1);
    }

status(B);

   rcvroff();

   decpwrf(rf90onco);   /* Set decoupler1 power to rf90onco */
   sim3pulse(0.0,pw90onco,pwN,zero,zero,zero,rof1,rof1);  /* 90 for 15N and 13C' */

   zgradpulse(gzlvl0,gt0);
   delay(gstab);

  /* transfer from HN to N by INEPT */
   
  /* shaped pulse for water flip-back */
         obspower(tpwrs); obspwrf(tpwrsf_d);
         shaped_pulse("H2Osinc_d",pwHs,one,2.0e-6,0.0);
         obspower(tpwr); obspwrf(4095.0);
  /* shaped pulse */

  rgpulse(pw,zero,rof1,0.0);

  zgradpulse(gzlvl0*1.3,gt0);
  delay(gstab);
   
  delay(tauhn - gt0 - gstab);  					 /* 1/(4JHN) */
   
  sim3pulse(2.0*pw,0.0,2.0*pwN,zero,zero,zero,rof1,rof1);

  delay(tauhn - gt0 - gstab);  					 /* 1/(4JHN) */
   
  zgradpulse(gzlvl0*1.3,gt0);
  delay(gstab);

  rgpulse(pw,three,rof1,0.0);   /* 90 1H */
   
  zgradpulse(gzlvl3,gt3);
  delay(gstab);
   
  decpwrf(rf180onco);   /* Set decoupler power to rf180onco */
  dec2rgpulse(pwN,zero,0.0,0.0);   /* 90 15N */

/* start transfer from N to CO */

  delay(5.5e-3 - pwHd - POWER_DELAY - PRG_START_DELAY); /* 1/(2JHN) */
  
  obspower(tpwrd);
  rgpulse(pwHd,one,rof1,0.0);
  txphase(zero);
  obsprgon("waltz16", pwHd, 90.0);
  xmtron();

   
   delay(taunco - 5.5e-3 - 0.5*pw180onco);  /* 1/(4JNCO) - 1/(2JHN) */

   sim3pulse(0.0,pw180onco,2.0*pwN,zero,zero,zero,rof1,rof1);

   delay(taunco - 5.5e-3 - 0.5*pw180onco); /* 1/(4JNCO) - 1/(2JHN) */

 /* turn proton decoupling off */ 
      xmtroff();
      obsprgoff();
      rgpulse(pwHd,three,rof1,0.0);
      obspower(tpwr);
 /* turned proton decoupling off */
   
   delay(5.5e-3 - PRG_STOP_DELAY - pwHd - POWER_DELAY); /* 1/(2JHN) */
   
/* Start in-phase filter */

   if (( phase1 == 1 || phase1 == 2))
      {

       dec2rgpulse(pwN,one,0.0,0.0);   /* 90 15N */

       zgradpulse(gzlvl3*1.5,gt3);
       delay(gstab);

        /* shaped pulse WATER-FLIP-back */
             obspower(tpwrs); obspwrf(tpwrsf_d);
             shaped_pulse("H2Osinc_d",pwHs,one,rof1,0.0);
             obspower(tpwr); obspwrf(4095.0);
        /* shaped pulse */

       rgpulse(pw,one,rof1,0.0);    /* 90 1H */

	
        zgradpulse(gzlvl0*1.1,gt0);
        delay(gstab);

	delay(0.5*tauhn - gt0 - gstab);  /* 1/(8JNH) */
        dec2rgpulse(2.0*pwN,zero,0.0,0.0); /* 180 15N */
	delay(0.5*tauhn - gt0 - gstab);  /* 1/(8JNH) */

        zgradpulse(gzlvl0*1.1,gt0);
        delay(gstab);
	
        rgpulse(2.0*pw,zero,rof1,rof1); /* 180 1H */

        zgradpulse(gzlvl0*1.1,gt0);
        delay(gstab);

	delay(0.5*tauhn - gt0 -gstab); /* 1/(8JNH) */
        dec2rgpulse(2.0*pwN,zero,0.0,0.0); /* 180 15N */
        delay(0.5*tauhn - gt0 -gstab); /* 1/(8JNH) */


        zgradpulse(gzlvl0*1.1,gt0);
        delay(gstab);

        rgpulse(pw,one,rof1,0.0);  /* 90 1H */

        /* shaped pulse WATER-FLIP-back */
             obspower(tpwrs); obspwrf(tpwrsf_u);
             shaped_pulse("H2Osinc_u",pwHs,three,rof1,0.0);
             obspower(tpwr); obspwrf(4095.0);
        /* shaped pulse */

      }

/* start antiphase filter */

    if (( phase1 == 3 || phase1 == 4 ))
      {

        dec2rgpulse(pwN,one,0.0,0.0);  /* 90 15N */

       zgradpulse(gzlvl3*1.5,gt3);
       delay(gstab);

        /* shaped pulse WATER-FLIP-back */
             obspower(tpwrs); obspwrf(tpwrsf_d);
             shaped_pulse("H2Osinc_d",pwHs,zero,rof1,0.0);
             obspower(tpwr); obspwrf(4095.0);
        /* shaped pulse */

        rgpulse(pw,zero,rof1,0.0);  /* 90 1H */


        zgradpulse(gzlvl0*0.9,gt0);
        delay(gstab);
	
	delay(tauhn - gt0 - gstab - 2.0*pwN); /* 1/(4JNH) */
        sim3pulse(2.0*pw,0.0,2.0*pwN,zero,zero,zero,rof1,rof1); /* 180 1H and 15N */
	delay(tauhn - gt0 - gstab - 2.0*pwN); /* 1/(4JNH) */
	

        zgradpulse(gzlvl0*0.9,gt0);
        delay(gstab);

        rgpulse(pw,one,rof1,0.0);  /* 90 1H */

        /* shaped pulse WATER-FLIP-back */
             obspower(tpwrs); obspwrf(tpwrsf_u);
             shaped_pulse("H2Osinc_u",pwHs,three,rof1,0.0);
             obspower(tpwr); obspwrf(4095.0);
        /* shaped pulse */
      }

/* End of filter section */

   
        zgradpulse(gzlvl3*0.9,gt3);
        delay(gstab);

	rgpulse(2.0*pw,zero,rof1,0.0);
        decpwrf(rf90onco);      /* Set decoupler power to rf90onco */
        decrgpulse(pw90onco,t4,0.0,0.0);   /* 90 for 13C */

/* record 13C' frequences and 13C'-15N coupling */

      delay(tau1);
      decpwrf(rf180offca);      /* Set decoupler power to rf180offca */
      simshaped_pulse("","offC3",2.0*pw,pw180offca,zero,zero,rof1,rof1); /* 180 for 1H and 13CA */
      decphase(zero);
      decpwrf(rf180onco);   
      delay(tau1);
      if (lambda>0.0)
      {
       delay(lambda*tau1);
       sim3pulse(0.0,pw180onco,2.0*pwN,zero,t5,zero,0.0,0.0);
       delay(lambda*tau1);
      } 
      else decrgpulse(pw180onco,t5,0.0,0.0);
   
      decpwrf(rf180offca); /* Set decoupler power to rf180offca */
      simshaped_pulse("","offC3",0.0,pw180offca,zero,zero,0.0,0.0); /* 180 CA */  
      decphase(zero);
      decpwrf(rf90onco); 
   
/* start reverse transfer from CO to N by INEPT */

       decrgpulse(pw90onco,zero,0.0,0.0); /* 90 for 13C' */
   
       zgradpulse(gzlvl3*0.7,gt3);
       delay(gstab);
     
       dec2rgpulse(pwN,t1,0.0,0.0);  	  /* 90 for 15N */
   
       delay((taunco - tauhn) - kappa*tau2);  /* 1/4J(NCO) - 1/4J(NH) - kt2/2 */
         
       dec2rgpulse(2.0*pwN,zero,0.0,0.0);     /* 180 for 15N */
             
       delay((1-kappa)*tau2);        /* (1-k)t2/2 */
      
       decpwrf(rf180onco);
       decrgpulse(pw180onco,zero,0.0,0.0);     /* 180 for 13C' */
       decpwrf(rf180offca);
   
       delay(taunco - tauhn - gt1 - gstab - pw180onco - pw180offca - 3.0*POWER_DELAY);
         
       zgradpulse(gzlvl1,gt1);
       delay(gstab);
   
       decshaped_pulse("offC3",pw180offca,zero,0.0,0.0);
         
       delay(tau2);                            /* t2/2 */
   
      /* start TROSY transfer from N to HN */
         
        rgpulse(pw,t2,rof1,0.0); /* 180 for 1H */
             
        zgradpulse(gzlvl5,gt5);
        delay(gstab);
    
        delay(tauhn - gt5 - gstab );
   
        decpwrf(rf180onco);
        sim3pulse(2.0*pw,pw180onco,2.0*pwN,zero,zero,zero,rof1,rof1);
      
        delay(tauhn - gt5 - gstab );
               
        zgradpulse(gzlvl5,gt5);
        delay(gstab);
   
        decpwrf(rf90onco);
        sim3pulse(pw,pw90onco,pwN,one,t6,zero,rof1,0.0);
   
      /* shaped pulse for water flip-back */
         obspower(tpwrs); obspwrf(tpwrsf_u);
         shaped_pulse("H2Osinc_u",pwHs,t2,rof1,0.0);
         obspwrf(4095.0);
         obspower(tpwr);
      /* shaped pulse */
   
        zgradpulse(gzlvl5*0.9,gt5);
        delay(gstab);
         
        delay(tauhn - gt5 - gstab - POWER_DELAY - pwHs);
      
        sim3pulse(2.0*pw,0.0,2.0*pwN,zero,zero,zero,rof1,rof1);
   
        delay(tauhn - gt5 - gstab );
      
        decpower(dpwr);
         
        zgradpulse(gzlvl5*0.9,gt5);
        delay(gstab);
      
        dec2rgpulse(pwN,t3,0.0,0.0);  /* 90 for 15N */
         
        dec2power(dpwr2);
         
        delay((gt1/10.0) - pwN + gstab -POWER_DELAY);
         
        rgpulse(2.0*pw, zero, rof1, rof1);
         
        zgradpulse(gzlvl2*icosel,gt1/10.0);
        delay(gstab);
         
     /* acquire data */
         
      status(C);
        setreceiver(t7);
}
Esempio n. 28
0
pulsesequence()
{
  int       phase, t1_counter;

  char	    C13refoc[MAXSTR],		/* C13 sech/tanh pulse in middle of t1 */
            TROSY[MAXSTR],
            wtg3919[MAXSTR];
  double    tauxh, tau1,  gt2, gt1, 
            gztm, mix,  pw180, pw135, pw120, pw110, p1lvl, 
            gzlvl1,  cycles,  
            pwNt = 0.0,               /* pulse only active in the TROSY option */
            gsign = 1.0,
            gzlvl3=getval("gzlvl3"),
            gt3=getval("gt3"),
            JNH = getval("JNH"),
            pwN = getval("pwN"),
            pwNlvl = getval("pwNlvl"),  
            pwHs, tpwrs=0.0,           /* H1 90 degree pulse length at tpwrs */               
            compH = getval("compH"),
            sw1 = getval("sw1"),
            pwClvl = getval("pwClvl"), 	         /* coarse power for C13 pulse */
            pwC = getval("pwC"),       /* C13 90 degree pulse length at pwClvl */
            rfst = 4095.0,	            /* fine power for the stCall pulse */
            compC = getval("compC");   /* adjustment for C13 amplifier compr-n */

   gztm=getval("gztm");
   gt2=getval("gt2");
   gt1= getval("gt1");
   mix=getval("mix");
   phase = (int) (getval("phase") + 0.5);
   sw1 = getval("sw1");
   pw180 = getval("pw180");
   gzlvl1 = getval("gzlvl1");



/* INITIALIZE VARIABLES */

        pw135 = pw180 / 180.0 * 135.0 ;
        pw120 = pw180 / 180.0 * 120.0 ;
        pw110 = pw180 / 180.0 * 110.0 ;

        p1lvl = tpwr -20*log10(pw180/(compH*2.0*pw));
        p1lvl = (int)(p1lvl + 0.5);
         cycles = mix / (730.0/180.0 * pw180) - 8.0;

         initval(cycles, v10);        /* mixing time cycles */


    getstr("C13refoc",C13refoc);
    getstr("TROSY",TROSY);
    getstr("wtg3919",wtg3919);
    
    tauxh = ((JNH != 0.0) ? 1/(4*(JNH)) : 2.25e-3);

    if (C13refoc[A]=='y')  /* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
    {
      rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));   
      rfst = (int) (rfst + 0.5);
      if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
      { 
        text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", 
	          (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) );    
	psg_abort(1); 
      }
    }

                                    /* selective H20 one-lobe sinc pulse needs 1.69  */
     pwHs = getval("pwHs");            /* times more power than a square pulse */
     if (pwHs > 1e-6) tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69));  
     else tpwrs = 0.0;
     tpwrs = (int) (tpwrs);
    

/* check validity of parameter range */

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    { text_error("incorrect Dec1 decoupler flags!  "); psg_abort(1); } 

    if((dm2[A] == 'y' || dm2[B] == 'y') )
    { text_error("incorrect Dec2 decoupler flags!  "); psg_abort(1); } 

    if( dpwr > 0 )
    { text_error("don't fry the probe, dpwr too large!  "); psg_abort(1); }

    if( dpwr2 > 50 )
    { text_error("don't fry the probe, dpwr2 too large!  "); psg_abort(1); }

    if ((TROSY[A]=='y') && (dm2[C] == 'y'))
    { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1); }

/* LOAD VARIABLES */

    if(ix == 1) d2_init = d2;
    t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5);
    
    tau1 = d2/2.0;

/* LOAD PHASE TABLES */

      settable(t6, 4, recT); 
    if (TROSY[A] == 'y')
    { gsign = -1.0;
      pwNt = pwN;
      assign(zero,v7); 
      assign(two,v8);
      settable(t1, 1, phT1);
      settable(t2, 4, phT2);
      settable(t3, 1, phT4); 
      settable(t4, 1, phT4);
      settable(t5, 4, recT); }
    else
    { assign(one,v7); 
      assign(three,v8);
      settable(t1, 4, phi1);
      settable(t2, 2, phi2);
      settable(t3, 8, phi3);
      settable(t4, 16, phi4);
      settable(t5, 8, rec); } 

      if ( phase1 == 2 )                  /* Hypercomplex in t1 */
      { if (TROSY[A] == 'y')          
        { tsadd(t3, 2, 4); tsadd(t5, 2, 4); }                      
        else tsadd(t2, 1, 4); }
                                   
    if(t1_counter %2)          /* calculate modification to phases based on */
    { tsadd(t2,2,4); tsadd(t5,2,4); tsadd(t6,2,4); }   /* current t1 values */

    if(wtg3919[0] != 'y') 
    { add(one,v7,v7); add(one,v8,v8); }
         
                           /* sequence starts!! */
   status(A);
     
     obspower(tpwr);
     dec2power(pwNlvl);
     decpower(pwClvl);
     decpwrf(rfst);
     delay(d1);
     
   status(B);

/* slective excitation of water */

     rgpulse(pw, zero, rof1, rof1);
     

     zgradpulse(gzlvl1,gt1);

     obspower(tpwrs+6);   /*make it a 180 degree inversion pulse*/
     shaped_pulse("H2Osinc", pwHs, zero, rof1, 0.0);
     obspower(tpwr);

     zgradpulse(gzlvl1,gt1);

/*  CLEANEX-PM spin-lock   */

      if (cycles > 1.5000)
      {

       obspower(p1lvl);
       txphase(zero);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);

       rgradient('z',gztm/4.0);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);

       rgradient('z',gztm/2.0);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);


            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);

       rgradient('z',gztm/4.0*3.0);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);

       rgradient('z',gztm);

         starthardloop(v10);
            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);
         endhardloop();

       rgradient('z',gztm/4.0*3.0);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);

       rgradient('z',gztm/2.0);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);

       rgradient('z',gztm/4.0);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);

       rgradient('z', 0.0);

            rgpulse(pw135, zero, 0.0, 0.0);
            rgpulse(pw120, two,  0.0, 0.0);
            rgpulse(pw110, zero, 0.0, 0.0);
            rgpulse(pw110, two,  0.0, 0.0);
            rgpulse(pw120, zero, 0.0, 0.0);
            rgpulse(pw135, two,  0.0, 0.0);


       obspower(tpwr);

      }


/* .......................................  */

     zgradpulse(0.3*gzlvl3,gt3);
     txphase(zero);
     dec2phase(zero);
     delay(tauxh-gt3);               /* delay=1/4J(XH)   */

     sim3pulse(2*pw,0.0,2*pwN,t4,zero,zero,rof1,rof1);

     zgradpulse(0.3*gzlvl3,gt3);
     dec2phase(t2);
     delay(tauxh-gt3 );               /* delay=1/4J(XH)   */
  
     rgpulse(pw, t1, rof1, rof1);

     zgradpulse(0.5*gsign*gzlvl3,gt3);
     delay(200.0e-6); 
     decphase(zero);
            
     if (TROSY[A] == 'y')
     { 
       txphase(t3);       
       if ( phase1 == 2 ) 
         dec2rgpulse(pwN, t6, rof1, 0.0);
       else 
         dec2rgpulse(pwN, t2, rof1, 0.0);              
       if ( (C13refoc[A]=='y') && (d2 > 1.0e-3 + 2.0*WFG2_START_DELAY) )
       {
         delay(d2/2.0 - 0.5e-3 - WFG2_START_DELAY);     
         decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0);
         delay(d2/2.0 - 0.5e-3 - WFG2_STOP_DELAY);
       }
       else
         delay(d2);

       rgpulse(pw, t3, 0.0, rof1);         
       zgradpulse(0.3*gzlvl3,gt3);
       delay(tauxh-gt3 );
       
       sim3pulse(2*pw,0.0,2*pwN,zero,zero,zero,rof1,rof1);
       
       zgradpulse(0.3*gzlvl3,gt3);
       delay(tauxh-gt3 );       
       sim3pulse(pw,0.0,pwN,zero,zero,t3,rof1,rof1);
     }
     else
     {         
       txphase(t4);      
       dec2rgpulse(pwN, t2, rof1, 0.0);
        
       if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) )
       {
         delay(tau1 - 0.5e-3 - WFG2_START_DELAY); 
         simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, t4, zero, 0.0, 0.0);  
         dec2phase(t3);  
         delay(tau1 - 0.5e-3 - WFG2_STOP_DELAY);
       }
       else 
       {
	 tau1 -= pw;
	 if (tau1 < 0.0) tau1 = 0.0;
         delay(tau1);
         rgpulse(2.0*pw, t4, 0.0, 0.0);
         dec2phase(t3);
         delay(tau1);
       }
       
       dec2rgpulse(pwN, t3, 0.0, 0.0);
       
       zgradpulse(0.5*gzlvl3,gt3);
       delay(200.0e-6);
       rgpulse(pw, two, rof1, rof1);
     } 
     
     zgradpulse(gzlvl3,gt3);
     txphase(v7); dec2phase(zero);
     delay(tauxh-gt3-pwHs-rof1);
     
     if(wtg3919[0] == 'y')
     {     	
       rgpulse(pw*0.231,v7,rof1,rof1);     
       delay(d3);
       rgpulse(pw*0.692,v7,rof1,rof1);
       delay(d3);
       rgpulse(pw*1.462,v7,rof1,rof1);

       delay(d3/2-pwN);
       dec2rgpulse(2*pwN, zero, rof1, rof1);
       txphase(v8);
       delay(d3/2-pwN);

       rgpulse(pw*1.462,v8,rof1,rof1);
       delay(d3);
       rgpulse(pw*0.692,v8,rof1,rof1);
       delay(d3);
       rgpulse(pw*0.231,v8,rof1,rof1); 
     }
     else
     {
       obspower(tpwrs);  
       shaped_pulse("H2Osinc", pwHs, v7, rof1, 0.0);
       obspower(tpwr);
       sim3pulse(2.0*pw, 0.0, 2.0*pwN, v8, zero, zero, 0.0, 0.0);
       obspower(tpwrs);
       shaped_pulse("H2Osinc", pwHs, v7, rof1, 0.0);
       obspower(tpwr);
     } 
        
     zgradpulse(gzlvl3,gt3);   
     delay(tauxh-gt3-pwHs-rof1-pwNt-POWER_DELAY); 
     dec2rgpulse(pwNt, zero, rof1, rof1); 
     dec2power(dpwr2);

   status(C);
     setreceiver(t5);   
}
Esempio n. 29
0
pulsesequence()
{



    /* DECLARE AND LOAD VARIABLES */

    char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
                mag_flg[MAXSTR],       /*magic-angle coherence transfer gradients */
                f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
                C13refoc[MAXSTR],		/* C13 sech/tanh pulse in middle of t1*/
                NH2only[MAXSTR];		       /* spectrum of only NH2 groups */


    int         icosel,          			  /* used to get n and p type */
                t1_counter,  		        /* used for states tppi in t1 */
                t2_counter,  	 	        /* used for states tppi in t2 */
                PRexp,                          /* projection-reconstruction flag */
                ni2 = getval("ni2");

    double      tau1,         				         /*  t1 delay */
                mix = getval("mix"),		 	    /* NOESY mix time */
                tau2,        				         /*  t2 delay */
                lambda = 0.94/(4.0*getval("JNH")),	    /* 1/4J H1 evolution delay */
                tNH = 1.0/(4.0*getval("JNH")),	  /* 1/4J N15 evolution delay */
                csa, sna,
                pra = M_PI*getval("pra")/180.0,
                /* temporary Pbox parameters */
                bw, pws, ofs, ppm, nst,  /* bandwidth, pulsewidth, offset, ppm, # steps */
                /* the sech/tanh pulse is automatically calculated by the macro "biocal", */
                /* and is called directly from your shapelib.                  		      */
                pwClvl = getval("pwClvl"), 	  	        /* coarse power for C13 pulse */
                pwC = getval("pwC"),     	      /* C13 90 degree pulse length at pwClvl */
                rf0,            	          /* maximum fine power when using pwC pulses */
                rfst,	                           /* fine power for the stCall pulse */
                compH = getval("compH"),         /* adjustment for H1 amplifier compression */
                compC = getval("compC"),         /* adjustment for C13 amplifier compression */
                dof100,	      /* C13 frequency at 100ppm for both aliphatic & aromatic*/

                tpwrsf = getval("tpwrsf"),   /* fine power adjustment for flipback pulse*/
                pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
                tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

                pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
                pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

                sw1 = getval("sw1"),
                sw2 = getval("sw2"),

                gzcal=getval("gzcal"),
                gt1 = getval("gt1"),  		       /* coherence pathway gradients */
                gzlvl1 = getval("gzlvl1"),
                gzlvl2 = getval("gzlvl2"),

                gt0 = getval("gt0"),				   /* other gradients */
                gt3 = getval("gt3"),
                gt4 = getval("gt4"),
                gt5 = getval("gt5"),
                gstab = getval("gstab"),
                gzlvl0 = getval("gzlvl0"),
                gzlvl3 = getval("gzlvl3"),
                gzlvl6 = getval("gzlvl6"),
                gzlvl4 = getval("gzlvl4"),
                gzlvl5 = getval("gzlvl5");

    getstr("f1180",f1180);
    getstr("mag_flg",mag_flg);
    getstr("f2180",f2180);
    getstr("C13refoc",C13refoc);
    getstr("NH2only",NH2only);

    csa = cos(pra);
    sna = sin(pra);


    /*   LOAD PHASE TABLE    */

    settable(t1,2,phi1);
    settable(t3,4,phi3);

    settable(t9,16,phi9);
    settable(t10,1,phi10);
    settable(t11,8,rec);




    /*   INITIALIZE VARIABLES   */

    /* maximum fine power for pwC pulses (and initialize rfst) */
    rf0 = 4095.0;
    rfst=0.0;

    setautocal();                        /* activate auto-calibration flags */

    if (autocal[0] == 'n')
    {
        /* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
        if (C13refoc[A]=='y')
        {
            rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35));
            rfst = (int) (rfst + 0.5);
            if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC )
            {   text_error( " Not enough C13 RF. pwC must be %f usec or less.\n",
                            (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) );
                psg_abort(1);
            }
        }
    }
    else        /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */
    {
        if(FIRST_FID)                                            /* call Pbox */
        {
            if (C13refoc[A]=='y')
            {
                ppm = getval("dfrq");
                ofs = 0.0;
                pws = 0.001;  /* 1 ms long pulse */
                bw = 200.0*ppm;
                nst = 1000;          /* nst - number of steps */
                stC200 = pbox_makeA("stC200", "sech", bw, pws, ofs, compC*pwC, pwClvl, nst);
            }
            ofs_check(H1ofs, C13ofs, N15ofs, H2ofs);
        }
        if (C13refoc[A]=='y') rfst = stC200.pwrf;
    }

    /* 180 degree adiabatic C13 pulse from 0 to 200 ppm */
    dof100 = dof + 65.0*dfrq;

    /* selective H20 one-lobe sinc pulse */
    tpwrs = tpwr - 20.0*log10(pwHs/((compH*pw)*1.69));   /* needs 1.69 times more */
    tpwrs = (int) (tpwrs);                   /* power than a square pulse */




    /* CHECK VALIDITY OF PARAMETER RANGES */

    if ( (mix - gt4 - gt5) < 0.0 )
    {   text_error("mix is too small. Make mix equal to %f or more.\n",(gt4 + gt5));
        psg_abort(1);
    }

    if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ))
    {
        text_error("incorrect dec1 decoupler flags! Should be 'nnn' ");
        psg_abort(1);
    }

    if((dm2[A] == 'y' || dm2[B] == 'y'))
    {
        text_error("incorrect dec2 decoupler flags! Should be 'nny' ");
        psg_abort(1);
    }

    if( dpwr2 > 50 )
    {
        text_error("don't fry the probe, DPWR2 too large!  ");
        psg_abort(1);
    }

    if( pw > 20.0e-6 )
    {
        text_error("dont fry the probe, pw too high ! ");
        psg_abort(1);
    }

    if( pwN > 100.0e-6 )
    {
        text_error("dont fry the probe, pwN too high ! ");
        psg_abort(1);
    }



    /* PHASES AND INCREMENTED TIMES */

    /*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)
        tsadd(t1,1,4);
    if (phase2 == 1)
    {
        tsadd(t10,2,4);
        icosel = 1;
    }
    else icosel = -1;


    /*  Set up f1180  */

    PRexp = 0;
    if((pra > 0.0) && (pra < 90.0)) PRexp = 1;

    if(PRexp)                /* set up Projection-Reconstruction experiment */
        tau1 = d2*csa;
    else
        tau1 = d2;
    if((f1180[A] == 'y') && (ni > 1.0))
    {
        tau1 += ( 1.0 / (2.0*sw1) );
        if(tau1 < 0.2e-6) tau1 = 0.0;
    }
    tau1 = tau1/2.0;


    /*  Set up f2180  */

    if(PRexp)
        tau2 = d2*sna;
    else
    {
        tau2 = d3;
        if((f2180[A] == 'y') && (ni2 > 1.0))
        {
            tau2 += ( 1.0 / (2.0*sw2) );
            if(tau2 < 0.2e-6) tau2 = 0.0;
        }
    }
    tau2 = tau2/2.0;


    /* Calculate modifications to phases for States-TPPI acquisition          */

    if( ix == 1) d2_init = d2;
    t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 );
    if(t1_counter % 2)
    {
        tsadd(t1,2,4);
        tsadd(t11,2,4);
    }

    if( ix == 1) d3_init = d3;
    t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 );
    if(t2_counter % 2)
    {
        tsadd(t3,2,4);
        tsadd(t11,2,4);
    }



    /*  Correct inverted signals for NH2 only spectra  */

    if (NH2only[A]=='y')
    {
        tsadd(t3,2,4);
    }



    /* BEGIN PULSE SEQUENCE */

    status(A);
    obspower(tpwr);
    decpower(pwClvl);
    dec2power(pwNlvl);
    decoffset(dof);
    decpwrf(rf0);
    txphase(zero);
    dec2phase(zero);

    delay(d1);

    dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
    decrgpulse(pwC, zero, 0.0, 0.0);
    zgradpulse(gzlvl0, 0.5e-3);
    delay(1.0e-4);
    dec2rgpulse(pwN, one, 0.0, 0.0);
    decrgpulse(pwC, one, 0.0, 0.0);
    zgradpulse(0.7*gzlvl0, 0.5e-3);

    txphase(t1);
    decphase(zero);
    dec2phase(zero);
    initval(135.0,v1);
    obsstepsize(1.0);
    xmtrphase(v1);
    delay(5.0e-4);
    rcvroff();


    rgpulse(pw, t1, 50.0e-6, 0.0);                     /* 1H pulse excitation */

    xmtrphase(zero);					/* SAPS_DELAY */
    txphase(zero);


    if (tau1 > (2.0*GRADIENT_DELAY + pwN + 0.64*pw + 5.0*SAPS_DELAY))
    {
        if (tau1>0.002)
        {
            zgradpulse(gzlvl6, 0.8*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw));
            delay(0.2*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw) - SAPS_DELAY);
        }
        else
        {
            delay(tau1-pwN-0.64*pw);
        }
        if (C13refoc[A]=='y')
            sim3pulse(0.0, 2.0*pwC, 2.0*pwN, zero, zero, zero, 0.0, 0.0);
        else
            dec2rgpulse(2.0*pwN, zero, 0.0, 0.0);
        if (tau1>0.002)
        {
            zgradpulse(-1.0*gzlvl6, 0.8*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw));
            delay(0.2*(tau1 - 2.0*GRADIENT_DELAY - pwN - 0.64*pw) - SAPS_DELAY);
        }
        else
        {
            delay(tau1-pwN-0.64*pw);
        }
    }
    else if (tau1 > (0.64*pw + 0.5*SAPS_DELAY))
        delay(2.0*tau1 - 2.0*0.64*pw - SAPS_DELAY );

    rgpulse(pw, zero, 0.0, 0.0);

    delay(mix - gt4 - gt5 -gstab -200.0e-6);
    dec2rgpulse(pwN, zero, 0.0, 0.0);
    zgradpulse(gzlvl4, gt4);
    delay(gstab);

    rgpulse(pw, zero, 200.0e-6,0.0);			       /* HSQC begins */

    dec2phase(zero);
    zgradpulse(gzlvl0, gt0);
    delay(lambda - gt0);

    sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

    txphase(one);
    zgradpulse(gzlvl0, gt0);
    delay(lambda - gt0);

    rgpulse(pw, one, 0.0, 0.0);
    txphase(two);
    if (tpwrsf<4095.0)
    {
        obspower(tpwrs+6.0);
        obspwrf(tpwrsf);
        shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0);
        obspower(tpwr);
        obspwrf(4095.0);
    }
    else
    {
        obspower(tpwrs);
        shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0);
        obspower(tpwr);
    }
    zgradpulse(gzlvl3, gt3);
    dec2phase(t3);
    decpwrf(rfst);
    decoffset(dof100);
    delay(2.0e-4);
    dec2rgpulse(pwN, t3, 0.0, 0.0);
    decphase(zero);


    /*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

    txphase(zero);
    dec2phase(t9);

    if (NH2only[A]=='y')
    {
        delay(tau2);
        /* optional sech/tanh pulse in middle of t2 */
        if (C13refoc[A]=='y') 				   /* WFG_START_DELAY */
        {   decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0);
            delay(tNH - 1.0e-3 - WFG_START_DELAY - 2.0*pw);
        }
        else
        {
            delay(tNH - 2.0*pw);
        }
        rgpulse(2.0*pw, zero, 0.0, 0.0);
        if (tNH < gt1 + 1.99e-4)  delay(gt1 + 1.99e-4 - tNH);

        delay(tau2);

        dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);
        if (mag_flg[A] == 'y')
        {
            magradpulse(gzcal*gzlvl1, gt1);
        }
        else
        {
            zgradpulse(gzlvl1, gt1);
        }
        dec2phase(t10);
        if (tNH > gt1 + 1.99e-4)  delay(tNH - gt1 - 2.0*GRADIENT_DELAY);
        else   delay(1.99e-4 - 2.0*GRADIENT_DELAY);
    }

    else
    {
        if ( (C13refoc[A]=='y') && (tau2 > 0.5e-3 + WFG2_START_DELAY) )
        {   delay(tau2 - 0.5e-3 - WFG2_START_DELAY); /* WFG2_START_DELAY */
            simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0);
            delay(tau2 - 0.5e-3);
            delay(gt1 + 2.0e-4);
        }
        else
        {   delay(tau2);
            rgpulse(2.0*pw, zero, 0.0, 0.0);
            delay(gt1 + 2.0e-4 - 2.0*pw);
            delay(tau2);
        }

        dec2rgpulse(2.0*pwN, t9, 0.0, 0.0);

        if (mag_flg[A] == 'y')
        {
            magradpulse(gzcal*gzlvl1, gt1);
        }
        else
        {
            zgradpulse(gzlvl1, gt1);
        }
        dec2phase(t10);
        delay(2.0e-4 - 2.0*GRADIENT_DELAY);
    }

    /*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */

    sim3pulse(pw, 0.0, pwN, zero, zero, t10, 0.0, 0.0);

    dec2phase(zero);
    zgradpulse(gzlvl5, gt5);
    delay(lambda - 1.5*pwN - gt5);

    sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

    zgradpulse(gzlvl5, gt5);
    txphase(one);
    dec2phase(one);
    delay(lambda  - 1.5*pwN - gt5);

    sim3pulse(pw, 0.0, pwN, one, zero, one, 0.0, 0.0);

    txphase(zero);
    dec2phase(zero);
    zgradpulse(1.5*gzlvl5, gt5);
    delay(lambda - 1.5*pwN - gt5);

    sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

    zgradpulse(1.5*gzlvl5, gt5);
    delay(lambda - pwN - 0.5*pw - gt5);

    rgpulse(pw, zero, 0.0, 0.0);

    delay((gt1/10.0) + 1.0e-4+ gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

    rgpulse(2.0*pw, zero, 0.0, rof1);
    dec2power(dpwr2);				       /* POWER_DELAY */
    if (mag_flg[A] == 'y')
    {
        magradpulse(icosel*gzcal*gzlvl2, gt1/10.0);
    }
    else
    {
        zgradpulse(icosel*gzlvl2, gt1/10.0);
    }
    delay(gstab);
    rcvron();
    statusdelay(C,1.0e-4-rof1);

    setreceiver(t11);
}
Esempio n. 30
0
void pulsesequence()
{



/* DECLARE AND LOAD VARIABLES */

char        f1180[MAXSTR],   		      /* Flag to start t1 @ halfdwell */
            f2180[MAXSTR],    		      /* Flag to start t2 @ halfdwell */
            mag_flg[MAXSTR],      /* magic-angle coherence transfer gradients */
 	    TROSY[MAXSTR],			    /* do TROSY on N15 and H1 */
	    CT_c[MAXSTR],
	    h1dec[MAXSTR];
 
int         icosel,          			  /* used to get n and p type */
            t1_counter=getval("t1_counter"),      /* used for states tppi in t1 */
            t2_counter=getval("t2_counter"),      /* used for states tppi in t2 */
            nli = getval("nli"),
            nli2 = getval("nli2");

double      tau1,         				         /*  t1 delay */
            tau2,        				         /*  t2 delay */
	    tauCC = 7.0e-3, 		   /* delay for Ca to Cb cosy */
	    tauC = 13.3e-3,	           /* constantTime for 13Cb evolution */
            timeTN = getval("timeTN"),     /* constant time for 15N evolution */
	    kappa = 5.4e-3,
	    lambda = 2.4e-3,
	    zeta = 3.0e-3,
	    taud = 1.7e-3,
            
	pwClvl = getval("pwClvl"), 	        /* coarse power for C13 pulse */
        pwC = getval("pwC"),          /* C13 90 degree pulse length at pwClvl */
	rf0,            	  /* maximum fine power when using pwC pulses */

/* 90 degree pulse at Cab (46ppm), first off-resonance null at CO (174ppm)    */
        pwC1,		              /* 90 degree pulse length on C13 at rf1 */
        rf1,		       /* fine power for 5.1 kHz rf for 600MHz magnet */

/* 180 degree pulse at Ca (46ppm), first off-resonance null at CO(174ppm)     */
        pwC2,		                    /* 180 degree pulse length at rf2 */
        rf2,		      /* fine power for 11.4 kHz rf for 600MHz magnet */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "proteincal".  SLP pulse shapes, "offC7" etc are called       */
/* directly from your shapelib.                    			      */
   pwC7 = getval("pwC7"),  /*180 degree pulse at CO(174ppm) null at Ca(56ppm) */
   pwC7a = getval("pwC7a"),    /* pwC7a=pwC7, but not set to zero when pwC7=0 */
   phshift7,            /* phase shift induced on Cab by pwC7 ("offC7") pulse */
   pwZ,					   /* the largest of pwC7 and 2.0*pwN */
   pwZ1,                /* the larger of pwC7a and 2.0*pwN for 1D experiments */
   rf7,	                           /* fine power for the pwC7 ("offC7") pulse */

/* the following pulse lengths for SLP pulses are automatically calculated    */
/* by the macro "proteincal".  SLP pulse shapes, "offC5" etc are called       */
/* directly from your shapelib.                                               */
   pwC5 = getval("pwC5"),  /*180 degree pulse at CO(174ppm) null at Ca(56ppm) */
   rf5,                            /* fine power for the pwC7 ("offC7") pulse */

/* g3 inversion pulse in the t1 period (centred at 150ppm)                     */
	pwCgCO_lvl = getval("pwCgCO_lvl"),
	pwCgCO = getval("pwCgCO"),



   compH = getval("compH"),       /* adjustment for C13 amplifier compression */
   compC = getval("compC"),       /* adjustment for C13 amplifier compression */

   	pwHs = getval("pwHs"),	        /* H1 90 degree pulse length at tpwrs */
   	tpwrs,	  	              /* power for the pwHs ("H2Osinc") pulse */

   	pwHd,	    		        /* H1 90 degree pulse length at tpwrd */
   	tpwrd,	  	                   /* rf for WALTZ decoupling */
        waltzB1 = getval("waltzB1"),  /* waltz16 field strength (in Hz)     */

	pwNlvl = getval("pwNlvl"),	              /* power for N15 pulses */
        pwN = getval("pwN"),          /* N15 90 degree pulse length at pwNlvl */

	sw1 = getval("sw1"),
	sw2 = getval("sw2"),

        gstab = getval("gstab"),
	gt1 = getval("gt1"),  		       /* coherence pathway gradients */
        gzcal = getval("gzcal"),             /* g/cm to DAC conversion factor */
	gzlvl1 = getval("gzlvl1"),
	gzlvl2 = getval("gzlvl2"),

	gt0 = getval("gt0"),				   /* other gradients */
	gt3 = getval("gt3"),
	gt4 = getval("gt4"),
	gt5 = getval("gt5"),
	gt7 = getval("gt7"),
	gt8 = getval("gt8"),
	gzlvl0 = getval("gzlvl0"),
	gzlvl3 = getval("gzlvl3"),
	gzlvl4 = getval("gzlvl4"),
	gzlvl5 = getval("gzlvl5"),
	gzlvl6 = getval("gzlvl6"),
	gzlvl7 = getval("gzlvl7"),
	gzlvl8 = getval("gzlvl8");

    getstr("f1180",f1180);
    getstr("f2180",f2180);
    getstr("mag_flg",mag_flg);
    getstr("TROSY",TROSY);
    getstr("CT_c",CT_c);
    getstr("h1dec",h1dec);



/*   LOAD PHASE TABLE    */

	settable(t2,1,phy);
	settable(t3,2,phi3);
	settable(t4,1,phx);
	settable(t5,4,phi5);
   if (TROSY[A]=='y')
       {settable(t8,1,phy);
	settable(t9,1,phx);
 	settable(t10,1,phy);
	settable(t11,1,phx);
	settable(t12,4,recT);}
    else
       {settable(t8,1,phx);
	settable(t9,8,phi9);
	settable(t10,1,phx);
	settable(t11,1,phy);
	settable(t12,4,rec);}




/*   INITIALIZE VARIABLES   */

    if( dpwrf < 4095 )
	{ printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse");
	  psg_abort(1); }

    /* maximum fine power for pwC pulses */
	rf0 = 4095.0;

    /* 90 degree pulse on Cab, null at CO 128ppm away */
	pwC1 = sqrt(15.0)/(4.0*128.0*dfrq);
        rf1 = (compC*4095.0*pwC)/pwC1;
	rf1 = (int) (rf1 + 0.5);

    /* 180 degree pulse on Cab, null at CO 128ppm away */
        pwC2 = sqrt(3.0)/(2.0*128.0*dfrq);
	rf2 = (4095.0*compC*pwC*2.0)/pwC2;
	rf2 = (int) (rf2 + 0.5);	
	if( rf2 > 4095 )
	      { printf("Recalibrate so that C13 90 <22us*600/sfrq"); psg_abort(1);}

    /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
	rf7 = (compC*4095.0*pwC*2.0*1.65)/pwC7a; /* needs 1.65 times more     */
	rf7 = (int) (rf7 + 0.5);		 /* power than a square pulse */

    /* 90 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */
        rf5 = (compC*4095.0*pwC*1.69)/pwC5;     /* needs 1.69 times more     */
        rf5 = (int) (rf5 + 0.5);                /* power than a square pulse */

    /* the pwC7 pulse at the middle of t1  */
        if ((nli2 > 0.0) && (nli == 1.0)) nli = 0.0;
        if (pwC7a > 2.0*pwN) pwZ = pwC7a; else pwZ = 2.0*pwN;
        if ((pwC7==0.0) && (pwC7a>2.0*pwN)) pwZ1=pwC7a-2.0*pwN; else pwZ1=0.0;
	if ( nli > 1 )     pwC7 = pwC7a;
	if ( pwC7 > 0 )   phshift7 = 320.0;
	else              phshift7 = 0.0;
	
    /* selective H20 one-lobe sinc pulse */
    tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */
    tpwrs = (int) (tpwrs);                       /* power than a square pulse */

    /* power level and pulse time for WALTZ 1H decoupling */
	pwHd = 1/(4.0 * waltzB1) ;                          
	tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw));
	tpwrd = (int) (tpwrd + 0.5);
 


/* CHECK VALIDITY OF PARAMETER RANGES */


    if ( 0.5*nli2*1/(sw2) > timeTN - WFG3_START_DELAY)
       { printf(" nli2 is too big. Make nli2 equal to %d or less.\n", 
  	 ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);}

    if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )
       { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);}

    if ( dm2[A] == 'y' || dm2[B] == 'y' )
       { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);}

    if ( dm3[A] == 'y' || dm3[C] == 'y' )
       { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' ");
							             psg_abort(1);}	
    if ( dpwr2 > 46 )
       { printf("dpwr2 too large! recheck value  "); psg_abort(1);}

    if ( pw > 20.0e-6 )
       { printf(" pw too long ! recheck value "); psg_abort(1);} 
  
    if ( pwN > 100.0e-6 )
       { printf(" pwN too long! recheck value "); psg_abort(1);} 
 
    if ( TROSY[A]=='y' && dm2[C] == 'y')
       { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);}



/* PHASES AND INCREMENTED TIMES */

/*  Phase incrementation for hypercomplex 2D data, States-Haberkorn element */

    if (phase1 == 2)   { tsadd(t3,1,4); tsadd(t2,1,4);} 
    if (TROSY[A]=='y')
	 {  if (phase2 == 2)   				      icosel = +1;
            else 	    {tsadd(t4,2,4);  tsadd(t10,2,4);  icosel = -1;}
	 }
    else {  if (phase2 == 2)  {tsadd(t10,2,4); icosel = +1;}
            else 			       icosel = -1;    
	 }


/*  Set up f1180  */
   
    if( ix == 1) d2_init = d2;
    tau1 = d2_init + (t1_counter) / sw1;
    if((f1180[A] == 'y') && (nli > 1.0)) 
	{ tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; }
    tau1 = tau1/2.0;


/*  Set up f2180  */

    if( ix == 1) d3_init = d3;
    tau2 = d3_init + (t2_counter) / sw2;
    if((f2180[A] == 'y') && (nli2 > 1.0)) 
	{ tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; }
    tau2 = tau2/2.0;



/* Calculate modifications to phases for States-TPPI acquisition          */

   if(t1_counter % 2) 
	{ tsadd(t3,2,4); tsadd(t12,2,4); }

   if(t2_counter % 2) 
	{ tsadd(t8,2,4); tsadd(t12,2,4); }



/* BEGIN PULSE SEQUENCE */

status(A);
delay(d1);
if (dm3[B] == 'y') lk_hold();

rcvroff();
obspower(tpwr);
decpower(pwClvl);
dec2power(pwNlvl);
decpwrf(rf0);
obsoffset(tof);
txphase(zero);
decphase(zero);
dcplrphase(zero);
delay(1.0e-5);

dec2rgpulse(pwN, zero, 0.0, 0.0);  /*destroy N15 and C13 magnetization*/
decrgpulse(pwC, zero, 0.0, 0.0);
zgradpulse(gzlvl0, 0.5e-3);
delay(1.0e-4);
dec2rgpulse(pwN, one, 0.0, 0.0);
decrgpulse(pwC, zero, 0.0, 0.0);
zgradpulse(0.7*gzlvl0, 0.5e-3);
delay(5.0e-4);

rgpulse(pw,zero,0.0,0.0);                      /* 1H pulse excitation */

dec2phase(zero);
zgradpulse(gzlvl0, gt0);
delay(lambda - gt0);

sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

txphase(one);
zgradpulse(gzlvl0, gt0);
delay(lambda - gt0);

rgpulse(pw, one, 0.0, 0.0);

obspower(tpwrs);
if (TROSY[A]=='y') {
  txphase(two);
  shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0);
  obspower(tpwr);
  zgradpulse(gzlvl3, gt3);
  delay(2.0e-4);
  dec2rgpulse(pwN, zero, 0.0, 0.0);

  delay(0.5*kappa - 2.0*pw);

  rgpulse(2.0*pw, two, 0.0, 0.0);

  obspower(tpwrd);	  				       /* POWER_DELAY */
  decphase(zero);
  dec2phase(zero);
  decpwrf(rf7);
  delay(timeTN - 0.5*kappa - POWER_DELAY -WFG_START_DELAY);
}
else {
  txphase(zero);
  shaped_pulse("H2Osinc", pwHs, zero, 5.0e-4, 0.0);
  obspower(tpwrd);
  zgradpulse(gzlvl3, gt3);
  delay(2.0e-4);
  dec2rgpulse(pwN, zero, 0.0, 0.0);

  txphase(one);
  delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY);

  rgpulse(pwHd,one,0.0,0.0);
  txphase(zero);
  delay(2.0e-6);
  obsprgon("waltz16", pwHd, 90.0);	          /* PRG_START_DELAY */
  xmtron();
  decphase(zero);
  dec2phase(zero);
  decpwrf(rf7);
  delay(timeTN - kappa -WFG_START_DELAY);
}

sim3shaped_pulse("","offC7","",0.0, pwC7, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

decphase(t3);
decpwrf(rf5);
delay(timeTN -WFG_STOP_DELAY -pwHd);

dec2rgpulse(pwN, zero, 0.0, 0.0);

if (TROSY[A]=='n') {
  xmtroff();
  obsprgoff();
  rgpulse(pwHd,three,2.0e-6,0.0);
}

delay(2.0e-6);
zgradpulse(gzlvl3, gt3);
delay(2.0e-4);

decpwrf(rf5); 
decshaped_pulse("offC5", pwC5, zero, 0.0, 0.0);
delay(2.0e-6);

zgradpulse(-gzlvl7, gt7);
decpwrf(rf0);
decphase(zero);
delay(zeta - gt7 - 0.5*10.933*pwC-2.0e-6);

  decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0);
  decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0);
  decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0);      /* Shaka 6 composite */
  decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0);
  decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0);
  decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0);

delay(2.0e-6);
zgradpulse(-gzlvl7, gt7);
decpwrf(rf5);
decphase(one);
txphase(one);
delay(zeta - gt7 - 0.5*10.933*pwC - WFG_START_DELAY-2.0e-6);
                                                           /* WFG_START_DELAY */
decshaped_pulse("offC5", pwC5, one, 0.0, 0.0);

delay(2.0e-6);
zgradpulse(1.33*gzlvl3,gt3);
delay(200.0e-6);

if(dm3[B] == 'y'){                        /*optional 2H decoupling on */
  dec3unblank();
  dec3rgpulse(1/dmf3, one, 0.0, 0.0);
  dec3unblank();
  setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
}

decpwrf(rf1);
decphase(t2);
txphase(one);

if (h1dec[A]=='y') {
  rgpulse(pwHd,one,0.0,0.0);
  txphase(zero);
  delay(2.0e-6);
  obsprgon("waltz16", pwHd, 90.0);                   /* PRG_START_DELAY */
  xmtron();
}

decrgpulse(pwC1, t3, 0.0, 0.0);
decphase(zero);

decpwrf(rf2);
delay(tauCC -gt5 -202.0e-6 -POWER_DELAY- pwHd -PRG_STOP_DELAY -1/dmf3
                                            -2.0e-6 - WFG_STOP_DELAY);

if(dm3[B] == 'y') {                     /*optional 2H decoupling off */
  dec3rgpulse(1/dmf3, three, 0.0, 0.0);
  dec3blank();
  setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
  dec3blank();
}
else delay(1/dmf3 +WFG_STOP_DELAY);
 
if(h1dec[A]=='y') {
  xmtroff();
  obsprgoff();                                        /* PRG_STOP_DELAY */
  rgpulse(pwHd,three,2.0e-6,0.0);
}
else delay(pwHd +2.0e-6 +PRG_STOP_DELAY);
  
delay(2.0e-6);
zgradpulse(-gzlvl5, gt5);
delay(200.0e-6);

decrgpulse(pwC2,zero,0.0,0.0);

delay(2.0e-6);
zgradpulse(-gzlvl5, gt5);
delay(200.0e-6);
decpwrf(rf1);

if(h1dec[A]=='y'){
  rgpulse(pwHd,one,0.0,0.0);
  txphase(zero);
  delay(2.0e-6);
  obsprgon("waltz16", pwHd, 90.0);                /* PRG_START_DELAY */
  xmtron();
}
else delay(pwHd+2.0e-6+PRG_START_DELAY);

if(dm3[B] == 'y'){                        /*optional 2H decoupling on */
  dec3unblank();
  dec3rgpulse(1/dmf3, one, 0.0, 0.0);
  dec3unblank();
  setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
}
else delay(1/dmf3+WFG_START_DELAY);

delay(tauCC -gt5 -202.0e-6 -POWER_DELAY -1/dmf3 -WFG_START_DELAY
		-POWER_DELAY -pwHd -2.0e-6 -PRG_START_DELAY
		-pwHd-2.0e-6-PRG_STOP_DELAY);

if((h1dec[A]=='y') && (h1dec[B]=='n')) {
  xmtroff();
  obsprgoff();                                    /* PRG_STOP_DELAY */
  rgpulse(pwHd,one,2.0e-6,0.0);
  decrgpulse(pwC1,t2,0.0,0.0);
}
else {
  delay(pwHd+2.0e-6+PRG_STOP_DELAY-POWER_DELAY);
  if ((h1dec[A]=='y')&&(h1dec[B]=='y')) {
    delay(POWER_DELAY);
    decrgpulse(pwC1,t2,0.0,0.0);
  }
  if ((h1dec[A]=='n')&&(h1dec[B]=='n')) {
    obspower(tpwr);
    simpulse(2.0*pw,pwC1,two,t2,0.0,0.0);  /* Assuming 2.0*pw < pwC1 */
  }
}
/* It could be h1dec='ny' ??? */	

/*   xxxxxxxxxxxxxxxxxxxxxx       13Cb EVOLUTION       xxxxxxxxxxxxxxxxxx    */

if (CT_c[0]=='n') {
  if ((nli>1.0) && (tau1>0.0)) {     /* total 13C evolution equals d2 exactly */
            /* 2.0*pwC1/PI compensates for evolution at 64% rate during pwC1 */
    decpwrf(rf7);
    if(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ > 0.0) {
      delay(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ);
							  /* WFG3_START_DELAY */
      sim3shaped_pulse("", "offC7", "", 0.0, pwC7a, 2.0*pwN, zero, zero, zero,
								      0.0, 0.0);
      initval(phshift7, v7);
      decstepsize(1.0);
      dcplrphase(v7);  				        /* SAPS_DELAY */
      delay(tau1 - 2.0*pwC1/PI  - SAPS_DELAY - 0.5*pwZ - 2.0e-6);
    }
    else {
      initval(180.0, v7);
      decstepsize(1.0);
      dcplrphase(v7);  				        /* SAPS_DELAY */
      delay(2.0*tau1 - 4.0*pwC1/PI - SAPS_DELAY - 2.0e-6);
    }
  }

  else if (nli==1.0) {    /* special 1D check of pwC7 phase enabled when nli=1 */
 	 decpwrf(rf7);
	 delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1 + WFG_START_DELAY);
							  /* WFG3_START_DELAY */
	 sim3shaped_pulse("", "offC7", "", 0.0, pwC7, 2.0*pwN, zero, zero, zero,
							          2.0e-6, 0.0);
	 initval(phshift7, v7);
	 decstepsize(1.0);
	 dcplrphase(v7);  					/* SAPS_DELAY */
	 delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1);
      }

      else{		       /* 13Ca evolution refocused for 1st increment  */
	decpwrf(rf2);
	decrgpulse(pwC2, zero, 2.0e-6, 0.0);
      }
}  /* H1 dec. and H2 dec. status are not changed through nonCT evolution*/

else {		/* 13C CONSTANT TIME EVOLUTION */
  decpwrf(rf0);
  decpower(pwCgCO_lvl);
  if(h1dec[B]=='y') {
    if(tau1 - 2.0*pwC1/PI -WFG_START_DELAY -2*POWER_DELAY> 0.0) 
      delay(tau1 - 2.0*pwC1/PI -WFG_START_DELAY - 2*POWER_DELAY);
    decshaped_pulse("CgCO1",pwCgCO,zero,0.0,0.0);
    delay(tauC -gt8 -202.0e-6 -pwHd -2.0e-6 -PRG_STOP_DELAY
			-pwCgCO -pwC2 -WFG_STOP_DELAY-1/dmf3);

    if(dm3[B] == 'y') {                     /*optional 2H decoupling off */
      dec3rgpulse(1/dmf3, three, 0.0, 0.0);
      dec3blank();
      setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
      dec3blank();
    }
    else delay(1/dmf3+WFG_STOP_DELAY); 
    xmtroff();
    obsprgoff();                                        /* PRG_STOP_DELAY */
    rgpulse(pwHd,three,2.0e-6,0.0);
  }
  if ((h1dec[B]=='n')&&(dm3[B]=='n')) {
    obspower(tpwr);
    if(tau1 - 2.0*pwC1/PI -WFG_START_DELAY -3*POWER_DELAY> 0.0) {
      delay(tau1 - 2.0*pwC1/PI -WFG3_START_DELAY - 3*POWER_DELAY);
      simshaped_pulse("","CgCO1",2.0*pw,pwCgCO,two,zero,0.0,0.0);
    }
    else simshaped_pulse("","CgCO1",2.0*pw,pwCgCO,two,zero,0.0,0.0);
    obspower(tpwrd);
    delay(tauC -gt8 -202.0e-6 -pwCgCO -pwC2 -POWER_DELAY);
  }
  if ((h1dec[B]=='n')&&(dm3[B]=='y')) {
    obspower(tpwr);
    if(tau1 - 2.0*pwC1/PI - WFG_START_DELAY -3*POWER_DELAY> 0.0) {
      delay(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 3*POWER_DELAY);
      decshaped_pulse("CgCO1",pwCgCO,zero,0.0,0.0);
    }
    else decshaped_pulse("CgCO1",pwCgCO,zero,0.0,0.0);
    delay(taud-0.5*pwC2-WFG_START_DELAY-WFG_STOP_DELAY-pwCgCO);
    rgpulse(2.0*pw,two,0.0,0.0);
    obspower(tpwrd);
    delay(tauC -taud -gt8 -202e-6 -2.0*pw -POWER_DELAY -1/dmf3
	-pwCgCO -pwC2 -WFG_STOP_DELAY);
    dec3rgpulse(1/dmf3, three, 0.0, 0.0);
    dec3blank();
    setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
    dec3blank();
  }

  delay(2.0e-6);
  zgradpulse(gzlvl8,gt8);
  delay(200.0e-6-2*POWER_DELAY);
  decpower(pwClvl);decpwrf(rf2);

  decrgpulse(pwC2,zero,0.0,0.0);

  delay(2.0e-6);
  zgradpulse(gzlvl8,gt8);        
  delay(200.0e-6-2*POWER_DELAY);

  decpower(pwCgCO_lvl);decpwrf(rf0);

  if(h1dec[A]=='y'){
    rgpulse(pwHd,one,0.0,0.0);
    txphase(zero);
    delay(2.0e-6);
    obsprgon("waltz16", pwHd, 90.0);                /* PRG_START_DELAY */
    xmtron();
  }
  else delay(pwHd+ 2.0e-6 +PRG_START_DELAY);

  if(dm3[B] == 'y'){                        /*optional 2H decoupling on */
    dec3unblank();
    dec3rgpulse(1/dmf3, one, 0.0, 0.0);
    dec3unblank();
    setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
  }
  else delay(1/dmf3+WFG_START_DELAY);

  delay(tauC -tau1 -202.0e-6 -gt8 -pwCgCO -WFG_START_DELAY
	-WFG_STOP_DELAY -POWER_DELAY -1/dmf3 -WFG_START_DELAY
	-pwHd -2.0e-6 -PRG_START_DELAY);
  decshaped_pulse("CgCO2",pwCgCO,zero,0.0,0.0);
}		/* END of C13 CONSTANT TIME EVOLUTION */

decphase(one);
decpower(pwClvl); 
decpwrf(rf1);

decrgpulse(pwC1, one, 2.0e-6, 0.0);
delay(tauCC - gt5 -202.0e-6 -2.0e-6 -pwHd -PRG_STOP_DELAY
				-1/dmf3 -WFG_STOP_DELAY);

if(dm3[B] == 'y') {                     /*optional 2H decoupling off */
  dec3rgpulse(1/dmf3, three, 0.0, 0.0);
  dec3blank();
  setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
  dec3blank();
}
else delay(1/dmf3+WFG_STOP_DELAY);

if(h1dec[B]=='y') {
  xmtroff();
  obsprgoff();                                      /* PRG_STOP_DELAY */
  rgpulse(pwHd,three,2.0e-6,0.0);
}
else delay(2.0e-6+pwHd+PRG_STOP_DELAY);

delay(2.0e-6);
zgradpulse(gzlvl5*1.33, gt5);
delay(200.0e-6-2.0*POWER_DELAY);
decpwrf(rf2);
decphase(zero);

decrgpulse(pwC2, zero, 0.0, 0.0);

delay(2.0e-6);
zgradpulse(gzlvl5*1.33,gt5);
delay(200.0e-6-2.0*POWER_DELAY);
decpwrf(rf1);
decphase(t5);

if(h1dec[A]=='y'){
  rgpulse(pwHd,one,0.0,0.0);
  txphase(zero);
  delay(2.0e-6);
  obsprgon("waltz16", pwHd, 90.0);                /* PRG_START_DELAY */
  xmtron();
}
else delay(pwHd+ 2.0e-6 +PRG_START_DELAY);

if(dm3[B] == 'y'){                        /*optional 2H decoupling on */
  dec3unblank();
  dec3rgpulse(1/dmf3, one, 0.0, 0.0);
  dec3unblank();
  setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
}
else delay(1/dmf3+WFG_START_DELAY);


delay(tauCC - gt5 -202.0e-6 -1/dmf3 -WFG_START_DELAY -2.0e-6 -pwHd 
						-PRG_START_DELAY);

/*decrgpulse(pwC1, t5, 0.0, 0.0); */
decrgpulse(pwC1, zero, 0.0, 0.0); 

decpwrf(rf5);
decshaped_pulse("offC5", pwC5, one, 0.0, 0.0);

delay(zeta - gt7 -202.0e-6 - pwHd -2.0e-6 -PRG_STOP_DELAY
      -1/dmf3 -WFG_STOP_DELAY -0.5*10.933*pwC-2.0e-6);

if(dm3[B] == 'y') {                     /*optional 2H decoupling off */
  dec3rgpulse(1/dmf3, three, 0.0, 0.0);
  dec3blank();
  setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
  dec3blank();
}
else delay(1/dmf3+WFG_STOP_DELAY);

if(h1dec[A]=='y') {
  xmtroff();
  obsprgoff();                                      /* PRG_STOP_DELAY */
  rgpulse(pwHd,three,2.0e-6,0.0);
}
else delay(2.0e-6+pwHd+PRG_STOP_DELAY);

delay(2.0e-6);
zgradpulse(-gzlvl7, gt7);
decpwrf(rf0);
decphase(zero);
delay(200.0e-6-2.0*POWER_DELAY);

  decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0);
  decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0);
  decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0);      /* Shaka 6 composite */
  decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0);
  decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0);
  decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0);

delay(2.0e-6);
zgradpulse(-gzlvl7, gt7);
delay(200.0e-6);
decpwrf(rf5);
decphase(one);
txphase(one);

if(h1dec[A]=='y'){
  rgpulse(pwHd,one,0.0,0.0);
  txphase(zero);
  delay(2.0e-6);
  obsprgon("waltz16", pwHd, 90.0);                /* PRG_START_DELAY */
  xmtron();
}
else delay(pwHd+ 2.0e-6 +PRG_START_DELAY);

if(dm3[B] == 'y'){                        /*optional 2H decoupling on */
  dec3unblank();
  dec3rgpulse(1/dmf3, one, 0.0, 0.0);
  dec3unblank();
  setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3);
}
else delay(1/dmf3+WFG_START_DELAY);

delay(zeta - gt7 - 0.5*10.933*pwC - WFG_START_DELAY-2.0e-6
	-1/dmf3 -WFG_START_DELAY -pwHd -2.0e-6 -PRG_START_DELAY);
                                                           /* WFG_START_DELAY */
decshaped_pulse("offC5", pwC5, t5, 0.0, 0.0);


/*  xxxxxxxxxxxxxxxxxx    OPTIONS FOR N15 EVOLUTION    xxxxxxxxxxxxxxxxxxxxx  */

dec2phase(t8);
txphase(one);
dcplrphase(zero);
obspower(tpwrd);

if(dm3[B] == 'y')  {                     /*optional 2H decoupling off */
  dec3rgpulse(1/dmf3, three, 0.0, 0.0);
  dec3blank();
  setstatus(DEC3ch, FALSE, 'w', FALSE, dmf3);
  dec3blank();
}

if(h1dec[A]=='y') { 
  xmtroff();
  obsprgoff();                                      /* PRG_STOP_DELAY */
  rgpulse(pwHd,three,2.0e-6,0.0);
}

zgradpulse(gzlvl4, gt4);
delay(2.0e-4);

if (TROSY[A]=='n') {
  rgpulse(pwHd,one,0.0,0.0);
  txphase(zero);
  delay(2.0e-6);
  obsprgon("waltz16", pwHd, 90.0);
  xmtron();
}

dec2rgpulse(pwN, t8, 0.0, 0.0);

decphase(zero);
dec2phase(t9);
decpwrf(rf7);
delay(timeTN - tau2);

sim3shaped_pulse("","offC7","",0.0, pwC7, 2.0*pwN, zero, zero, t9, 0.0, 0.0);

dec2phase(t10);
decpwrf(rf5);

if (TROSY[A]=='y')
{    if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs)
	{
	  txphase(three);
          delay(timeTN - pwC2) ;         /* WFG_START_DELAY */
          decrgpulse(pwC2, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs);
          if (mag_flg[A]=='y')  magradpulse(icosel*gzcal*gzlvl1, gt1);
          else  zgradpulse(icosel*gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
	  txphase(t4);
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(0.5e-4 - POWER_DELAY);
	}

    else if (tau2 > pwHs + 0.5e-4)
	{
	  txphase(three);
          delay(timeTN-pwC2-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(icosel*gzcal*gzlvl1, gt1);
          else  zgradpulse(icosel*gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                     /* WFG_START_DELAY */
          decrgpulse(pwC2, zero, 0.0, 0.0);
          delay(tau2 - pwHs - 0.5e-4);
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
	  txphase(t4);
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(0.5e-4 - POWER_DELAY);
	}
    else
	{
	  txphase(three);
          delay(timeTN - pwC2 - gt1 - 2.0*GRADIENT_DELAY
							    - 1.5e-4 - pwHs);
          if (mag_flg[A]=='y')    magradpulse(icosel*gzcal*gzlvl1, gt1);
          else  zgradpulse(icosel*gzlvl1, gt1);	   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwrs);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                     /* WFG_START_DELAY */
   	  shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0);
	  txphase(t4);
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(0.5e-4 - POWER_DELAY);
          decrgpulse(pwC2, zero, 0.0, 0.0);
          delay(tau2);
	}
}
else
{
    if (tau2 > kappa)
	{
          delay(timeTN - pwC2);     	   /* WFG_START_DELAY */
          decrgpulse(pwC2, zero, 0.0, 0.0);
          delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
          delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(icosel*gzcal*gzlvl1, gt1);
          else    zgradpulse(icosel*gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else if (tau2 > (kappa - pwC2))
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);                                     /* WFG_START_DELAY */
          decrgpulse(pwC2, zero, 0.0, 0.0);
          delay(kappa -pwC2 -gt1 -2.0*GRADIENT_DELAY -1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(icosel*gzcal*gzlvl1, gt1);
          else    zgradpulse(icosel*gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4)
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
          obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
          delay(kappa - tau2 - pwC2 );   /* WFG_START_DELAY */
          decrgpulse(pwC2, zero, 0.0, 0.0);
          delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(icosel*gzcal*gzlvl1, gt1);
          else    zgradpulse(icosel*gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);
	}
    else
	{
          delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6);
          xmtroff();
	  obsprgoff();					    /* PRG_STOP_DELAY */
	  rgpulse(pwHd,three,2.0e-6,0.0);
	  txphase(t4);
    	  delay(kappa-tau2-pwC2-gt1-2.0*GRADIENT_DELAY-1.0e-4);
          if (mag_flg[A]=='y')    magradpulse(icosel*gzcal*gzlvl1, gt1);
          else    zgradpulse(icosel*gzlvl1, gt1);   	/* 2.0*GRADIENT_DELAY */
	  obspower(tpwr);				       /* POWER_DELAY */
	  delay(1.0e-4 - POWER_DELAY);                    /* WFG_START_DELAY */
          decrgpulse(pwC2, zero, 0.0, 0.0);
          delay(tau2);
	}
}
/*  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  */
	if (TROSY[A]=='y')  rgpulse(pw, t4, 0.0, 0.0);
	else                sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl5, gt5);
	if (TROSY[A]=='y')   delay(lambda - 0.65*(pw + pwN) - gt5);
	else   delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	zgradpulse(gzlvl5, gt5);
	txphase(one);
	dec2phase(t11);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0);

	txphase(zero);
	dec2phase(zero);
	zgradpulse(gzlvl6, gt5);
	delay(lambda - 1.3*pwN - gt5);

	sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0);

	dec2phase(t10);
	zgradpulse(gzlvl6, gt5);
	if (TROSY[A]=='y')   delay(lambda - 1.6*pwN - gt5);
	else   delay(lambda - 0.65*pwN - gt5);

	if (TROSY[A]=='y')   dec2rgpulse(pwN, t10, 0.0, 0.0); 
	else    	     rgpulse(pw, zero, 0.0, 0.0); 

	delay((gt1/10.0) + gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY);

	rgpulse(2.0*pw, zero, 0.0, rof1);
	dec2power(dpwr2);				       /* POWER_DELAY */
        if (mag_flg[A] == 'y')    magradpulse(gzcal*gzlvl2, gt1/10.0);
        else   zgradpulse(gzlvl2, gt1/10.0);            /* 2.0*GRADIENT_DELAY */

statusdelay(C,gstab- rof1);
   if (dm3[B]=='y') lk_sample();

	setreceiver(t12);
}