static void send_pulse_irdeo(unsigned int length, ktime_t target) { long rawbits; int i; unsigned char output; unsigned char chunk, shifted; /* how many bits have to be sent ? */ rawbits = length * 1152 / 10000; if (serial_ir.duty_cycle > 50) chunk = 3; else chunk = 1; for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) { shifted = chunk << (i * 3); shifted >>= 1; output &= (~shifted); i++; if (i == 3) { soutp(UART_TX, output); while (!(sinp(UART_LSR) & UART_LSR_THRE)) ; output = 0x7f; i = 0; } } if (i != 0) { soutp(UART_TX, output); while (!(sinp(UART_LSR) & UART_LSR_TEMT)) ; } }
static void serial_ir_close(struct rc_dev *rcdev) { unsigned long flags; spin_lock_irqsave(&hardware[type].lock, flags); /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER) & (~(UART_IER_MSI | UART_IER_RLSI | UART_IER_THRI | UART_IER_RDI))); spin_unlock_irqrestore(&hardware[type].lock, flags); }
static int serial_ir_open(struct rc_dev *rcdev) { unsigned long flags; /* initialize timestamp */ serial_ir.lastkt = ktime_get(); spin_lock_irqsave(&hardware[type].lock, flags); /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); soutp(UART_IER, sinp(UART_IER) | UART_IER_MSI); spin_unlock_irqrestore(&hardware[type].lock, flags); return 0; }
static int set_use_inc(void* data) { int result; unsigned long flags; /* Init read buffer. */ if (lirc_buffer_init(&rbuf, sizeof(lirc_t), RBUF_LEN) < 0) return -ENOMEM; /* initialize timestamp */ do_gettimeofday(&lasttv); result=request_irq(irq,irq_handler, SA_INTERRUPT | (share_irq ? SA_SHIRQ:0), LIRC_DRIVER_NAME,(void *)&hardware); switch(result) { case -EBUSY: printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n", irq); lirc_buffer_free(&rbuf); return -EBUSY; case -EINVAL: printk(KERN_ERR LIRC_DRIVER_NAME ": Bad irq number or handler\n"); lirc_buffer_free(&rbuf); return -EINVAL; default: dprintk("Interrupt %d, port %04x obtained\n", irq, io); break; }; local_irq_save(flags); /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI); local_irq_restore(flags); MOD_INC_USE_COUNT; return 0; }
static void set_use_dec(void* data) { unsigned long flags; local_irq_save(flags); /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER)& (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI))); local_irq_restore(flags); free_irq(irq, (void *)&hardware); dprintk("freed IRQ %d\n", irq); lirc_buffer_free(&rbuf); MOD_DEC_USE_COUNT; }
static long send_pulse_irdeo(unsigned long length) { long rawbits; int i; unsigned char output; unsigned char chunk,shifted; /* how many bits have to be sent ? */ rawbits=length*1152/10000; if(duty_cycle>50) chunk=3; else chunk=1; for(i=0,output=0x7f;rawbits>0;rawbits-=3) { shifted=chunk<<(i*3); shifted>>=1; output&=(~shifted); i++; if(i==3) { soutp(UART_TX,output); while(!(sinp(UART_LSR) & UART_LSR_THRE)); output=0x7f; i=0; } } if(i!=0) { soutp(UART_TX,output); while(!(sinp(UART_LSR) & UART_LSR_TEMT)); } if(i==0) { return((-rawbits)*10000/1152); } else { return((3-i)*3*10000/1152+(-rawbits)*10000/1152); } }
static void lirc_close(struct inode *node, struct file *file) #endif { unsigned long flags; save_flags(flags);cli(); #ifndef CONFIG_COLDFIRE /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER)& (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI))); #else #ifndef LIRC_PORT { volatile unsigned long *icrp; icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); *icrp = 0x80000000; /* INT1 ipl cleared */ } #else soutp(MCFUART_UIMR, 0); /* disable UART interrupts */ #endif #endif restore_flags(flags); free_irq(irq, NULL); # ifdef DEBUG printk(KERN_INFO LIRC_DRIVER_NAME ": freed IRQ %d\n", irq); # endif MOD_DEC_USE_COUNT; #ifdef KERNEL_2_1 return 0; #endif }
static int lirc_serial_resume(struct platform_device *dev) { unsigned long flags; hardware_init_port(); local_irq_save(flags); /* Enable Interrupt */ do_gettimeofday(&lasttv); soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI); off(); lirc_buffer_clear(&rbuf); local_irq_restore(flags); return 0; }
static int serial_ir_resume(struct platform_device *dev) { unsigned long flags; int result; result = hardware_init_port(); if (result < 0) return result; spin_lock_irqsave(&hardware[type].lock, flags); /* Enable Interrupt */ serial_ir.lastkt = ktime_get(); soutp(UART_IER, sinp(UART_IER) | UART_IER_MSI); off(); spin_unlock_irqrestore(&hardware[type].lock, flags); return 0; }
static int lirc_serial_resume(struct platform_device *dev) { unsigned long flags; if (hardware_init_port() < 0) { lirc_serial_exit(); return -EINVAL; } spin_lock_irqsave(&hardware[type].lock, flags); /* Enable Interrupt */ do_gettimeofday(&lasttv); soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI); off(); lirc_buffer_clear(&rbuf); spin_unlock_irqrestore(&hardware[type].lock, flags); return 0; }
static int lirc_serial_suspend(struct platform_device *dev, pm_message_t state) { /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* Disable all interrupts */ soutp(UART_IER, sinp(UART_IER)& (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI))); /* Clear registers. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); return 0; }
static irqreturn_t irq_handler(int i, void *blah, struct pt_regs *regs) #endif { struct timeval tv; int status,counter,dcd; long deltv; lirc_t data; if((sinp(UART_IIR) & UART_IIR_NO_INT)) { /* not our interrupt */ return IRQ_RETVAL(IRQ_NONE); } counter=0; do{ counter++; status=sinp(UART_MSR); if(counter>RS_ISR_PASS_LIMIT) { printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: " "We're caught!\n"); break; } if((status&hardware[type].signal_pin_change) && sense!=-1) { /* get current time */ do_gettimeofday(&tv); /* New mode, written by Trent Piepho <*****@*****.**>. */ /* The old format was not very portable. We now use the type lirc_t to pass pulses and spaces to user space. If PULSE_BIT is set a pulse has been received, otherwise a space has been received. The driver needs to know if your receiver is active high or active low, or the space/pulse sense could be inverted. The bits denoted by PULSE_MASK are the length in microseconds. Lengths greater than or equal to 16 seconds are clamped to PULSE_MASK. All other bits are unused. This is a much simpler interface for user programs, as well as eliminating "out of phase" errors with space/pulse autodetection. */ /* calculate time since last interrupt in microseconds */ dcd=(status & hardware[type].signal_pin) ? 1:0; deltv=tv.tv_sec-lasttv.tv_sec; if(tv.tv_sec<lasttv.tv_sec || (tv.tv_sec==lasttv.tv_sec && tv.tv_usec<lasttv.tv_usec)) { printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: your clock just jumped " "backwards\n"); printk(KERN_WARNING LIRC_DRIVER_NAME ": %d %d %lx %lx %lx %lx\n", dcd,sense, tv.tv_sec,lasttv.tv_sec, tv.tv_usec,lasttv.tv_usec); data=PULSE_MASK; } else if(deltv>15) { data=PULSE_MASK; /* really long time */ if(!(dcd^sense)) /* sanity check */ { printk(KERN_WARNING LIRC_DRIVER_NAME "AIEEEE: %d %d %lx %lx %lx %lx\n", dcd,sense, tv.tv_sec,lasttv.tv_sec, tv.tv_usec,lasttv.tv_usec); /* detecting pulse while this MUST be a space! */ sense=sense ? 0:1; } } else { data=(lirc_t) (deltv*1000000+ tv.tv_usec- lasttv.tv_usec); } frbwrite(dcd^sense ? data : (data|PULSE_BIT)); lasttv=tv; wake_up_interruptible(&rbuf.wait_poll); } } while(!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */ return IRQ_RETVAL(IRQ_HANDLED); }
void irq_handler(int i, void *blah, struct pt_regs *regs) { static struct timeval tv; int status,counter,dcd; long deltv; lirc_t data; unsigned long flags; #ifndef LIRC_PORT save_flags(flags);cli(); data= (lirc_t) (fast_tv.tv_sec*1000000+ fast_tv.tv_usec); pin_status = (pin_status + 1) & 0x1; if (data > 100000 && pin_status == 0) {/* 1/2 second fixup if broken */ pin_status = 1; printk("F"); } restore_flags(flags); #endif counter=0; do{ #if DAVIDM counter++; #ifndef LIRC_PORT status=LIRC_SIGNAL_PIN_CHANGE | (pin_status ? LIRC_SIGNAL_PIN : 0); #else status=sinp(UART_MSR); #endif if(counter>RS_ISR_PASS_LIMIT) { printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: " "We're caught!\n"); break; } if((status&LIRC_SIGNAL_PIN_CHANGE) && sense!=-1) #endif /* DAVIDM */ { #if DAVIDM /* get current time */ do_gettimeofday(&tv); #endif /* New mode, written by Trent Piepho <*****@*****.**>. */ /* The old format was not very portable. We now use the type lirc_t to pass pulses and spaces to user space. If PULSE_BIT is set a pulse has been received, otherwise a space has been received. The driver needs to know if your receiver is active high or active low, or the space/pulse sense could be inverted. The bits denoted by PULSE_MASK are the length in microseconds. Lengths greater than or equal to 16 seconds are clamped to PULSE_MASK. All other bits are unused. This is a much simpler interface for user programs, as well as eliminating "out of phase" errors with space/pulse autodetection. */ /* calculate time since last interrupt in microseconds */ #if DAVIDM dcd=(status & LIRC_SIGNAL_PIN) ? 1:0; deltv=tv.tv_sec-lasttv.tv_sec; #else dcd=pin_status; deltv=fast_tv.tv_sec; #endif if(deltv>15) { #ifdef DEBUG printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: %d %d %lx %lx %lx %lx\n", dcd,sense, tv.tv_sec,lasttv.tv_sec, tv.tv_usec,lasttv.tv_usec); #endif data=PULSE_MASK; /* really long time */ if(!(dcd^sense)) /* sanity check */ { /* detecting pulse while this MUST be a space! */ sense=sense ? 0:1; } } else { #ifdef DAVIDM data=(lirc_t) (deltv*1000000+ tv.tv_usec- lasttv.tv_usec); #else // data=(lirc_t) (fast_tv.tv_sec*1000000+ fast_tv.tv_usec); #endif } #if DAVIDM if(tv.tv_sec<lasttv.tv_sec || (tv.tv_sec==lasttv.tv_sec && tv.tv_usec<lasttv.tv_usec)) { printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: your clock just jumped " "backwards\n"); printk(KERN_WARNING LIRC_DRIVER_NAME "%d %d %lx %lx %lx %lx\n", dcd,sense, tv.tv_sec,lasttv.tv_sec, tv.tv_usec,lasttv.tv_usec); data=PULSE_MASK; } #endif frbwrite(dcd^sense ? data : (data|PULSE_BIT)); #if DAVIDM lasttv=tv; #else fast_tv.tv_sec = fast_tv.tv_usec = 0; #endif wake_up_interruptible(&lirc_wait_in); } } #ifndef CONFIG_COLDFIRE while(!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */ #else while (0); #endif #ifndef LIRC_PORT #ifndef LIRC_PORT * (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1) = 0xe0000000; #endif #endif }
static int init_port(void) { unsigned long flags; /* Check io region*/ #ifdef LIRC_PORT if((check_region(port,8))==-EBUSY) { #if 0 /* this is the correct behaviour but many people have the serial driver compiled into the kernel... */ printk(KERN_ERR LIRC_DRIVER_NAME ": port %04x already in use\n", port); return(-EBUSY); #else printk(KERN_ERR LIRC_DRIVER_NAME ": port %04x already in use, proceding anyway\n", port); printk(KERN_WARNING LIRC_DRIVER_NAME ": compile the serial port driver as module and\n"); printk(KERN_WARNING LIRC_DRIVER_NAME ": make sure this module is loaded first\n"); release_region(port,8); #endif } /* Reserve io region. */ request_region(port, 8, LIRC_DRIVER_NAME); #endif save_flags(flags);cli(); #ifndef CONFIG_COLDFIRE /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER)& (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI))); /* Clear registers. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); /* Set line for power source */ soutp(UART_MCR, LIRC_OFF); /* Clear registers again to be sure. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); #ifdef LIRC_SERIAL_IRDEO /* setup port to 7N1 @ 115200 Baud */ /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */ /* Set DLAB 1. */ soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB); /* Set divisor to 1 => 115200 Baud */ soutp(UART_DLM,0); soutp(UART_DLL,1); /* Set DLAB 0 + 7N1 */ soutp(UART_LCR,UART_LCR_WLEN7); /* THR interrupt already disabled at this point */ #endif #else /* CONFIG_COLDFIRE */ { volatile unsigned char *uartp; #ifdef CONFIG_M5272 volatile unsigned long *icrp; #else volatile unsigned char *icrp; #endif /* * we need a fast timer */ coldfire_fast_init(); /* * Setup the interrupts */ #ifdef CONFIG_M5272 #ifndef LIRC_PORT /* nothing to do */ #else icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR2); switch (LIRC_PORT) { case MCFUART_BASE1: *icrp = 0xe0000000; break; case MCFUART_BASE2: *icrp = 0x0e000000; break; default: printk("SERIAL: don't know how to handle UART %d interrupt?\n", LIRC_PORT; return; } #endif #else switch (LIRC_PORT) { case MCFUART_BASE1: icrp = (volatile unsigned char *) (MCF_MBAR + MCFSIM_UART1ICR); *icrp = /*MCFSIM_ICR_AUTOVEC |*/ MCFSIM_ICR_LEVEL6 | MCFSIM_ICR_PRI1; mcf_setimr(mcf_getimr() & ~MCFSIM_IMR_UART1); break; case MCFUART_BASE2: icrp = (volatile unsigned char *) (MCF_MBAR + MCFSIM_UART2ICR); *icrp = /*MCFSIM_ICR_AUTOVEC |*/ MCFSIM_ICR_LEVEL6 | MCFSIM_ICR_PRI2; mcf_setimr(mcf_getimr() & ~MCFSIM_IMR_UART2); break; default: printk("SERIAL: don't know how to handle UART %d interrupt?\n", LIRC_PORT); return(-EIO); } soutp(MCFUART_UIVR, LIRC_IRQ); #endif #ifdef LIRC_PORT /* * disable all interrupts */ soutp(MCFUART_UIMR, 0); soutp(MCFUART_UCR, MCFUART_UCR_CMDRESETRX); /* reset RX */ soutp(MCFUART_UCR, MCFUART_UCR_CMDRESETTX); /* reset TX */ soutp(MCFUART_UCR, MCFUART_UCR_CMDRESETMRPTR); /* reset MR pointer */ /* * Set port for defined baud , 8 data bits, 1 stop bit, no parity. */ soutp(MCFUART_UMR, MCFUART_MR1_PARITYNONE | MCFUART_MR1_CS8); soutp(MCFUART_UMR, MCFUART_MR2_STOP1); #define clk ((MCF_CLK / 32) / 115200) soutp(MCFUART_UBG1, (clk & 0xff00) >> 8); /* set msb baud */ soutp(MCFUART_UBG2, (clk & 0xff)); /* set lsb baud */ #undef clk soutp(MCFUART_UCSR, MCFUART_UCSR_RXCLKTIMER | MCFUART_UCSR_TXCLKTIMER); soutp(MCFUART_UCR, 0 /* MCFUART_UCR_RXENABLE */); /* * Allow COS interrupts */ soutp(MCFUART_UACR, MCFUART_UACR_IEC); /* * turn on RTS for power */ soutp(MCFUART_UOP1, MCFUART_UOP_RTS); #endif /* LIRC_PORT */ } #endif /* CONFIG_COLDFIRE */ restore_flags(flags); /* If pin is high, then this must be an active low receiver. */ if(sense==-1) { #if DAVIDM /* wait 1 sec for the power supply */ # ifdef KERNEL_2_1 sleep_on_timeout(&power_supply_queue,HZ); # else init_timer(&power_supply_timer); power_supply_timer.expires=jiffies+HZ; power_supply_timer.data=(unsigned long) current; power_supply_timer.function=power_supply_up; add_timer(&power_supply_timer); sleep_on(&power_supply_queue); del_timer(&power_supply_timer); # endif #ifndef LIRC_PORT sense=(pin_status & LIRC_SIGNAL_PIN) ? 1:0; #else sense=(sinp(UART_MSR) & LIRC_SIGNAL_PIN) ? 1:0; #endif #else sense = 0; #endif /* DAVIDM */ printk(KERN_INFO LIRC_DRIVER_NAME ": auto-detected active " "%s receiver\n",sense ? "low":"high"); } else { printk(KERN_INFO LIRC_DRIVER_NAME ": Manually using active " "%s receiver\n",sense ? "low":"high"); }; return 0; }
static int serial_ir_probe(struct platform_device *dev) { struct rc_dev *rcdev; int i, nlow, nhigh, result; rcdev = devm_rc_allocate_device(&dev->dev, RC_DRIVER_IR_RAW); if (!rcdev) return -ENOMEM; if (hardware[type].send_pulse && hardware[type].send_space) rcdev->tx_ir = serial_ir_tx; if (hardware[type].set_send_carrier) rcdev->s_tx_carrier = serial_ir_tx_carrier; if (hardware[type].set_duty_cycle) rcdev->s_tx_duty_cycle = serial_ir_tx_duty_cycle; switch (type) { case IR_HOMEBREW: rcdev->input_name = "Serial IR type home-brew"; break; case IR_IRDEO: rcdev->input_name = "Serial IR type IRdeo"; break; case IR_IRDEO_REMOTE: rcdev->input_name = "Serial IR type IRdeo remote"; break; case IR_ANIMAX: rcdev->input_name = "Serial IR type AnimaX"; break; case IR_IGOR: rcdev->input_name = "Serial IR type IgorPlug"; break; } rcdev->input_phys = KBUILD_MODNAME "/input0"; rcdev->input_id.bustype = BUS_HOST; rcdev->input_id.vendor = 0x0001; rcdev->input_id.product = 0x0001; rcdev->input_id.version = 0x0100; rcdev->open = serial_ir_open; rcdev->close = serial_ir_close; rcdev->dev.parent = &serial_ir.pdev->dev; rcdev->allowed_protocols = RC_BIT_ALL_IR_DECODER; rcdev->driver_name = KBUILD_MODNAME; rcdev->map_name = RC_MAP_RC6_MCE; rcdev->min_timeout = 1; rcdev->timeout = IR_DEFAULT_TIMEOUT; rcdev->max_timeout = 10 * IR_DEFAULT_TIMEOUT; rcdev->rx_resolution = 250000; serial_ir.rcdev = rcdev; setup_timer(&serial_ir.timeout_timer, serial_ir_timeout, (unsigned long)&serial_ir); result = devm_request_irq(&dev->dev, irq, serial_ir_irq_handler, share_irq ? IRQF_SHARED : 0, KBUILD_MODNAME, &hardware); if (result < 0) { if (result == -EBUSY) dev_err(&dev->dev, "IRQ %d busy\n", irq); else if (result == -EINVAL) dev_err(&dev->dev, "Bad irq number or handler\n"); return result; } /* Reserve io region. */ if ((iommap && (devm_request_mem_region(&dev->dev, iommap, 8 << ioshift, KBUILD_MODNAME) == NULL)) || (!iommap && (devm_request_region(&dev->dev, io, 8, KBUILD_MODNAME) == NULL))) { dev_err(&dev->dev, "port %04x already in use\n", io); dev_warn(&dev->dev, "use 'setserial /dev/ttySX uart none'\n"); dev_warn(&dev->dev, "or compile the serial port driver as module and\n"); dev_warn(&dev->dev, "make sure this module is loaded first\n"); return -EBUSY; } result = hardware_init_port(); if (result < 0) return result; /* Initialize pulse/space widths */ init_timing_params(50, 38000); /* If pin is high, then this must be an active low receiver. */ if (sense == -1) { /* wait 1/2 sec for the power supply */ msleep(500); /* * probe 9 times every 0.04s, collect "votes" for * active high/low */ nlow = 0; nhigh = 0; for (i = 0; i < 9; i++) { if (sinp(UART_MSR) & hardware[type].signal_pin) nlow++; else nhigh++; msleep(40); } sense = nlow >= nhigh ? 1 : 0; dev_info(&dev->dev, "auto-detected active %s receiver\n", sense ? "low" : "high"); } else dev_info(&dev->dev, "Manually using active %s receiver\n", sense ? "low" : "high"); dev_dbg(&dev->dev, "Interrupt %d, port %04x obtained\n", irq, io); return devm_rc_register_device(&dev->dev, rcdev); }
static int hardware_init_port(void) { u8 scratch, scratch2, scratch3; /* * This is a simple port existence test, borrowed from the autoconfig * function in drivers/tty/serial/8250/8250_port.c */ scratch = sinp(UART_IER); soutp(UART_IER, 0); #ifdef __i386__ outb(0xff, 0x080); #endif scratch2 = sinp(UART_IER) & 0x0f; soutp(UART_IER, 0x0f); #ifdef __i386__ outb(0x00, 0x080); #endif scratch3 = sinp(UART_IER) & 0x0f; soutp(UART_IER, scratch); if (scratch2 != 0 || scratch3 != 0x0f) { /* we fail, there's nothing here */ pr_err("port existence test failed, cannot continue\n"); return -ENODEV; } /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER) & (~(UART_IER_MSI | UART_IER_RLSI | UART_IER_THRI | UART_IER_RDI))); /* Clear registers. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); /* Set line for power source */ off(); /* Clear registers again to be sure. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); switch (type) { case IR_IRDEO: case IR_IRDEO_REMOTE: /* setup port to 7N1 @ 115200 Baud */ /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */ /* Set DLAB 1. */ soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB); /* Set divisor to 1 => 115200 Baud */ soutp(UART_DLM, 0); soutp(UART_DLL, 1); /* Set DLAB 0 + 7N1 */ soutp(UART_LCR, UART_LCR_WLEN7); /* THR interrupt already disabled at this point */ break; default: break; } return 0; }
static irqreturn_t serial_ir_irq_handler(int i, void *blah) { ktime_t kt; int counter, dcd; u8 status; ktime_t delkt; unsigned int data; static int last_dcd = -1; if ((sinp(UART_IIR) & UART_IIR_NO_INT)) { /* not our interrupt */ return IRQ_NONE; } counter = 0; do { counter++; status = sinp(UART_MSR); if (counter > RS_ISR_PASS_LIMIT) { dev_err(&serial_ir.pdev->dev, "Trapped in interrupt"); break; } if ((status & hardware[type].signal_pin_change) && sense != -1) { /* get current time */ kt = ktime_get(); /* * The driver needs to know if your receiver is * active high or active low, or the space/pulse * sense could be inverted. */ /* calc time since last interrupt in nanoseconds */ dcd = (status & hardware[type].signal_pin) ? 1 : 0; if (dcd == last_dcd) { dev_err(&serial_ir.pdev->dev, "ignoring spike: %d %d %lldns %lldns\n", dcd, sense, ktime_to_ns(kt), ktime_to_ns(serial_ir.lastkt)); continue; } delkt = ktime_sub(kt, serial_ir.lastkt); if (ktime_compare(delkt, ktime_set(15, 0)) > 0) { data = IR_MAX_DURATION; /* really long time */ if (!(dcd ^ sense)) { /* sanity check */ dev_err(&serial_ir.pdev->dev, "dcd unexpected: %d %d %lldns %lldns\n", dcd, sense, ktime_to_ns(kt), ktime_to_ns(serial_ir.lastkt)); /* * detecting pulse while this * MUST be a space! */ sense = sense ? 0 : 1; } } else { data = ktime_to_ns(delkt); } frbwrite(data, !(dcd ^ sense)); serial_ir.lastkt = kt; last_dcd = dcd; } } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */ mod_timer(&serial_ir.timeout_timer, jiffies + nsecs_to_jiffies(serial_ir.rcdev->timeout)); ir_raw_event_handle(serial_ir.rcdev); return IRQ_HANDLED; }
static int lirc_open(struct inode *ino, struct file *filep) { int result; unsigned long flags; # ifdef KERNEL_2_1 spin_lock(&lirc_lock); # endif if(MOD_IN_USE) { # ifdef KERNEL_2_1 spin_unlock(&lirc_lock); # endif return -EBUSY; } /* initialize timestamp */ do_gettimeofday(&lasttv); result=request_irq(irq,irq_handler, SA_INTERRUPT|IRQ_FLG_FAST, LIRC_DRIVER_NAME,NULL); switch(result) { case -EBUSY: printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n", irq); # ifdef KERNEL_2_1 spin_unlock(&lirc_lock); # endif return -EBUSY; case -EINVAL: printk(KERN_ERR LIRC_DRIVER_NAME ": Bad irq number or handler\n"); # ifdef KERNEL_2_1 spin_unlock(&lirc_lock); # endif return -EINVAL; default: # ifdef DEBUG printk(KERN_INFO LIRC_DRIVER_NAME ": Interrupt %d, port %04x obtained\n", irq, port); # endif break; }; /* finally enable interrupts. */ save_flags(flags);cli(); #ifndef CONFIG_COLDFIRE /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI); #else #ifndef LIRC_PORT /* * INT1 ipl set */ * (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1) = 0xe0000000; #else /* * turn on CTS change interrupts */ soutp(MCFUART_UIMR, MCFUART_UIR_COS); #endif #endif restore_flags(flags); /* Init read buffer pointers. */ rbh = rbt = 0; MOD_INC_USE_COUNT; # ifdef KERNEL_2_1 spin_unlock(&lirc_lock); # endif return 0; }
static int init_port(void) { int i, nlow, nhigh; /* Reserve io region. */ #if defined(LIRC_ALLOW_MMAPPED_IO) /* Future MMAP-Developers: Attention! For memory mapped I/O you *might* need to use ioremap() first, for the NSLU2 it's done in boot code. */ if(((iommap != 0) && (request_mem_region(iommap, 8<<ioshift, LIRC_DRIVER_NAME) == NULL)) || ((iommap == 0) && (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) #else if(request_region(io, 8, LIRC_DRIVER_NAME)==NULL) #endif { printk(KERN_ERR LIRC_DRIVER_NAME ": port %04x already in use\n", io); printk(KERN_WARNING LIRC_DRIVER_NAME ": use 'setserial /dev/ttySX uart none'\n"); printk(KERN_WARNING LIRC_DRIVER_NAME ": or compile the serial port driver as module and\n"); printk(KERN_WARNING LIRC_DRIVER_NAME ": make sure this module is loaded first\n"); return(-EBUSY); } hardware_init_port(); /* Initialize pulse/space widths */ init_timing_params(duty_cycle, freq); /* If pin is high, then this must be an active low receiver. */ if(sense==-1) { /* wait 1/2 sec for the power supply */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ/2); /* probe 9 times every 0.04s, collect "votes" for active high/low */ nlow = 0; nhigh = 0; for(i = 0; i < 9; i ++) { if (sinp(UART_MSR) & hardware[type].signal_pin) { nlow++; } else { nhigh++; } schedule_timeout(HZ/25); } sense = (nlow >= nhigh ? 1 : 0); printk(KERN_INFO LIRC_DRIVER_NAME ": auto-detected active " "%s receiver\n",sense ? "low":"high"); } else { printk(KERN_INFO LIRC_DRIVER_NAME ": Manually using active " "%s receiver\n",sense ? "low":"high"); }; return 0; }
static void hardware_init_port(void) { unsigned long flags; local_irq_save(flags); /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER)& (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI))); /* Clear registers. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); #if defined(LIRC_SERIAL_NSLU2) if(type == LIRC_NSLU2) /* Setup NSLU2 UART */ { /* Enable UART */ soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE); /* Disable Receiver data Time out interrupt */ soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE); /* set out2 = interupt unmask; off() doesn't set MCR on NSLU2 */ soutp(UART_MCR,UART_MCR_RTS|UART_MCR_OUT2); } #endif /* Set line for power source */ off(); /* Clear registers again to be sure. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); switch(type) { case LIRC_IRDEO: case LIRC_IRDEO_REMOTE: /* setup port to 7N1 @ 115200 Baud */ /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */ /* Set DLAB 1. */ soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB); /* Set divisor to 1 => 115200 Baud */ soutp(UART_DLM,0); soutp(UART_DLL,1); /* Set DLAB 0 + 7N1 */ soutp(UART_LCR,UART_LCR_WLEN7); /* THR interrupt already disabled at this point */ break; default: break; } local_irq_restore(flags); }
void send_pulse(unsigned long length) { #ifdef LIRC_SERIAL_IRDEO long rawbits; int i; unsigned char output; unsigned char chunk,shifted; /* how many bits have to be sent ? */ rawbits=length*1152/10000; if(duty_cycle>50) chunk=3; else chunk=1; for(i=0,output=0x7f;rawbits>0;rawbits-=3) { shifted=chunk<<(i*3); shifted>>=1; output&=(~shifted); i++; if(i==3) { soutp(UART_TX,output); while(!(sinp(UART_LSR) & UART_LSR_TEMT)); output=0x7f; i=0; } } if(i!=2) { soutp(UART_TX,output); while(!(sinp(UART_LSR) & UART_LSR_TEMT)); } #else #ifdef LIRC_SERIAL_SOFTCARRIER unsigned long k,delay; int flag; #endif if(length==0) return; #ifdef LIRC_SERIAL_SOFTCARRIER /* this won't give us the carrier frequency we really want due to integer arithmetic, but we can accept this inaccuracy */ for(k=flag=0;k<length;k+=delay,flag=!flag) { if(flag) { off(); delay=space_width; } else { on(); delay=pulse_width; } udelay(delay); } #else on(); udelay(length); #endif #endif }