/*! \brief Let rhs[i] = sum of i-th row of A, so the solution vector is all 1's */ void zFillRHS(trans_t trans, int nrhs, doublecomplex *x, int ldx, SuperMatrix *A, SuperMatrix *B) { NCformat *Astore; doublecomplex *Aval; DNformat *Bstore; doublecomplex *rhs; doublecomplex one = {1.0, 0.0}; doublecomplex zero = {0.0, 0.0}; int ldc; char transc[1]; Astore = A->Store; Aval = (doublecomplex *) Astore->nzval; Bstore = B->Store; rhs = Bstore->nzval; ldc = Bstore->lda; if ( trans == NOTRANS ) *(unsigned char *)transc = 'N'; else *(unsigned char *)transc = 'T'; sp_zgemm(transc, "N", A->nrow, nrhs, A->ncol, one, A, x, ldx, zero, rhs, ldc); }
/* * Let rhs[i] = sum of i-th row of A, so the solution vector is all 1's */ void zFillRHS(char *trans, int nrhs, doublecomplex *x, int ldx, SuperMatrix *A, SuperMatrix *B) { NCformat *Astore; doublecomplex *Aval; DNformat *Bstore; doublecomplex *rhs; doublecomplex one = {1.0, 0.0}; doublecomplex zero = {0.0, 0.0}; int ldc; Astore = A->Store; Aval = (doublecomplex *) Astore->nzval; Bstore = B->Store; rhs = Bstore->nzval; ldc = Bstore->lda; sp_zgemm(trans, "N", A->nrow, nrhs, A->ncol, one, A, x, ldx, zero, rhs, ldc); }
int zgst02(trans_t trans, int m, int n, int nrhs, SuperMatrix *A, doublecomplex *x, int ldx, doublecomplex *b, int ldb, double *resid) { /* Purpose ======= ZGST02 computes the residual for a solution of a system of linear equations A*x = b or A'*x = b: RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), where EPS is the machine epsilon. Arguments ========= TRANS (input) trans_t Specifies the form of the system of equations: = NOTRANS: A *x = b = TRANS : A'*x = b, where A' is the transpose of A = CONJ : A'*x = b, where A' is the transpose of A M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. A (input) SuperMatrix*, dimension (LDA,N) The original M x N sparse matrix A. X (input) DOUBLE COMPLEX PRECISION array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. If TRANS = NOTRANS, LDX >= max(1,N); if TRANS = TRANS or CONJ, LDX >= max(1,M). B (input/output) DOUBLE COMPLEX PRECISION array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. IF TRANS = NOTRANS, LDB >= max(1,M); if TRANS = TRANS or CONJ, LDB >= max(1,N). RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== */ /* Table of constant values */ doublecomplex alpha = {-1., 0.0}; doublecomplex beta = {1., 0.0}; int c__1 = 1; /* System generated locals */ double d__1, d__2; /* Local variables */ int j; int n1, n2; double anorm, bnorm; double xnorm; double eps; char transc[1]; /* Function prototypes */ extern int lsame_(char *, char *); extern double zlangs(char *, SuperMatrix *); extern double dzasum_(int *, doublecomplex *, int *); /* Function Body */ if ( m <= 0 || n <= 0 || nrhs == 0) { *resid = 0.; return 0; } if ( (trans == TRANS) || (trans == CONJ) ) { n1 = n; n2 = m; *transc = 'T'; } else { n1 = m; n2 = n; *transc = 'N'; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = zlangs("1", A); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X (or B - A'*X ) and store in B. */ sp_zgemm(transc, "N", n1, nrhs, n2, alpha, A, x, ldx, beta, b, ldb); /* Compute the maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.; for (j = 0; j < nrhs; ++j) { bnorm = dzasum_(&n1, &b[j*ldb], &c__1); xnorm = dzasum_(&n2, &x[j*ldx], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = SUPERLU_MAX(d__1, d__2); } } return 0; } /* zgst02 */
int pzgst02(trans_t trans, int m, int n, int nrhs, SuperMatrix *A, doublecomplex *x, int ldx, doublecomplex *b, int ldb, double *resid) { /* * -- SuperLU MT routine (version 2.0) -- * Lawrence Berkeley National Lab, Univ. of California Berkeley, * and Xerox Palo Alto Research Center. * September 10, 2007 * * Purpose * ======= * * pzgst02() computes the residual for a solution of a system of linear * equations A*x = b or A'*x = b: * RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========= * * TRANS (input) trans_t * Specifies the form of the system of equations: * = NOTRANS: A *x = b * = TRANS: A'*x = b, where A' is the transpose of A * = CONJ: A'*x = b, where A' is the conjugate transpose of A * * M (input) INTEGER * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of columns of B, the matrix of right hand sides. * NRHS >= 0. * * A (input) SuperMatrix*, dimension (LDA,N) * The original M x N sparse matrix A. * * X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) * The computed solution vectors for the system of linear * equations. * * LDX (input) INTEGER * The leading dimension of the array X. If TRANS = NOTRANS, * LDX >= max(1,N); if TRANS = TRANS or CONJ, LDX >= max(1,M). * * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) * On entry, the right hand side vectors for the system of * linear equations. * On exit, B is overwritten with the difference B - A*X. * * LDB (input) INTEGER * The leading dimension of the array B. IF TRANS = NOTRANS, * LDB >= max(1,M); if TRANS = TRANS or CONJ, LDB >= max(1,N). * * RESID (output) DOUBLE PRECISION * The maximum over the number of right hand sides of * * ===================================================================== */ /* Table of constant values */ doublecomplex alpha = {-1., 0.0}; doublecomplex beta = {1., 0.0}; int c__1 = 1; /* System generated locals */ double d__1, d__2; /* Local variables */ int j; int n1, n2; double anorm, bnorm; double xnorm; double eps; char transc[1]; /* Function prototypes */ extern int lsame_(char *, char *); extern double zlangs(char *, SuperMatrix *); extern double dzasum_(int *, doublecomplex *, int *); extern double dlamch_(char *); /* Function Body */ if ( m <= 0 || n <= 0 || nrhs == 0) { *resid = 0.; return 0; } if ( trans == TRANS || trans == CONJ ) { n1 = n; n2 = m; } else { n1 = m; n2 = n; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = zlangs("1", A); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X (or B - A'*X ) and store in B. */ if ( trans == NOTRANS ) *transc = 'N'; else if ( trans == TRANS ) *transc = 'T'; else if ( trans == CONJ ) *transc = 'C'; sp_zgemm(transc, n1, nrhs, n2, alpha, A, x, ldx, beta, b, ldb); /*for (j = 0; j < m; ++j) if ( b[j] > 0.001 ) { printf("b-Ax: %d, %f\n", j, b[j]); b[j] = 1.; }*/ /* Compute the maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.; for (j = 0; j < nrhs; ++j) { bnorm = dzasum_(&n1, &b[j*ldb], &c__1); xnorm = dzasum_(&n2, &x[j*ldx], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = SUPERLU_MAX(d__1, d__2); } } return 0; } /* pzgst02 */