pxcStatus UtilCapture::ReadStreamAsync(PXCImage *images[], PXCScheduler::SyncPoint **sp) { UtilTrace trace(L"UtilCapture::ReadStreamAsync(video)", m_session_service); int nvstreams=(int)m_vstreams.size(); if (m_maps.size()==1) { // for a single I/O, we use the m_maps order. if (nvstreams==1) return m_vstreams.front()->ReadStreamAsync(images,sp); PXCSmartSPArray spts(PXCCapture::VideoStream::STREAM_LIMIT); for (int s=0;s<nvstreams;s++) { pxcStatus sts=m_vstreams[m_maps[0][s]]->ReadStreamAsync(&images[s],&spts[s]); if (sts<PXC_STATUS_NO_ERROR) return sts; } return PXCSmartAsyncImplIxOy<UtilCapture,PXCImage,PXCCapture::VideoStream::STREAM_LIMIT,PXCScheduler::SyncPoint,PXCCapture::VideoStream::STREAM_LIMIT>:: SubmitTask(images,nvstreams,spts.ReleasePtrs(),nvstreams,sp,this,m_scheduler,&UtilCapture::ReadStreamSync,&UtilCapture::PassOnStatus,L"UtilCapture::ReadStreamSync"); } else { // for multiple I/O, we use the m_vstreams order. Each I/O is supposed to use MapStreams to get the right view. PXCSmartSPArray spts(PXCCapture::VideoStream::STREAM_LIMIT); for (int s1=0;s1<nvstreams;s1++) { pxcStatus sts=m_vstreams[s1]->ReadStreamAsync(&images[s1],&spts[s1]); if (sts<PXC_STATUS_NO_ERROR) return sts; } return PXCSmartAsyncImplIxOy<UtilCapture,PXCImage,PXCCapture::VideoStream::STREAM_LIMIT,PXCScheduler::SyncPoint,PXCCapture::VideoStream::STREAM_LIMIT>:: SubmitTask(images,nvstreams,spts.ReleasePtrs(),nvstreams,sp,this,m_scheduler,&UtilCapture::ReadStreamSync,&UtilCapture::PassOnStatus,L"UtilCapture::ReadStreamSync"); } }
void L2Project_interface(int mopt, int run,int istart, int iend, const dTensor2& node, const dTensorBC3& qin, const dTensorBC3& auxin, const dTensor4 qI, const dTensor4 auxI,dTensor4& Implicit,double dt, const dTensor1 interf2global, const dTensorBC1 global2interf, const dTensor2 dxi, dTensorBC3& Fout, dTensor4& FI, void (*Func)(const dTensor1&, const dTensor2&, const dTensor2&, dTensor2&)) { const int kmax = dogParams.get_space_order(); const int meqn = qin.getsize(2); const int maux = auxin.getsize(2); const int mlength = Fout.getsize(2); const int mpoints = Fout.getsize(3); int mtmp = iMax(1,6-mopt);//iMax(1,mpoints-mopt); dTensor1 wgt(mtmp), spts(mtmp),rspts(mtmp),lspts(mtmp); dTensor2 phi(mtmp,kmax), phi_x(mtmp,kmax), rIphi_x(mtmp,kmax), lIphi_x(mtmp,kmax); // ----------------- // Quick error check // ----------------- if (meqn<1 || maux <0 || mpoints<1 || mpoints>6 || mlength<1 || mopt < 0 || mopt > 1) { printf(" Error in L2project.cpp ... \n"); printf(" meqn = %i\n",meqn); printf(" maux = %i\n",maux); printf(" mpoints = %i\n",mpoints); printf(" mlength = %i\n",mlength); printf(" istart = %i\n",istart); printf(" iend = %i\n",iend); printf(" mopts = %i\n",mopt); printf("\n"); exit(1); } // --------------------------------------------- // Check for trivial case in the case of mopt==1 // --------------------------------------------- if ( mpoints == mopt ) { Fout.setall(0.); } else { // Set quadrature weights and points void SetQuadPts(dTensor1&,dTensor1&); SetQuadPts(wgt,spts); // Sample basis function at quadrature points void SampleBasis(const dTensor1&,dTensor2&); SampleBasis(spts,phi); // Sample gradient of basis function at quadrature points void SampleBasisGrad(const dTensor1&,dTensor2&); void SampleBasisGrad_variable(const dTensor1&,dTensor2&,double); SampleBasisGrad(spts,phi_x); // ---------------------------------- // Loop over all elements of interest // ---------------------------------- const double xlow = dogParamsCart1.get_xlow(); const double dx = dogParamsCart1.get_dx(); #pragma omp parallel for for (int i=istart; i<=iend; i++) { if(abs(global2interf.get(i))<1.0e-1) { double xc = xlow + (double(i)-0.5)*dx; // Each of these three items needs to be private to each thread .. dTensor1 xpts(mtmp); dTensor2 qvals(mtmp,meqn); dTensor2 auxvals(mtmp,maux); dTensor2 fvals(mtmp,mlength); // Loop over each quadrature point for (int m=1; m<=mtmp; m++) { // grid point x xpts.set( m, xc + 0.5*dx*spts.get(m) ); // Solution values (q) at each grid point for (int me=1; me<=meqn; me++) { qvals.set(m,me, 0.0 ); for (int k=1; k<=mpoints; k++) { qvals.set(m,me, qvals.get(m,me) + phi.get(m,k) * qin.get(i,me,k) ); } } // Auxiliary values (aux) at each grid point for (int ma=1; ma<=maux; ma++) { auxvals.set(m,ma, 0.0 ); for (int k=1; k<=mpoints; k++) { auxvals.set(m,ma, auxvals.get(m,ma) + phi.get(m,k) * auxin.get(i,ma,k) ); } } } // Call user-supplied function to set fvals Func(xpts,qvals,auxvals,fvals); // Evaluate integrals if (mopt==0) // project onto Legendre basis { for (int m1=1; m1<=mlength; m1++) for (int m2=1; m2<=mpoints; m2++) { double tmp = 0.0; for (int k=1; k<=mtmp; k++) { tmp += wgt.get(k)*fvals.get(k,m1)*phi.get(k,m2); } Fout.set(i,m1,m2, 0.5*tmp ); } } else // project onto derivatives of Legendre basis { for (int m1=1; m1<=mlength; m1++) for (int m2=1; m2<=mpoints; m2++) { double tmp = 0.0; for (int k=1; k<=mtmp; k++) { tmp += wgt.get(k)*fvals.get(k,m1)*phi_x.get(k,m2); } Fout.set(i,m1,m2, 0.5*tmp ); } } } else if(run==1) { int iint=int(global2interf.get(i)); double xc1 = xlow + (double(i)-1.0)*dx+0.5*dxi.get(iint,1); double xc2 = xlow + (double(i)-1.0)*dx+dxi.get(iint,1)+0.5*dxi.get(iint,2); double dxl=dxi.get(iint,1); double dxr=dxi.get(iint,2); // Each of these three items needs to be private to each thread .. dTensor1 xptsl(mtmp); dTensor2 qvalsl(mtmp,meqn); dTensor2 auxvalsl(mtmp,maux); dTensor2 fvalsl(mtmp,mlength); dTensor1 xptsr(mtmp); dTensor2 qvalsr(mtmp,meqn); dTensor2 auxvalsr(mtmp,maux); dTensor2 fvalsr(mtmp,mlength); //SampleBasisGrad_variable(lspts,lIphi_x,dxl); //SampleBasisGrad_variable(rspts,rIphi_x,dxr); //SampleBasisGrad_variable(lspts,lIphi_x,1.0); //SampleBasisGrad_variable(rspts,rIphi_x,1.0); SampleBasisGrad_variable(spts,lIphi_x,1.0); SampleBasisGrad_variable(spts,rIphi_x,1.0); // Loop over each quadrature point for (int m=1; m<=mtmp; m++) { // grid point x xptsl.set( m, xc1 + 0.5*dxl*spts.get(m) ); xptsr.set( m, xc2 + 0.5*dxr*spts.get(m) ); // Solution values (q) at each grid point for (int me=1; me<=meqn; me++) { qvalsl.set(m,me, 0.0 ); qvalsr.set(m,me, 0.0 ); for (int k=1; k<=mpoints; k++) { qvalsl.set(m,me, qvalsl.get(m,me) + phi.get(m,k) * qI.get(1,iint,me,k) ); qvalsr.set(m,me, qvalsr.get(m,me) + phi.get(m,k) * qI.get(2,iint,me,k) ); } } // Auxiliary values (aux) at each grid point for (int ma=1; ma<=maux; ma++) { auxvalsl.set(m,ma, 0.0 ); auxvalsr.set(m,ma, 0.0 ); for (int k=1; k<=mpoints; k++) { auxvalsl.set(m,ma, auxvalsl.get(m,ma) + phi.get(m,k) * auxI.get(1,iint,ma,k) ); auxvalsr.set(m,ma, auxvalsr.get(m,ma) + phi.get(m,k) * auxI.get(2,iint,ma,k) ); } } //printf("xcl=%e xtryl= %e \n",xc1,dxl); //printf("xcr=%e xtryr= %e \n",xc2,dxr); } // Call user-supplied function to set fvals Func(xptsl,qvalsl,auxvalsl,fvalsl); Func(xptsr,qvalsr,auxvalsr,fvalsr); /* for (int m=1; m<=mtmp; m++) { printf("xtryl= %e \n",xptsl.get(m)); printf("xtryr= %e \n",xptsr.get(m)); printf("qtryl= %e \n",qvalsl.get(m,1)); printf("qtryr= %e \n",qvalsr.get(m,1)); }*/ //printf("i=%d iint=%d q= %e %e \n",i,iint,qI.get(1,iint,1,1),qI.get(1,iint,1,2)); //printf("2i=%d iint=%d q= %e %e \n",i,iint,Iq.qget(2,iint,1,1),qI.get(2,iint,1,2)); /* for (inti m=1; m<=mtmp; m++) { printf("Points HERE! %d %e %e %e %e \n",m,xptsl.get(m),fvalsl.get(m,1),xptsr.get(m),fvalsl.get(m,1)); }*/ // Evaluate integrals if (mopt==0) // project onto Legendre basis { for (int m1=1; m1<=mlength; m1++) for (int m2=1; m2<=mpoints; m2++) { double tmpl = 0.0; double tmpr = 0.0; for (int k=1; k<=mtmp; k++) { tmpl += wgt.get(k)*fvalsl.get(k,m1)*phi.get(k,m2); tmpr += wgt.get(k)*fvalsr.get(k,m1)*phi.get(k,m2); } FI.set(1,iint,m1,m2, 0.5*tmpl ); FI.set(2,iint,m1,m2, 0.5*tmpr ); } } else // project onto derivatives of Legendre basis { double Ul=auxI.get(1,iint,1,1); double Ur=auxI.get(2,iint,1,1); /* for (int m1=1; m1<=mlength; m1++) for (int m2=1; m2<=mpoints; m2++) { double tmpl = 0.0; double tmpr = 0.0; for (int k=1; k<=mtmp; k++) { tmpl += wgt.get(k)*fvalsl.get(k,m1)*lIphi_x.get(k,m2); tmpr += wgt.get(k)*fvalsr.get(k,m1)*rIphi_x.get(k,m2); } FI.set(1,iint,m1,m2, 0.5*tmpl ); FI.set(2,iint,m1,m2, 0.5*tmpr ); }*/ for (int m2=1; m2<=mpoints; m2++) for (int m3=1; m3<=mpoints; m3++) { double tmponl = 0.0; double tmponr = 0.0; double tmpIl = 0.0; double tmpIr = 0.0; for (int k=1; k<=mtmp; k++) { tmpIl += wgt.get(k)*Ul*phi.get(k,m3)*lIphi_x.get(k,m2); tmpIr += wgt.get(k)*Ur*phi.get(k,m3)*rIphi_x.get(k,m2); tmponl += wgt.get(k)*Ul*phi.get(k,m3)*phi_x.get(k,m2); tmponr += wgt.get(k)*Ur*phi.get(k,m3)*phi_x.get(k,m2); } // Implicit.set(iint,m1,m2,m3, Implicit.get(iint,m1,m2,m3)-0.5*tmpIl ); //Implicit.set(iint,m1,kmax+m2,kmax+m3, Implicit.get(iint,m1,kmax+m2,kmax+m3)-0.5*tmpIr ); //Implicit.set(iint,m1,m2,m3, Implicit.get(iint,m1,m2,m3)+0.5*tmpIl ); //Implicit.set(iint,m1,kmax+m2,kmax+m3, Implicit.get(iint,m1,kmax+m2,kmax+m3)+0.5*tmpIr ); Implicit.set(iint,1,m2,m3, Implicit.get(iint,1,m2,m3)-0.5*tmpIl ); Implicit.set(iint,1,kmax+m2,kmax+m3, Implicit.get(iint,1,kmax+m2,kmax+m3)-0.5*tmpIl ); Implicit.set(iint,1,2*kmax+m2,2*kmax+m3, Implicit.get(iint,1,2*kmax+m2,2*kmax+m3)-0.5*tmpIl ); Implicit.set(iint,1,3*kmax+m2,3*kmax+m3, Implicit.get(iint,1,3*kmax+m2,3*kmax+m3)-0.5*tmpIr ); Implicit.set(iint,1,4*kmax+m2,4*kmax+m3, Implicit.get(iint,1,4*kmax+m2,4*kmax+m3)-0.5*tmpIr ); Implicit.set(iint,1,5*kmax+m2,5*kmax+m3, Implicit.get(iint,1,5*kmax+m2,5*kmax+m3)-0.5*tmpIr ); //if(abs(tmpIl)>1.0e-12 || abs(tmpIr)>1.0e-12) //{printf("HERE2!!!! %e %e \n",0.5*tmpIl,0.5*tmpIr);} } /* for(int m2=1;m2<=mpoints;m2++) { double tmp1=0.0; double tmp2=0.0; for (int m3=1;m3<=mpoints;m3++) { double tmpIl = 0.0; double tmpIr = 0.0; for (int k=1; k<=mtmp; k++) { tmpIl += wgt.get(k)*Ul*phi.get(k,m3)*lIphi_x.get(k,m2); tmpIr += wgt.get(k)*Ur*phi.get(k,m3)*rIphi_x.get(k,m2); } tmp1=tmp1+0.5*tmpIl*qI.get(1,iint,1,m3); tmp2=tmp2+0.5*tmpIr*qI.get(2,iint,1,m3); } //printf("HERE left! %e \n",tmp1-FI.get(1,1,1,m2)); //printf("HERE right! %e \n",tmp2-FI.get(2,1,1,m2)); }*/ } } } } }
// All-purpose routine for computing the L2-projection // of various functions onto the gradient of the Legendre basis // (Unstructured grid version) // void L2ProjectGrad_Unst( const dTensor2* vel_vec, const int istart, const int iend, const int QuadOrder, const int BasisOrder_qin, const int BasisOrder_auxin, const int BasisOrder_fout, const mesh& Mesh, const dTensor3* qin, const dTensor3* auxin, dTensor3* fout, void (*Func)(const dTensor2* vel_vec, const dTensor2&,const dTensor2&, const dTensor2&,dTensor3&)) { // starting and ending indeces const int NumElems = Mesh.get_NumElems(); assert_ge(istart,1); assert_le(iend,NumElems); // qin variable assert_eq(NumElems,qin->getsize(1)); const int meqn = qin->getsize(2); const int kmax_qin = qin->getsize(3); assert_eq(kmax_qin,(BasisOrder_qin*(BasisOrder_qin+1))/2); // auxin variable assert_eq(NumElems,auxin->getsize(1)); const int maux = auxin->getsize(2); const int kmax_auxin = auxin->getsize(3); assert_eq(kmax_auxin,(BasisOrder_auxin*(BasisOrder_auxin+1))/2); // fout variables assert_eq(NumElems,fout->getsize(1)); const int mcomps_out = fout->getsize(2); const int kmax_fout = fout->getsize(3); assert_eq(kmax_fout,(BasisOrder_fout*(BasisOrder_fout+1))/2); // number of quadrature points assert_ge(QuadOrder,1); assert_le(QuadOrder,5); int mpoints; switch ( QuadOrder ) { case 1: mpoints = 0; break; case 2: mpoints = 1; break; case 3: mpoints = 6; break; case 4: mpoints = 7; break; case 5: mpoints = 16; break; } // trivial case if ( QuadOrder==1 ) { for (int i=istart; i<=iend; i++) for (int m=1; m<=mcomps_out; m++) for (int k=1; k<=kmax_fout; k++) { fout->set(i,m,k, 0.0 ); } } else { const int kmax = iMax(iMax(kmax_qin,kmax_auxin),kmax_fout); dTensor2 spts(mpoints,2); dTensor1 wgts(mpoints); dTensor2 xpts(mpoints,2); dTensor2 qvals(mpoints,meqn); dTensor2 auxvals(mpoints,maux); dTensor3 fvals(mpoints,mcomps_out,2); dTensor2 mu(mpoints,kmax); // monomial basis (non-orthogonal) dTensor2 phi(mpoints,kmax); // Legendre basis (orthogonal) dTensor2 mu_xi(mpoints,kmax_fout); // xi-derivative of monomial basis (non-orthogonal) dTensor2 mu_eta(mpoints,kmax_fout); // eta-derivative of monomial basis (non-orthogonal) dTensor2 phi_xi(mpoints,kmax_fout); // xi-derivative of Legendre basis (orthogonal) dTensor2 phi_eta(mpoints,kmax_fout); // eta-derivative of Legendre basis (orthogonal) dTensor2 phi_x(mpoints,kmax_fout); // x-derivative of Legendre basis (orthogonal) dTensor2 phi_y(mpoints,kmax_fout); // y-derivative of Legendre basis (orthogonal) switch ( QuadOrder ) { case 2: spts.set(1,1, 0.0 ); spts.set(1,2, 0.0 ); wgts.set(1, 0.5 ); break; case 3: spts.set(1,1, 0.112615157582632 ); spts.set(1,2, 0.112615157582632 ); spts.set(2,1, -0.225230315165263 ); spts.set(2,2, 0.112615157582632 ); spts.set(3,1, 0.112615157582632 ); spts.set(3,2, -0.225230315165263 ); spts.set(4,1, -0.241757119823562 ); spts.set(4,2, -0.241757119823562 ); spts.set(5,1, 0.483514239647126 ); spts.set(5,2, -0.241757119823562 ); spts.set(6,1, -0.241757119823562 ); spts.set(6,2, 0.483514239647126 ); wgts.set(1, 0.1116907948390055 ); wgts.set(2, 0.1116907948390055 ); wgts.set(3, 0.1116907948390055 ); wgts.set(4, 0.0549758718276610 ); wgts.set(5, 0.0549758718276610 ); wgts.set(6, 0.0549758718276610 ); break; case 4: spts.set(1,1, 0.000000000000000 ); spts.set(1,2, 0.000000000000000 ); spts.set(2,1, 0.136808730771782 ); spts.set(2,2, 0.136808730771782 ); spts.set(3,1, -0.273617461543563 ); spts.set(3,2, 0.136808730771782 ); spts.set(4,1, 0.136808730771782 ); spts.set(4,2, -0.273617461543563 ); spts.set(5,1, -0.232046826009877 ); spts.set(5,2, -0.232046826009877 ); spts.set(6,1, 0.464093652019754 ); spts.set(6,2, -0.232046826009877 ); spts.set(7,1, -0.232046826009877 ); spts.set(7,2, 0.464093652019754 ); wgts.set(1, 0.1125000000000000 ); wgts.set(2, 0.0661970763942530 ); wgts.set(3, 0.0661970763942530 ); wgts.set(4, 0.0661970763942530 ); wgts.set(5, 0.0629695902724135 ); wgts.set(6, 0.0629695902724135 ); wgts.set(7, 0.0629695902724135 ); break; case 5: spts.set(1,1, 0.000000000000000 ); spts.set(1,2, 0.000000000000000 ); spts.set(2,1, 0.125959254959390 ); spts.set(2,2, 0.125959254959390 ); spts.set(3,1, -0.251918509918779 ); spts.set(3,2, 0.125959254959390 ); spts.set(4,1, 0.125959254959390 ); spts.set(4,2, -0.251918509918779 ); spts.set(5,1, -0.162764025581573 ); spts.set(5,2, -0.162764025581573 ); spts.set(6,1, 0.325528051163147 ); spts.set(6,2, -0.162764025581573 ); spts.set(7,1, -0.162764025581573 ); spts.set(7,2, 0.325528051163147 ); spts.set(8,1, -0.282786105016302 ); spts.set(8,2, -0.282786105016302 ); spts.set(9,1, 0.565572210032605 ); spts.set(9,2, -0.282786105016302 ); spts.set(10,1, -0.282786105016302 ); spts.set(10,2, 0.565572210032605 ); spts.set(11,1, -0.324938555923375 ); spts.set(11,2, -0.070220503698695 ); spts.set(12,1, -0.324938555923375 ); spts.set(12,2, 0.395159059622071 ); spts.set(13,1, -0.070220503698695 ); spts.set(13,2, -0.324938555923375 ); spts.set(14,1, -0.070220503698695 ); spts.set(14,2, 0.395159059622071 ); spts.set(15,1, 0.395159059622071 ); spts.set(15,2, -0.324938555923375 ); spts.set(16,1, 0.395159059622071 ); spts.set(16,2, -0.070220503698695 ); wgts.set(1, 0.0721578038388935 ); wgts.set(2, 0.0475458171336425 ); wgts.set(3, 0.0475458171336425 ); wgts.set(4, 0.0475458171336425 ); wgts.set(5, 0.0516086852673590 ); wgts.set(6, 0.0516086852673590 ); wgts.set(7, 0.0516086852673590 ); wgts.set(8, 0.0162292488115990 ); wgts.set(9, 0.0162292488115990 ); wgts.set(10, 0.0162292488115990 ); wgts.set(11, 0.0136151570872175 ); wgts.set(12, 0.0136151570872175 ); wgts.set(13, 0.0136151570872175 ); wgts.set(14, 0.0136151570872175 ); wgts.set(15, 0.0136151570872175 ); wgts.set(16, 0.0136151570872175 ); break; } // Loop over each quadrature point and construct monomial polys for (int m=1; m<=mpoints; m++) { // coordinates const double xi = spts.get(m,1); const double xi2 = xi*xi; const double xi3 = xi2*xi; const double xi4 = xi3*xi; const double eta = spts.get(m,2); const double eta2 = eta*eta; const double eta3 = eta2*eta; const double eta4 = eta3*eta; // monomial basis functions at each gaussian quadrature point switch( kmax ) { case 15: // fifth order mu.set(m, 15, eta4 ); mu.set(m, 14, xi4 ); mu.set(m, 13, xi2*eta2 ); mu.set(m, 12, eta3*xi ); mu.set(m, 11, xi3*eta ); case 10: // fourth order mu.set(m, 10, eta3 ); mu.set(m, 9, xi3 ); mu.set(m, 8, xi*eta2 ); mu.set(m, 7, eta*xi2 ); case 6: // third order mu.set(m, 6, eta2 ); mu.set(m, 5, xi2 ); mu.set(m, 4, xi*eta ); case 3: // second order mu.set(m, 3, eta ); mu.set(m, 2, xi ); case 1: // first order mu.set(m, 1, 1.0 ); break; } // Loop over each quadrature point and construct Legendre polys for (int i=1; i<=kmax; i++) { double tmp = 0.0; for (int j=1; j<=i; j++) { tmp = tmp + Mmat[i-1][j-1]*mu.get(m,j); } phi.set(m,i, tmp ); } // Gradient of monomial basis functions at each gaussian quadrature point switch( kmax_fout ) { case 15: // fifth order mu_xi.set( m,15, 0.0 ); mu_xi.set( m,14, 4.0*xi3 ); mu_xi.set( m,13, 2.0*xi*eta2 ); mu_xi.set( m,12, eta3 ); mu_xi.set( m,11, 3.0*xi2*eta ); mu_eta.set( m,15, 4.0*eta3 ); mu_eta.set( m,14, 0.0 ); mu_eta.set( m,13, 2.0*xi2*eta ); mu_eta.set( m,12, 3.0*eta2*xi ); mu_eta.set( m,11, xi3 ); case 10: // fourth order mu_xi.set( m,10, 0.0 ); mu_xi.set( m,9, 3.0*xi2 ); mu_xi.set( m,8, eta2 ); mu_xi.set( m,7, 2.0*eta*xi ); mu_eta.set( m,10, 3.0*eta2 ); mu_eta.set( m,9, 0.0 ); mu_eta.set( m,8, 2.0*eta*xi ); mu_eta.set( m,7, xi2 ); case 6: // third order mu_xi.set( m,6, 0.0 ); mu_xi.set( m,5, 2.0*xi ); mu_xi.set( m,4, eta ); mu_eta.set( m,6, 2.0*eta ); mu_eta.set( m,5, 0.0 ); mu_eta.set( m,4, xi ); case 3: // second order mu_xi.set( m,3, 0.0 ); mu_xi.set( m,2, 1.0 ); mu_eta.set( m,3, 1.0 ); mu_eta.set( m,2, 0.0 ); case 1: // first order mu_xi.set( m,1, 0.0 ); mu_eta.set( m,1, 0.0 ); break; } // Loop over each quadrature point and construct Legendre polys for (int i=1; i<=kmax_fout; i++) { double tmp1 = 0.0; double tmp2 = 0.0; for (int j=1; j<=i; j++) { tmp1 = tmp1 + Mmat[i-1][j-1]*mu_xi.get(m,j); tmp2 = tmp2 + Mmat[i-1][j-1]*mu_eta.get(m,j); } phi_xi.set(m,i, tmp1 ); phi_eta.set(m,i, tmp2 ); } } // ------------------------------------------------------------- // Loop over every grid cell indexed by user supplied parameters // described by istart...iend // ------------------------------------------------------------- #pragma omp parallel for for (int i=istart; i<=iend; i++) { // Find center of current cell const int i1 = Mesh.get_tnode(i,1); const int i2 = Mesh.get_tnode(i,2); const int i3 = Mesh.get_tnode(i,3); const double x1 = Mesh.get_node(i1,1); const double y1 = Mesh.get_node(i1,2); const double x2 = Mesh.get_node(i2,1); const double y2 = Mesh.get_node(i2,2); const double x3 = Mesh.get_node(i3,1); const double y3 = Mesh.get_node(i3,2); const double xc = (x1+x2+x3)/3.0; const double yc = (y1+y2+y3)/3.0; // Compute q, aux and fvals at each Gaussian Quadrature point // for this current cell indexed by (i,j) // Save results into dTensor2 qvals, auxvals and fvals. for (int m=1; m<=mpoints; m++) { // convert phi_xi and phi_eta derivatives // to phi_x and phi_y derivatives through Jacobian for (int k=1; k<=kmax_fout; k++) { phi_x.set(m,k, Mesh.get_jmat(i,1,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,1,2)*phi_eta.get(m,k) ); phi_y.set(m,k, Mesh.get_jmat(i,2,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,2,2)*phi_eta.get(m,k) ); } // point on the unit triangle const double s = spts.get(m,1); const double t = spts.get(m,2); // point on the physical triangle xpts.set(m,1, xc + (x2-x1)*s + (x3-x1)*t ); xpts.set(m,2, yc + (y2-y1)*s + (y3-y1)*t ); // Solution values (q) at each grid point for (int me=1; me<=meqn; me++) { qvals.set(m,me, 0.0 ); for (int k=1; k<=kmax_qin; k++) { qvals.set(m,me, qvals.get(m,me) + phi.get(m,k) * qin->get(i,me,k) ); } } // Auxiliary values (aux) at each grid point for (int ma=1; ma<=maux; ma++) { auxvals.set(m,ma, 0.0 ); for (int k=1; k<=kmax_auxin; k++) { auxvals.set(m,ma, auxvals.get(m,ma) + phi.get(m,k) * auxin->get(i,ma,k) ); } } } // Call user-supplied function to set fvals Func(vel_vec, xpts, qvals, auxvals, fvals); // Evaluate integral on current cell (project onto Legendre basis) // using Gaussian Quadrature for the integration for (int m1=1; m1<=mcomps_out; m1++) for (int m2=1; m2<=kmax_fout; m2++) { double tmp = 0.0; for (int k=1; k<=mpoints; k++) { tmp = tmp + wgts.get(k)* ( fvals.get(k,m1,1)*phi_x.get(k,m2) + fvals.get(k,m1,2)*phi_y.get(k,m2) ); } fout->set(i, m1, m2, 2.0*tmp ); } } } }
void ConstructA_CG2(const mesh& Mesh, FullMatrix& A) { const int NumPhysElems = Mesh.get_NumPhysElems(); const int NumBndNodes = Mesh.get_SubNumBndNodes(); const int Asize = Mesh.get_SubNumPhysNodes(); assert_eq(Asize,A.get_NumRows()); assert_eq(Asize,A.get_NumCols()); dTensor1 A1(6); dTensor1 A2(6); dTensor1 A3(6); dTensor1 A4(6); dTensor1 A5(6); dTensor1 A6(6); A1.set(1, -oneninth ); A1.set(2, 4.0*oneninth ); A1.set(3, -oneninth ); A1.set(4, 4.0*oneninth ); A1.set(5, 4.0*oneninth ); A1.set(6, -oneninth ); A2.set(1, -onethird ); A2.set(2, 0.0 ); A2.set(3, onethird ); A2.set(4, -4.0*onethird ); A2.set(5, 4.0*onethird ); A2.set(6, 0.0 ); A3.set(1, -onethird ); A3.set(2, -4.0*onethird ); A3.set(3, 0.0 ); A3.set(4, 0.0 ); A3.set(5, 4.0*onethird ); A3.set(6, onethird ); A4.set(1, 4.0 ); A4.set(2, -4.0 ); A4.set(3, 0.0 ); A4.set(4, -4.0 ); A4.set(5, 4.0 ); A4.set(6, 0.0 ); A5.set(1, 2.0 ); A5.set(2, -4.0 ); A5.set(3, 2.0 ); A5.set(4, 0.0 ); A5.set(5, 0.0 ); A5.set(6, 0.0 ); A6.set(1, 2.0 ); A6.set(2, 0.0 ); A6.set(3, 0.0 ); A6.set(4, -4.0 ); A6.set(5, 0.0 ); A6.set(6, 2.0 ); dTensor2 spts(3,2); spts.set(1,1, 1.0/3.0 ); spts.set(1,2, -1.0/6.0 ); spts.set(2,1, -1.0/6.0 ); spts.set(2,2, -1.0/6.0 ); spts.set(3,1, -1.0/6.0 ); spts.set(3,2, 1.0/3.0 ); dTensor1 wgts(3); wgts.set(1, 1.0/6.0 ); wgts.set(2, 1.0/6.0 ); wgts.set(3, 1.0/6.0 ); // Loop over all elements in the mesh for (int i=1; i<=NumPhysElems; i++) { // Information for element i iTensor1 tt(6); for (int k=1; k<=6; k++) { tt.set(k, Mesh.get_node_subs(i,k) ); } // Evaluate gradients of the Lagrange polynomials on Gauss quadrature points dTensor2 gpx(6,3); dTensor2 gpy(6,3); for (int m=1; m<=3; m++) { double xi = spts.get(m,1); double eta = spts.get(m,2); for (int k=1; k<=6; k++) { double gp_xi = A2.get(k) + 2.0*A5.get(k)*xi + A4.get(k)*eta; double gp_eta = A3.get(k) + A4.get(k)*xi + 2.0*A6.get(k)*eta; gpx.set(k,m, Mesh.get_jmat(i,1,1)*gp_xi + Mesh.get_jmat(i,1,2)*gp_eta ); gpy.set(k,m, Mesh.get_jmat(i,2,1)*gp_xi + Mesh.get_jmat(i,2,2)*gp_eta ); } } // Entries of the stiffness matrix A double Area = Mesh.get_area_prim(i); for (int j=1; j<=6; j++) for (int k=1; k<=6; k++) { double tmp = A.get(tt.get(j),tt.get(k)); for (int m=1; m<=3; m++) { tmp = tmp + 2.0*Area*wgts.get(m)*(gpx.get(j,m)*gpx.get(k,m)+gpy.get(j,m)*gpy.get(k,m)); } A.set(tt.get(j),tt.get(k), tmp ); } } // Replace boundary node equations by Dirichlet boundary condition enforcement for (int i=1; i<=NumBndNodes; i++) { const int j=Mesh.get_sub_bnd_node(i); for (int k=1; k<=A.get_NumCols(); k++) { A.set(j,k, 0.0 ); } for (int k=1; k<=A.get_NumRows(); k++) { A.set(k,j, 0.0 ); } A.set(j,j, 1.0 ); } // Get sparse structure representation A.Sparsify(); }
// This is the positivity preserving limiter proposed in // "Maximum-Principle-Satisfying and Positivity-Preserving // High Order Discontinuous Galerkin Schemes // for Conservation Laws on Triangular Meshes", Zhang, Xia and Shu // J. Sci. Comput. (2012). // // THIS METHOD ASSUMES THAT EVERY COMPONENT OF CONSERVED VARIABLES SHOULD STAY // POSITIVE. // // In order to implement this for a different scheme, one should rewrite, or // redefine what components should remain positiive. This will require // reworking the control flow logic for how time step lengths are chosen. void ApplyPosLimiter_Unst(const mesh& Mesh, const dTensor3& aux, dTensor3& q) { const int NumElems = Mesh.get_NumElems(); const int NumPhysElems = Mesh.get_NumPhysElems(); const int NumEdges = Mesh.get_NumEdges(); const int meqn = q.getsize(2); const int kmax = q.getsize(3); const int maux = aux.getsize(2); const int space_order = dogParams.get_space_order(); // Do nothing in the case of piecewise constants if( space_order == 1 ) { return; } // ------------------------------------------------ // // number of points where we want to check solution // // ------------------------------------------------ // const int space_order_sq = space_order*space_order; const int mpts_vec[] = {0, 3*space_order_sq, 18, 3*space_order_sq, 3*space_order_sq }; // TODO - FILL IN 2ND-ORDER CASE const int mpoints = mpts_vec[space_order-1]; // ---------------------------------------------------------- // // sample basis at all points where we want to check solution // // ---------------------------------------------------------- // dTensor2 spts(mpoints, 2); void SetPositivePoints_Unst(const int& space_order, dTensor2& spts); SetPositivePoints_Unst(space_order, spts); void SamplePhiAtPositivePoints_Unst(const int& space_order, const dTensor2& spts, dTensor2& phi); dTensor2 phi(mpoints, kmax); SamplePhiAtPositivePoints_Unst(space_order, spts, phi); // -------------------------------------------------------------- // // q_limited = Q1 + \theta ( q(xi,eta) - Q1 ) // // where theta = min(1, |Q1| / |Q1-m|; m = min_{i} q(xi_i, eta_i) // // -------------------------------------------------------------- // #pragma omp parallel for for(int i=1; i <= NumPhysElems; i++) for(int me=1; me <= meqn; me++) { double m = 0.0; for(int mp=1; mp <= mpoints; mp++) { // evaluate q at spts(mp) // double qnow = 0.0; for( int k=1; k <= kmax; k++ ) { qnow += q.get(i,me,k) * phi.get(mp,k); } m = Min(m, qnow); } double theta = 0.0; double Q1 = q.get(i,me,1); assert_ge( Q1, -1e-13 ); if( fabs( Q1 - m ) < 1.0e-14 ){ theta = 1.0; } else{ theta = Min( 1.0, fabs( Q1 / (Q1 - m) ) ); } // limit q // for( int k=2; k <= kmax; k++ ) { q.set(i,me,k, q.get(i,me,k) * theta ); } } }
// Modified version of the all purpose routine L2Project specifically written // for projecting the "time-averaged" flux function onto the basis function. // // This routine also returns the coefficients of the Lax Wendroff Flux // Function when expanded with legendre basis functions, and therefore the // basis expansions produced by this routine can be used for all of the // Riemann solves. // // --------------------------------------------------------------------- // Inputs should have the following sizes: // TODO - document the inputs here // --------------------------------------------------------------------- void L2ProjectLxW_Unst( const int mterms, const double alpha, const double beta_dt, const double charlie_dt, const int istart, const int iend, // Start-stop indices const int QuadOrder, const int BasisOrder_qin, const int BasisOrder_auxin, const int BasisOrder_fout, const mesh& Mesh, const dTensor3* qin, const dTensor3* auxin, // state vector dTensor3* F, dTensor3* G, // time-averaged Flux function void FluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& Aux, dTensor3& flux), void DFluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& aux, dTensor4& Dflux), void D2FluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& aux, dTensor5& D2flux) ) { if( fabs( alpha ) < 1e-14 && fabs( beta_dt ) < 1e-14 && fabs( charlie_dt ) < 1e-14 ) { F->setall(0.); G->setall(0.); return; } // starting and ending indices const int NumElems = Mesh.get_NumElems(); assert_ge(istart,1); assert_le(iend,NumElems); // qin variable assert_eq(NumElems,qin->getsize(1)); const int meqn = qin->getsize(2); const int kmax_qin = qin->getsize(3); assert_eq(kmax_qin,(BasisOrder_qin*(BasisOrder_qin+1))/2); // auxin variable assert_eq(NumElems,auxin->getsize(1)); const int maux = auxin->getsize(2); const int kmax_auxin = auxin->getsize(3); assert_eq(kmax_auxin,(BasisOrder_auxin*(BasisOrder_auxin+1))/2); // fout variables assert_eq(NumElems, F->getsize(1)); const int mcomps_out = F->getsize(2); const int kmax_fout = F->getsize(3); assert_eq(kmax_fout, (BasisOrder_fout*(BasisOrder_fout+1))/2 ); // number of quadrature points assert_ge(QuadOrder, 1); assert_le(QuadOrder, 5); // Number of quadrature points int mpoints; switch( QuadOrder ) { case 1: mpoints = 1; break; case 2: mpoints = 3; break; case 3: mpoints = 6; break; case 4: mpoints = 12; break; case 5: mpoints = 16; break; } const int kmax = iMax(iMax(kmax_qin, kmax_auxin), kmax_fout); dTensor2 phi(mpoints, kmax); // Legendre basis (orthogonal) dTensor2 spts(mpoints, 2); // List of quadrature points dTensor1 wgts(mpoints); // List of quadrature weights setQuadPoints_Unst( QuadOrder, wgts, spts ); // ---------------------------------------------------------------------- // // Evaluate the basis functions at each point SetLegendreAtPoints_Unst(spts, phi); // ---------------------------------------------------------------------- // // ---------------------------------------------------------------------- // // First-order derivatives dTensor2 phi_xi (mpoints, kmax ); dTensor2 phi_eta(mpoints, kmax ); SetLegendreGrad_Unst( spts, phi_xi, phi_eta ); // ---------------------------------------------------------------------- // // ---------------------------------------------------------------------- // // Second-order derivatives dTensor2 phi_xi2 (mpoints, kmax ); dTensor2 phi_xieta(mpoints, kmax ); dTensor2 phi_eta2 (mpoints, kmax ); LegendreDiff2_Unst(spts, &phi_xi2, &phi_xieta, &phi_eta2 ); // ---------------------------------------------------------------------- // // ------------------------------------------------------------- // // Loop over every grid cell indexed by user supplied parameters // // described by istart...iend, jstart...jend // // ------------------------------------------------------------- // #pragma omp parallel for for (int i=istart; i<=iend; i++) { // These need to be defined locally. Each mesh element carries its // own change of basis matrix, so these need to be recomputed for // each element. The canonical derivatives, phi_xi, and phi_eta can // be computed and shared for each element. // First-order derivatives dTensor2 phi_x(mpoints, kmax_fout); // x-derivative of Legendre basis (orthogonal) dTensor2 phi_y(mpoints, kmax_fout); // y-derivative of Legendre basis (orthogonal) // Second-order derivatives dTensor2 phi_xx(mpoints, kmax_fout); // xx-derivative of Legendre basis (orthogonal) dTensor2 phi_xy(mpoints, kmax_fout); // xy-derivative of Legendre basis (orthogonal) dTensor2 phi_yy(mpoints, kmax_fout); // yy-derivative of Legendre basis (orthogonal) //find center of current cell const int i1 = Mesh.get_tnode(i,1); const int i2 = Mesh.get_tnode(i,2); const int i3 = Mesh.get_tnode(i,3); // Corners: const double x1 = Mesh.get_node(i1,1); const double y1 = Mesh.get_node(i1,2); const double x2 = Mesh.get_node(i2,1); const double y2 = Mesh.get_node(i2,2); const double x3 = Mesh.get_node(i3,1); const double y3 = Mesh.get_node(i3,2); // Center of current cell: const double xc = (x1+x2+x3)/3.0; const double yc = (y1+y2+y3)/3.0; // Variables that need to be written to, and therefore are // created for each thread dTensor2 xpts (mpoints, 2); dTensor2 qvals (mpoints, meqn); dTensor2 auxvals(mpoints, maux); // local storage for Flux function its Jacobian, and the Hessian: dTensor3 fvals(mpoints, meqn, 2); // flux function (vector) dTensor4 A(mpoints, meqn, meqn, 2); // Jacobian of flux dTensor5 H(mpoints, meqn, meqn, meqn, 2); // Hessian of flux // Compute q, aux and fvals at each Gaussian Quadrature point // for this current cell indexed by (i,j) // Save results into dTensor2 qvals, auxvals and fvals. for (int m=1; m<= mpoints; m++) { // convert phi_xi and phi_eta derivatives // to phi_x and phi_y derivatives through Jacobian // // Note that: // // pd_x = J11 pd_xi + J12 pd_eta and // pd_y = J21 pd_xi + J22 pd_eta. // // Squaring these operators yields the second derivatives. for (int k=1; k<=kmax_fout; k++) { phi_x.set(m,k, Mesh.get_jmat(i,1,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,1,2)*phi_eta.get(m,k) ); phi_y.set(m,k, Mesh.get_jmat(i,2,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,2,2)*phi_eta.get(m,k) ); phi_xx.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,1)*phi_xi2.get(m,k) + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,2)*phi_xieta.get(m,k) + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,1,2)*phi_eta2.get(m,k) ); phi_xy.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k) +(Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,1) + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,2))*phi_xieta.get(m,k) + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k) ); phi_yy.set(m,k, Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k) + Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,2)*phi_xieta.get(m,k) + Mesh.get_jmat(i,2,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k) ); } // point on the unit triangle const double s = spts.get(m,1); const double t = spts.get(m,2); // point on the physical triangle xpts.set(m,1, xc + (x2-x1)*s + (x3-x1)*t ); xpts.set(m,2, yc + (y2-y1)*s + (y3-y1)*t ); // Solution values (q) at each grid point for (int me=1; me<=meqn; me++) { qvals.set(m,me, 0.0 ); for (int k=1; k<=kmax_qin; k++) { qvals.set(m,me, qvals.get(m,me) + phi.get(m,k) * qin->get(i,me,k) ); } } // Auxiliary values (aux) at each grid point for (int ma=1; ma<=maux; ma++) { auxvals.set(m,ma, 0.0 ); for (int k=1; k<=kmax_auxin; k++) { auxvals.set(m,ma, auxvals.get(m,ma) + phi.get(m,k) * auxin->get(i,ma,k) ); } } } // ----------------------------------------------------------------- // // // Part I: // // Project the flux function onto the basis // functions. This is the term of order O( 1 ) in the // "time-averaged" Taylor expansion of f and g. // // ----------------------------------------------------------------- // // Call user-supplied function to set fvals FluxFunc(xpts, qvals, auxvals, fvals); // Evaluate integral on current cell (project onto Legendre basis) // using Gaussian Quadrature for the integration // // TODO - do we want to optimize this by looking into using transposes, // as has been done in the 2d/cart code? (5/14/2014) -DS for (int me=1; me<=mcomps_out; me++) for (int k=1; k<=kmax; k++) { double tmp1 = 0.0; double tmp2 = 0.0; for (int mp=1; mp <= mpoints; mp++) { tmp1 += wgts.get(mp)*fvals.get(mp, me, 1)*phi.get(mp, k); tmp2 += wgts.get(mp)*fvals.get(mp, me, 2)*phi.get(mp, k); } F->set(i, me, k, 2.0*tmp1 ); G->set(i, me, k, 2.0*tmp2 ); } // ----------------------------------------------------------------- // // // Part II: // // Project the derivative of the flux function onto the basis // functions. This is the term of order O( \dt ) in the // "time-averaged" Taylor expansion of f and g. // // ----------------------------------------------------------------- // // ----------------------------------------------------------------- // // Compute pointwise values for fx+gy: // // We can't multiply fvals of f, and g, // by alpha, otherwise we compute the wrong derivative here! // dTensor2 fx_plus_gy( mpoints, meqn ); fx_plus_gy.setall(0.); for( int mp=1; mp <= mpoints; mp++ ) for( int me=1; me <= meqn; me++ ) { double tmp = 0.; for( int k=2; k <= kmax; k++ ) { tmp += F->get( i, me, k ) * phi_x.get( mp, k ); tmp += G->get( i, me, k ) * phi_y.get( mp, k ); } fx_plus_gy.set( mp, me, tmp ); } // Call user-supplied Jacobian to set f'(q) and g'(q): DFluxFunc( xpts, qvals, auxvals, A ); // place-holders for point values of // f'(q)( fx + gy ) and g'(q)( fx + gy ): dTensor2 dt_times_fdot( mpoints, meqn ); dTensor2 dt_times_gdot( mpoints, meqn ); // Compute point values for f'(q) * (fx+gy) and g'(q) * (fx+gy): for( int mp=1; mp <= mpoints; mp++ ) for( int m1=1; m1 <= meqn; m1++ ) { double tmp1 = 0.; double tmp2 = 0.; for( int m2=1; m2 <= meqn; m2++ ) { tmp1 += A.get(mp, m1, m2, 1 ) * fx_plus_gy.get(mp, m2); tmp2 += A.get(mp, m1, m2, 2 ) * fx_plus_gy.get(mp, m2); } dt_times_fdot.set( mp, m1, -beta_dt*tmp1 ); dt_times_gdot.set( mp, m1, -beta_dt*tmp2 ); } // --- Third-order terms --- // // // These are the terms that are O( \dt^2 ) in the "time-averaged" // flux function. dTensor2 f_tt( mpoints, meqn ); f_tt.setall(0.); dTensor2 g_tt( mpoints, meqn ); g_tt.setall(0.); if( mterms > 2 ) { // Construct the Hessian at each (quadrature) point D2FluxFunc( xpts, qvals, auxvals, H ); // Second-order derivative terms dTensor2 qx_vals (mpoints, meqn); qx_vals.setall(0.); dTensor2 qy_vals (mpoints, meqn); qy_vals.setall(0.); dTensor2 fxx_vals(mpoints, meqn); fxx_vals.setall(0.); dTensor2 gxx_vals(mpoints, meqn); gxx_vals.setall(0.); dTensor2 fxy_vals(mpoints, meqn); fxy_vals.setall(0.); dTensor2 gxy_vals(mpoints, meqn); gxy_vals.setall(0.); dTensor2 fyy_vals(mpoints, meqn); fyy_vals.setall(0.); dTensor2 gyy_vals(mpoints, meqn); gyy_vals.setall(0.); for( int m=1; m <= mpoints; m++ ) for( int me=1; me <= meqn; me++ ) { // Can start at k=1, because derivative of a constant is // zero. double tmp_qx = 0.; double tmp_qy = 0.; for( int k=2; k <= kmax; k++ ) { tmp_qx += phi_x.get(m,k) * qin->get(i,me,k); tmp_qy += phi_y.get(m,k) * qin->get(i,me,k); } qx_vals.set(m,me, tmp_qx ); qy_vals.set(m,me, tmp_qy ); // First non-zero terms start at third-order. for( int k=4; k <= kmax; k++ ) { fxx_vals.set(m,me, fxx_vals.get(m,me) + phi_xx.get(m,k)*F->get(i,me,k) ); gxx_vals.set(m,me, gxx_vals.get(m,me) + phi_xx.get(m,k)*G->get(i,me,k) ); fxy_vals.set(m,me, fxy_vals.get(m,me) + phi_xy.get(m,k)*F->get(i,me,k) ); gxy_vals.set(m,me, gxy_vals.get(m,me) + phi_xy.get(m,k)*G->get(i,me,k) ); fyy_vals.set(m,me, fyy_vals.get(m,me) + phi_yy.get(m,k)*F->get(i,me,k) ); gyy_vals.set(m,me, gyy_vals.get(m,me) + phi_yy.get(m,k)*G->get(i,me,k) ); } } // ----------------------------------- // // Part I: Compute (f_x + g_y)_{,t} // ----------------------------------- // // Compute terms that get multiplied by \pd2{ f }{ q } and \pd2{ g }{ q }. dTensor2 fx_plus_gy_t( mpoints, meqn ); for( int m = 1; m <= mpoints; m++ ) for( int me = 1; me <= meqn; me++ ) { double tmp = 0.; // Terms that get multiplied by the Hessian: for( int m1=1; m1 <= meqn; m1++ ) for( int m2=1; m2 <= meqn; m2++ ) { tmp += H.get(m,me,m1,m2,1)*qx_vals.get(m,m1)*fx_plus_gy.get(m,m2); tmp += H.get(m,me,m1,m2,2)*qy_vals.get(m,m1)*fx_plus_gy.get(m,m2); } // Terms that get multiplied by f'(q) and g'(q): for( int m1=1; m1 <= meqn; m1++ ) { tmp += A.get(m,me,m1,1)*( fxx_vals.get(m,m1)+gxy_vals.get(m,m1) ); tmp += A.get(m,me,m1,2)*( fxy_vals.get(m,m1)+gyy_vals.get(m,m1) ); } fx_plus_gy_t.set( m, me, tmp ); } // ----------------------------------- // // Part II: Compute // f'(q) * fx_plus_gy_t and // g'(q) * fx_plus_gy_t // ----------------------------------- // // Add in the third term that gets multiplied by A: for( int m=1; m <= mpoints; m++ ) for( int m1=1; m1 <= meqn; m1++ ) { double tmp1 = 0.; double tmp2 = 0.; for( int m2=1; m2 <= meqn; m2++ ) { tmp1 += A.get(m,m1,m2,1)*fx_plus_gy_t.get(m,m2); tmp2 += A.get(m,m1,m2,2)*fx_plus_gy_t.get(m,m2); } f_tt.set( m, m1, tmp1 ); g_tt.set( m, m1, tmp2 ); } // ----------------------------------------------- // // Part III: Add in contributions from // f''(q) * (fx_plus_gy, fx_plus_gy ) and // g''(q) * (fx_plus_gy, fx_plus_gy ). // ----------------------------------------------- // for( int m =1; m <= mpoints; m++ ) for( int me =1; me <= meqn; me++ ) { double tmp1 = 0.; double tmp2 = 0.; // Terms that get multiplied by the Hessian: for( int m1=1; m1 <= meqn; m1++ ) for( int m2=1; m2 <= meqn; m2++ ) { tmp1 += H.get(m,me,m1,m2,1)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2); tmp2 += H.get(m,me,m1,m2,2)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2); } f_tt.set( m, me, f_tt.get(m,me) + tmp1 ); g_tt.set( m, me, g_tt.get(m,me) + tmp2 ); } } // End of computing "third"-order terms // ---------------------------------------------------------- // // // Construct basis coefficients (integrate_on_current_cell) // // ---------------------------------------------------------- // for (int me=1; me<=mcomps_out; me++) for (int k=1; k<=kmax; k++) { double tmp1 = 0.0; double tmp2 = 0.0; for (int mp=1; mp<=mpoints; mp++) { tmp1 += wgts.get(mp)*phi.get(mp,k)*( dt_times_fdot.get(mp, me) + charlie_dt*f_tt.get(mp, me) ); tmp2 += wgts.get(mp)*phi.get(mp,k)*( dt_times_gdot.get(mp, me) + charlie_dt*g_tt.get(mp, me) ); } F->set(i,me,k, F->get(i,me,k) + 2.0*tmp1 ); G->set(i,me,k, G->get(i,me,k) + 2.0*tmp2 ); } } }
////////////////////////////////////////////////////////////////////////////// // Function for stepping advection equation forward in time. // // The advection equation: q_t + u q_x = 0. // // It is assumed that aux(1,1,1) = u is constant. // ////////////////////////////////////////////////////////////////////////////// void StepAdvecFluxForm(const double& dt, const dTensor2& node, dTensorBC3& auxvals, dTensorBC1& smax, const dTensorBC3& qold, dTensorBC3& qnew) { void SetBndValues(const dTensor2& node, dTensorBC3& aux, dTensorBC3& q); SetBndValues(node, auxvals, qnew); //-local parameters -----------------------------------------------------// const int melems = qnew.getsize(1); //number of elements in grid const int meqn = qnew.getsize(2); //number of equations const int kmax = qnew.getsize(3); //number of polynomials const int mbc = qnew.getmbc(); //number of ghost cells //-----------------------------------------------------------------------// //save the center of each grid cell const double dx = node.get(2,1)-node.get(1,1); const double speed = auxvals.get(1,1,1); for(int j=1-mbc; j<=melems+mbc; j++) { smax.set(j, Max(smax.get(j), fabs(speed) ) ); } // compute quadrature points for where Q needs to be sampled const double s_area = 2.0; const double large_eta = speed*dt/dx; // integration points and weights (for interior) const int mpts = 5; dTensor1 wgt( mpts ), spts( mpts ); dTensor2 phi( mpts, 5), phi_x(mpts, 5); if( kmax > 1 ) { void setGaussPoints1d(dTensor1& x1d, dTensor1& w1d); void evaluateLegendrePolys( const double dx, const dTensor1& spts, dTensor2& phi, dTensor2& phi_x); setGaussPoints1d( spts, wgt ); evaluateLegendrePolys(dx, spts, phi, phi_x); } #pragma omp parallel for for(int i=1; i<=melems; i++) { //loop over each equation for(int me=1; me<= meqn; me++) { dg_cell* dgc = new dg_cell(); for( int k=1; k <= kmax; k++) { double qnp1 = qold.get(i,me,k); if( k > 1 ) { // interior integral for( int m=1; m <= mpts; m++ ) { double a = spts.get(m) - 2.0 * large_eta; double b = spts.get(m); int ishift = get_shift_index( a ); double integral = 0.0; if( ishift == 0 ) { // no shift takes place, can simply integrate from a to b for( int kq = 1; kq <= kmax; kq++ ) { integral += qold.get(i, me, kq) * dgc->integratePhi( a, b, kq ); } } else if( ishift < 0 ) { // integral at the shifted value for( int kq = 1; kq <= kmax; kq++ ) { integral += qold.get(i+ishift, me, kq) * dgc->integratePhi( shift_xi(a), 1.0, kq ); } // integrals between i and ishift for( int n=-1; n > ishift; n-- ) { integral += qold.get(i + n, meqn, 1) * dgc->integratePhi(-1.0, 1.0, 1); } // integral inside current cell for( int kq = 1; kq <= kmax; kq++ ) { integral += qold.get(i, me, kq) * dgc->integratePhi( -1.0, spts.get(m), kq ); } } else { printf(" StepAdvecFluxForm.cpp problem can't handle negative velocities yet\n"); exit(1); } qnp1 += 0.25 * dx * wgt.get(m) * phi_x.get(m,k) * integral; } } // left flux double a = -1.0 - 2.0 * large_eta; int ishift = get_shift_index( a ); double Fm = 0.0; if( ishift < 0 ) { for( int kq = 1; kq <= kmax; kq++ ) { Fm += qold.get(i+ishift, me, kq) * dgc->integratePhi( shift_xi(a), 1.0, kq ) / 2.0; } for( int n=-1; n > ishift; n-- ) { Fm += qold.get(i+n, me, 1); } } Fm *= sqrt(2*k-1) * pow(-1, k+1 ); // right flux double Fp = 0.0; a += 2.0; ishift = get_shift_index( a ); if( ishift < 1 ) { for( int kq = 1; kq <= kmax; kq++ ) { Fp += qold.get(i+ishift, me, kq) * dgc->integratePhi( shift_xi(a), 1.0, kq ) / 2.0; } } for( int n=0; n > ishift; n-- ) { Fp += qold.get(i+n, me, 1); } Fp *= sqrt(2*k-1); qnew.set(i, me, k, qnp1 - ( Fp - Fm ) ); } delete dgc; }//end of loop over each cell }//end of loop over each eqn void SetBndValues(const dTensor2& node, dTensorBC3& aux, dTensorBC3& q); SetBndValues(node, auxvals, qnew); }