/* Calculates the length of the string s, not including the terminating * \0 character. */ size_t strlen(const char *s) { size_t len; unsigned int cnt, cmp, skip, mask; vec_uchar16 *ptr, data; /* Compensate for initial mis-aligned string. */ ptr = (vec_uchar16 *)s; skip = (unsigned int)(ptr) & 15; mask = 0xFFFF >> skip; data = *ptr++; cmp = spu_extract(spu_gather(spu_cmpeq(data, 0)), 0); cmp &= mask; cnt = spu_extract(spu_cntlz(spu_promote(cmp, 0)), 0); len = cnt - (skip + 16); while (cnt == 32) { data = *ptr++; len -= 16; cnt = spu_extract(spu_cntlz(spu_gather(spu_cmpeq(data, 0))), 0); len += cnt; } return (len); }
inline void merge_cache_blocks(RenderableCacheLine* cache) { vec_uchar16 next = cache->chunkNext; for (;;) { vec_uchar16 nextnext = spu_shuffle(next, next, next); vec_uchar16 nextmask = spu_and(next, spu_splats((unsigned char)CHUNKNEXT_MASK)); vec_ushort8 firstblock0 = spu_cmpeq( cache->chunkStart[0], 0); vec_ushort8 firstblock1 = spu_cmpeq( cache->chunkStart[1], 0); // change next to word offset, note we don't care what the low bit shifted in is vec_uchar16 firstshuf = (vec_uchar16) spu_sl( (vec_ushort8)nextmask, 1 ); vec_uchar16 first = (vec_uchar16) spu_shuffle( firstblock0, firstblock1, firstshuf ); vec_ushort8 tri0 = cache->chunkTriangle[0]; vec_ushort8 tri1 = cache->chunkTriangle[1]; vec_uchar16 trishufhi = spu_or ( firstshuf, spu_splats((unsigned char) 1)); vec_uchar16 trishuflo = spu_and( firstshuf, spu_splats((unsigned char) 254)); vec_ushort8 ntri0 = spu_shuffle( tri0, tri1, spu_shuffle( trishuflo, trishufhi, SHUF0 ) ); vec_ushort8 ntri1 = spu_shuffle( tri0, tri1, spu_shuffle( trishuflo, trishufhi, SHUF1 ) ); vec_ushort8 trieq0 = spu_cmpeq( tri0, ntri0 ); vec_ushort8 trieq1 = spu_cmpeq( tri1, ntri1 ); vec_uchar16 trieq = (vec_uchar16) spu_shuffle( trieq0, trieq1, MERGE ); vec_uchar16 combi = spu_orc(first, trieq); vec_uchar16 canmerge = spu_cmpgt( spu_nor(spu_or(next, nextnext), combi), 256-CHUNKNEXT_BUSY_BIT ); vec_uint4 gather = spu_gather( canmerge ); vec_uint4 mergeid = spu_sub( spu_cntlz( gather ), spu_promote((unsigned int)16, 0)); if( !spu_extract(gather, 0) ) { return; } // unsigned int firstchunk = spu_extract(mergeid, 0); // unsigned int nextchunk = cache->chunkNextArray[firstchunk]; vec_uint4 v_chunkNext = (vec_uint4) si_rotqby( (qword) next, (qword) spu_add(mergeid,13) ); vec_uint4 v_chunkNextNext = (vec_uint4) si_rotqby( (qword) next, (qword) spu_add(v_chunkNext,13) ); // cache->chunkNextArray[firstchunk] = cache->chunkNextArray[nextchunk]; next = spu_shuffle( (vec_uchar16) v_chunkNextNext, next, (vec_uchar16) si_cbd( (qword) mergeid, 0 ) ); // cache->chunkNextArray[nextchunk] = CHUNKNEXT_FREE_BLOCK; next = spu_shuffle( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK), next, (vec_uchar16) si_cbd( (qword) v_chunkNext, 0 ) ); // this is for debug use only, it's not really needed... // cache->chunkStartArray[nextchunk] = -1; cache->chunkStartArray[ spu_extract(v_chunkNext,0) & 255 ] = -1; cache->chunkNext = next; } }
void task5() { // TODO Task 5 vector float scale_factor = spu_splats(0.5f); // 'transform' scalar arrays A, B, C to vector arrays: a, b, c vector float * a = (vector float *) A; vector float * b = (vector float *) B; vector float * c = (vector float *) C; int i; int n = N/4; // b = a * scale_factor for(i = 0; i < n; i++) b[i] = a[i] * scale_factor; // compare b and c vector unsigned int cmp_res[n]; for(i = 0; i < n; i++) cmp_res[i] = spu_cmpeq(b[i],c[i]); print_vector_uint (cmp_res, n); print_vector_float(b, n); print_vector_float(c, n); }
vec_ullong2 cmpnegzerod2( vec_double2 x ) { vec_ullong2 cmp; vec_uchar16 even = (vec_uchar16)(vec_uint4){ 0x00010203, 0x00010203, 0x08090a0b, 0x08090a0b }; vec_uchar16 odd = (vec_uchar16)(vec_uint4){ 0x04050607, 0x04050607, 0x0c0d0e0f, 0x0c0d0e0f }; cmp = (vec_ullong2)spu_cmpeq( (vec_int4)x, (vec_int4)spu_splats(0x8000000000000000ull) ); cmp = spu_and( spu_shuffle( cmp, cmp, even ), spu_shuffle( cmp, cmp, odd ) ); return cmp; }
void cp_buffer(int side){ int avail_out = num_free_in_buffer(OUT); int avail_side = num_in_buffer(side); int max = avail_out < avail_side ? avail_out : avail_side; vector signed int *out_head; if(mcb[am].local[OUT] < 255) out_head = (vector signed int*) &md[ mcb[am].local[OUT] ].idx[ (mcb[am].id+1)&1 ][HEAD]; else out_head = (vector signed int*) &md[am].idx[OUT][HEAD]; vector unsigned int cmp_v; vector signed int from_size = spu_splats( mcb[am].buffer_size[side] ); vector signed int out_size = spu_splats( mcb[ mcb[am].local[OUT] ].buffer_size[ (mcb[am].id+1)&1 ] ); vector signed int ones = {1,1,1,1}; vector signed int zeros = {0,0,0,0}; int i; for(i = 0; i < max; i++){ md[am].buffer[OUT][spu_extract( *out_head,0)] = md[am].buffer[side][spu_extract(md[am].idx[side][TAIL],0)]; // update idx md[am].idx[side][TAIL] = spu_add(md[am].idx[side][TAIL], ones); cmp_v = spu_cmpeq(md[am].idx[side][TAIL],from_size); md[am].idx[side][TAIL] = spu_sel(md[am].idx[side][TAIL], zeros, cmp_v); *out_head = spu_add(*out_head,ones); cmp_v = spu_cmpeq(*out_head, out_size); *out_head = spu_sel(*out_head,zeros,cmp_v); } update_tail(side); md[am].consumed[side] += max; if(mcb[am].local[OUT] < 255 && md[am].consumed[side] == mcb[am].data_size[side]){ md[am].depleted[side] = 1; md[am].done = 1; --num_active_mergers; } }
int test_spu_cmpeq() { int i, j; unsigned long long exp; /* double */ for (i=0; i<samples; i++) { a.vd = rand_vd(-4.0, 4.0); b.vd = rand_vd(-4.0, 4.0); d.vull = spu_cmpeq(a.vd, b.vd); for (j=0; j<2; j++) { exp = (a.d[j] == b.d[j]) ? (((unsigned long long)(0xFFFFFFFF) << 32) | (unsigned long long)(0xFFFFFFFF)) : 0; if (exp != d.ull[j]) abort(); } } /* compare zeros */ d.vull = spu_cmpeq(a0.vd, b0.vd); for (j=0; j<2; j++) { exp = (a0.d[j] == b0.d[j]) ? (((unsigned long long)(0xFFFFFFFF) << 32) | (unsigned long long)(0xFFFFFFFF)) : 0; if (exp != d.ull[j]) abort(); } /* compare NaNs */ d.vull = spu_cmpeq(a1.vd, b1.vd); for (j=0; j<2; j++) { exp = (a1.d[j] == b1.d[j]) ? (((unsigned long long)(0xFFFFFFFF) << 32) | (unsigned long long)(0xFFFFFFFF)) : 0; if (exp != d.ull[j]) abort(); } return 0; }
unsigned int __mfc_multi_tag_reserve (unsigned int number_of_tags) { vector unsigned int table_copy; vector unsigned int one = (vector unsigned int) { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; vector unsigned int count_busy, is_valid; vector unsigned int count_total; vector unsigned int count_avail = (vector unsigned int) { 0, 0, 0, 0 }; vector unsigned int index = (vector unsigned int) { 0, 0, 0, 0 }; table_copy = __mfc_tag_table; /* count_busy: number of consecutive busy tags count_avail: number of consecutive free tags table_copy: temporary copy of the tag table count_total: sum of count_busy and count_avail index: index of the current working tag */ do { table_copy = spu_sl (table_copy, count_avail); count_busy = spu_cntlz (table_copy); table_copy = spu_sl (table_copy, count_busy); count_avail = spu_cntlz (spu_xor(table_copy, -1)); count_total = spu_add (count_busy, count_avail); index = spu_add (index, count_total); } while (spu_extract (count_avail, 0) < number_of_tags && spu_extract (table_copy, 0) != 0); index = spu_sub (index, count_avail); /* is_valid is set to 0xFFFFFFFF if table_copy == 0, 0 otherwise. */ is_valid = spu_cmpeq (table_copy, 0); index = spu_sel (index, is_valid, is_valid); /* Now I need to actually mark the tags as used. */ table_copy = spu_sl (one, number_of_tags); table_copy = spu_rl (table_copy, -number_of_tags - spu_extract (index, 0)); table_copy = spu_sel (table_copy, __mfc_tag_table, table_copy); __mfc_tag_table = spu_sel (table_copy, __mfc_tag_table, is_valid); return spu_extract (index, 0); }
unsigned int __mfc_tag_reserve (void) { vector unsigned int mask = (vector unsigned int) { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; vector unsigned int count_zeros, is_valid; vector signed int count_neg; count_zeros = spu_cntlz (__mfc_tag_table); count_neg = spu_sub (0, (vector signed int) count_zeros); mask = spu_rlmask (mask, (vector signed int) count_neg); __mfc_tag_table = spu_andc (__mfc_tag_table, mask); is_valid = spu_cmpeq (count_zeros, 32); count_zeros = spu_sel (count_zeros, is_valid, is_valid); return spu_extract (count_zeros, 0); }
int allequal_llong2( vec_llong2 x, vec_llong2 y ) { return spu_extract( spu_gather( spu_cmpeq ((vec_int4)(x - y), spu_splats((int)0) )), 0) == 0xF; }
void* libvector_pointwise_multiply_32fc_unaligned(void* target, void* src0, void* src1, unsigned int num_bytes){ //loop iterator i int i = 0; void* retval = target; //put the target and source addresses into qwords vector unsigned int address_counter_tgt = {(unsigned int)target, 0, 0, 0}; vector unsigned int address_counter_src0 = {(unsigned int)src0, 0, 0 ,0}; vector unsigned int address_counter_src1 = {(unsigned int)src1, 0, 0, 0}; //create shuffle masks //shuffle mask building blocks: //all from the first vector vector unsigned char oneup = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; //all from the second vector vector unsigned char second_oneup = {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f}; //gamma: second half of the second, first half of the first, break at (unsigned int)src0%16 vector unsigned char src_cmp = spu_splats((unsigned char)((unsigned int)src0%16)); vector unsigned char gt_res = spu_cmpgt(oneup, src_cmp); vector unsigned char eq_res = spu_cmpeq(oneup, src_cmp); vector unsigned char cmp_res = spu_or(gt_res, eq_res); vector unsigned char sixteen_uchar = spu_splats((unsigned char)16); vector unsigned char phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_gamma = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_gamma = spu_rlqwbyte(shuffle_mask_gamma, (unsigned int)src0%16); //eta: second half of the second, first half of the first, break at (unsigned int)src1%16 src_cmp = spu_splats((unsigned char)((unsigned int)src1%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); sixteen_uchar = spu_splats((unsigned char)16); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_eta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_eta = spu_rlqwbyte(shuffle_mask_eta, (unsigned int)src1%16); vector unsigned char tgt_second = spu_rlqwbyte(second_oneup, -((unsigned int)target%16)); vector unsigned char tgt_first = spu_rlqwbyte(oneup, -((unsigned int)target%16)); //alpha: first half of first, second half of second, break at (unsigned int)target%16 src_cmp = spu_splats((unsigned char)((unsigned int)target%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_alpha = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); //delta: first half of first, first half of second, break at (unsigned int)target%16 vector unsigned char shuffle_mask_delta = spu_shuffle(oneup, tgt_second, (vector unsigned char)shuffle_mask_alpha); //epsilon: second half of second, second half of first, break at (unsigned int)target%16 vector unsigned char shuffle_mask_epsilon = spu_shuffle(tgt_second, oneup, (vector unsigned char)shuffle_mask_alpha); //zeta: second half of second, first half of first, break at 16 - (unsigned int)target%16 vector unsigned int shuffle_mask_zeta = spu_rlqwbyte(shuffle_mask_alpha, (unsigned int)target%16); //beta: first half of first, second half of second, break at num_bytes%16 src_cmp = spu_splats((unsigned char)(num_bytes%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_beta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); qword src0_past; qword src0_present; qword src1_past; qword src1_present; qword tgt_past; qword tgt_present; qword in_temp0; qword in_temp1; qword out_temp0; qword out_temp1; src0_past = si_lqd((qword)address_counter_src0, 0); src1_past = si_lqd((qword)address_counter_src1, 0); tgt_past = si_lqd((qword)address_counter_tgt, 0); vector unsigned char shuffle_mask_complexprod0 = {0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x0c, 0x0d, 0x0e, 0x0f, 0x08, 0x09, 0x0a, 0x0b}; vector unsigned char shuffle_mask_complexprod1 = {0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13, 0x08, 0x09, 0x0a, 0x0b, 0x18, 0x19, 0x1a, 0x1b}; vector unsigned char shuffle_mask_complexprod2 = {0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17, 0x0c, 0x0d, 0x0e, 0x0f, 0x1c, 0x1d, 0x1e, 0x1f}; vector unsigned char sign_changer = {0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00}; vector float prod0; qword shuf0; vector float prod1; vector float sign_change; qword summand0; qword summand1; vector float sum; for(i = 0; i < num_bytes/16; ++i) { src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char)shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char)shuffle_mask_eta); prod0 = spu_mul((vector float)in_temp0, (vector float)in_temp1); shuf0 = spu_shuffle((qword)in_temp1, (qword)in_temp1, shuffle_mask_complexprod0); prod1 = spu_mul((vector float)in_temp0, (vector float)shuf0); sign_change = spu_xor(prod0, (vector float)sign_changer); summand0 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod1); summand1 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod2); sum = spu_add((vector float)summand0, (vector float)summand1); out_temp0 = spu_shuffle(tgt_past, (qword)sum, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, (qword)sum, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); tgt_past = out_temp1; src0_past = src0_present; src1_past = src1_present; address_counter_src0 = spu_add(address_counter_src0, 16); address_counter_src1 = spu_add(address_counter_src1, 16); address_counter_tgt = spu_add(address_counter_tgt, 16); } src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char) shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char) shuffle_mask_eta); prod0 = spu_mul((vector float)in_temp0, (vector float)in_temp1); shuf0 = spu_shuffle((qword)in_temp1, (qword)in_temp1, shuffle_mask_complexprod0); prod1 = spu_mul(prod0, (vector float)shuf0); sign_change = spu_xor(prod0, (vector float)sign_changer); summand0 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod1); summand1 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod2); sum = spu_add((vector float)summand0, (vector float)summand1); qword target_temp = spu_shuffle(tgt_present, tgt_past, (vector unsigned char) shuffle_mask_zeta); qword meld = spu_shuffle((qword)sum, target_temp, (vector unsigned char)shuffle_mask_beta); out_temp0 = spu_shuffle(tgt_past, meld, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, meld, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); return retval; }
/* Scans the string pointed to by s for the character c and * returns a pointer to the last occurance of c. If * c is not found, then NULL is returned. */ char * strrchr(const char *s, int c) { int nskip; vec_uchar16 *ptr, data, vc; vec_uint4 cmp_c, cmp_0, cmp; vec_uint4 res_ptr, res_cmp; vec_uint4 mask, result; vec_uint4 one = spu_splats(0xffffU); /* Scan memory array a quadword at a time. Skip leading * mis-aligned bytes. */ ptr = (vec_uchar16 *)s; nskip = -((unsigned int)(ptr) & 15); mask = spu_rlmask(one, nskip); vc = spu_splats((unsigned char)(c)); data = *ptr++; ptr = (vec_uchar16 *)((unsigned int)ptr & ~15); cmp_c = spu_and(spu_gather(spu_cmpeq(data, vc)), mask); cmp_0 = spu_and(spu_gather(spu_cmpeq(data, 0)), mask); res_ptr = spu_splats(0U); res_cmp = spu_splats(0U); while (spu_extract(cmp_0, 0) == 0) { cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); data = *ptr++; cmp_c = spu_gather(spu_cmpeq(data, vc)); cmp_0 = spu_gather(spu_cmpeq(data, 0)); cmp = spu_cmpeq(cmp_c, 0); } /* Compute the location of the last character before termination * character. * * First mask off compare results following the first termination character. */ mask = spu_sl(one, 31 - spu_extract(spu_cntlz(cmp_0), 0)); cmp_c = spu_and(cmp_c, mask); /* Conditionally update res_ptr and res_cmd if a match was found in the last * quadword. */ cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); /* Bit reserve res_cmp for locating last occurance. */ mask = spu_cmpeq(res_cmp, 0); res_cmp = (vec_uint4)spu_maskb(spu_extract(res_cmp, 0)); res_cmp = spu_gather((vec_uchar16)spu_shuffle(res_cmp, res_cmp, VEC_LITERAL(vec_uchar16, 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0))); /* Compute the location (ptr) of the last occurance of c. If no * occurance was found (ie, element 0 of res_cmp == 0, then return * NULL. */ result = spu_sub(spu_add(res_ptr, 15), spu_cntlz(res_cmp)); result = spu_andc(result, mask); return ((char *)spu_extract(result, 0)); }
/* * NAME: sha256->search() * DESCRIPTION: try to find a nonce which satisfies a target hash */ int64_t sha256_search(const message_t M, const hash_t target, const hash_t midstate, uint32_t start_nonce, uint32_t range) { uint32_t nonce, stop_nonce = start_nonce + range + (4 - (range % 4)) % 4; # if !defined(UNROLL_SHA256) int t; # endif vec_uint4 W0[3], a0, b0, c0, d0, e0, f0, g0, h0; vec_uint4 W[16], a, b, c, d, e, f, g, h, T1, T2; vec_uint4 borrow, solution; const vec_uchar16 reverse_endian = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 }; /* precompute first three rounds */ a = SPLAT(midstate.words[0]); b = SPLAT(midstate.words[1]); c = SPLAT(midstate.words[2]); d = SPLAT(midstate.words[3]); e = SPLAT(midstate.words[4]); f = SPLAT(midstate.words[5]); g = SPLAT(midstate.words[6]); h = SPLAT(midstate.words[7]); # ifdef UNROLL_SHA256 W[0] = SPLAT(M.words[0]); ROUND(0); W[1] = SPLAT(M.words[1]); ROUND(1); W[2] = SPLAT(M.words[2]); ROUND(2); # else for (t = 0; t < 3; ++t) { W[t] = SPLAT(M.words[t]); ROUND(t); } # endif W0[0] = W[0]; W0[1] = W[1]; W0[2] = W[2]; a0 = a; b0 = b; c0 = c; d0 = d; e0 = e; f0 = f; g0 = g; h0 = h; /* do the search, four at a time */ for (nonce = start_nonce; nonce != stop_nonce; nonce += 4) { W[0] = W0[0]; W[1] = W0[1]; W[2] = W0[2]; a = a0; b = b0; c = c0; d = d0; e = e0; f = f0; g = g0; h = h0; /* t = 3 */ W[3] = (vec_uint4) { nonce + 0, nonce + 1, nonce + 2, nonce + 3 }; ROUND(3); # ifdef UNROLL_SHA256 W[ 4] = SPLAT(M.words[ 4]); ROUND( 4); W[ 5] = SPLAT(M.words[ 5]); ROUND( 5); W[ 6] = SPLAT(M.words[ 6]); ROUND( 6); W[ 7] = SPLAT(M.words[ 7]); ROUND( 7); W[ 8] = SPLAT(M.words[ 8]); ROUND( 8); W[ 9] = SPLAT(M.words[ 9]); ROUND( 9); W[10] = SPLAT(M.words[10]); ROUND(10); W[11] = SPLAT(M.words[11]); ROUND(11); W[12] = SPLAT(M.words[12]); ROUND(12); W[13] = SPLAT(M.words[13]); ROUND(13); W[14] = SPLAT(M.words[14]); ROUND(14); W[15] = SPLAT(M.words[15]); ROUND(15); # else for (t = 4; t < 16; ++t) { W[t] = SPLAT(M.words[t]); ROUND(t); } # endif # ifdef UNROLL_SHA256 W[16 % 16] = W(16); ROUND(16); W[17 % 16] = W(17); ROUND(17); W[18 % 16] = W(18); ROUND(18); W[19 % 16] = W(19); ROUND(19); W[20 % 16] = W(20); ROUND(20); W[21 % 16] = W(21); ROUND(21); W[22 % 16] = W(22); ROUND(22); W[23 % 16] = W(23); ROUND(23); W[24 % 16] = W(24); ROUND(24); W[25 % 16] = W(25); ROUND(25); W[26 % 16] = W(26); ROUND(26); W[27 % 16] = W(27); ROUND(27); W[28 % 16] = W(28); ROUND(28); W[29 % 16] = W(29); ROUND(29); W[30 % 16] = W(30); ROUND(30); W[31 % 16] = W(31); ROUND(31); W[32 % 16] = W(32); ROUND(32); W[33 % 16] = W(33); ROUND(33); W[34 % 16] = W(34); ROUND(34); W[35 % 16] = W(35); ROUND(35); W[36 % 16] = W(36); ROUND(36); W[37 % 16] = W(37); ROUND(37); W[38 % 16] = W(38); ROUND(38); W[39 % 16] = W(39); ROUND(39); W[40 % 16] = W(40); ROUND(40); W[41 % 16] = W(41); ROUND(41); W[42 % 16] = W(42); ROUND(42); W[43 % 16] = W(43); ROUND(43); W[44 % 16] = W(44); ROUND(44); W[45 % 16] = W(45); ROUND(45); W[46 % 16] = W(46); ROUND(46); W[47 % 16] = W(47); ROUND(47); W[48 % 16] = W(48); ROUND(48); W[49 % 16] = W(49); ROUND(49); W[50 % 16] = W(50); ROUND(50); W[51 % 16] = W(51); ROUND(51); W[52 % 16] = W(52); ROUND(52); W[53 % 16] = W(53); ROUND(53); W[54 % 16] = W(54); ROUND(54); W[55 % 16] = W(55); ROUND(55); W[56 % 16] = W(56); ROUND(56); W[57 % 16] = W(57); ROUND(57); W[58 % 16] = W(58); ROUND(58); W[59 % 16] = W(59); ROUND(59); W[60 % 16] = W(60); ROUND(60); W[61 % 16] = W(61); ROUND(61); W[62 % 16] = W(62); ROUND(62); W[63 % 16] = W(63); ROUND(63); # else for (t = 16; t < 64; ++t) { W[t % 16] = W(t); ROUND(t); } # endif W[0] = ADD(a, midstate.words[0]); W[1] = ADD(b, midstate.words[1]); W[2] = ADD(c, midstate.words[2]); W[3] = ADD(d, midstate.words[3]); W[4] = ADD(e, midstate.words[4]); W[5] = ADD(f, midstate.words[5]); W[6] = ADD(g, midstate.words[6]); W[7] = ADD(h, midstate.words[7]); /* first SHA-256 complete */ a = SPLAT(H0.words[0]); b = SPLAT(H0.words[1]); c = SPLAT(H0.words[2]); d = SPLAT(H0.words[3]); e = SPLAT(H0.words[4]); f = SPLAT(H0.words[5]); g = SPLAT(H0.words[6]); h = SPLAT(H0.words[7]); ROUND(0); ROUND(1); ROUND(2); ROUND(3); ROUND(4); ROUND(5); ROUND(6); ROUND(7); W[ 8] = SPLAT(0x80000000U); ROUND( 8); # ifdef UNROLL_SHA256 W[ 9] = SPLAT(0x00000000U); ROUND( 9); W[10] = SPLAT(0x00000000U); ROUND(10); W[11] = SPLAT(0x00000000U); ROUND(11); W[12] = SPLAT(0x00000000U); ROUND(12); W[13] = SPLAT(0x00000000U); ROUND(13); W[14] = SPLAT(0x00000000U); ROUND(14); # else for (t = 9; t < 15; ++t) { W[t] = SPLAT(0U); ROUND(t); } # endif W[15] = SPLAT(0x00000100U); ROUND(15); # ifdef UNROLL_SHA256 W[16 % 16] = W(16); ROUND(16); W[17 % 16] = W(17); ROUND(17); W[18 % 16] = W(18); ROUND(18); W[19 % 16] = W(19); ROUND(19); W[20 % 16] = W(20); ROUND(20); W[21 % 16] = W(21); ROUND(21); W[22 % 16] = W(22); ROUND(22); W[23 % 16] = W(23); ROUND(23); W[24 % 16] = W(24); ROUND(24); W[25 % 16] = W(25); ROUND(25); W[26 % 16] = W(26); ROUND(26); W[27 % 16] = W(27); ROUND(27); W[28 % 16] = W(28); ROUND(28); W[29 % 16] = W(29); ROUND(29); W[30 % 16] = W(30); ROUND(30); W[31 % 16] = W(31); ROUND(31); W[32 % 16] = W(32); ROUND(32); W[33 % 16] = W(33); ROUND(33); W[34 % 16] = W(34); ROUND(34); W[35 % 16] = W(35); ROUND(35); W[36 % 16] = W(36); ROUND(36); W[37 % 16] = W(37); ROUND(37); W[38 % 16] = W(38); ROUND(38); W[39 % 16] = W(39); ROUND(39); W[40 % 16] = W(40); ROUND(40); W[41 % 16] = W(41); ROUND(41); W[42 % 16] = W(42); ROUND(42); W[43 % 16] = W(43); ROUND(43); W[44 % 16] = W(44); ROUND(44); W[45 % 16] = W(45); ROUND(45); W[46 % 16] = W(46); ROUND(46); W[47 % 16] = W(47); ROUND(47); W[48 % 16] = W(48); ROUND(48); W[49 % 16] = W(49); ROUND(49); W[50 % 16] = W(50); ROUND(50); W[51 % 16] = W(51); ROUND(51); W[52 % 16] = W(52); ROUND(52); W[53 % 16] = W(53); ROUND(53); W[54 % 16] = W(54); ROUND(54); W[55 % 16] = W(55); ROUND(55); W[56 % 16] = W(56); ROUND(56); W[57 % 16] = W(57); ROUND(57); W[58 % 16] = W(58); ROUND(58); W[59 % 16] = W(59); ROUND(59); /* t = 60..63 delayed */ # else for (t = 16; t < 60; ++t) { W[t % 16] = W(t); ROUND(t); } # endif W[60 % 16] = W(60); T1 = T1(60, e, f, g, h); T2 = ADD(ADD(d, T1), H0.words[7]); /* quick check to see if any element of the last word vector is zero */ if (__builtin_expect(spu_extract(spu_gather(spu_cmpeq(T2, 0)), 0) == 0, 1)) continue; /* we have something interesting; finish the SHA-256 */ ROUND(60); # ifdef UNROLL_SHA256 W[61 % 16] = W(61); ROUND(61); W[62 % 16] = W(62); ROUND(62); W[63 % 16] = W(63); ROUND(63); # else for (t = 61; t < 64; ++t) { W[t % 16] = W(t); ROUND(t); } # endif a = ADD(a, H0.words[0]); b = ADD(b, H0.words[1]); c = ADD(c, H0.words[2]); d = ADD(d, H0.words[3]); e = ADD(e, H0.words[4]); f = ADD(f, H0.words[5]); g = ADD(g, H0.words[6]); h = ADD(h, H0.words[7]); /* now do the full (reversed-endian) subtraction */ borrow = spu_genb(SPLAT(target.words[7]), spu_shuffle(a, a, reverse_endian)); borrow = spu_genbx(SPLAT(target.words[6]), spu_shuffle(b, b, reverse_endian), borrow); borrow = spu_genbx(SPLAT(target.words[5]), spu_shuffle(c, c, reverse_endian), borrow); borrow = spu_genbx(SPLAT(target.words[4]), spu_shuffle(d, d, reverse_endian), borrow); borrow = spu_genbx(SPLAT(target.words[3]), spu_shuffle(e, e, reverse_endian), borrow); borrow = spu_genbx(SPLAT(target.words[2]), spu_shuffle(f, f, reverse_endian), borrow); borrow = spu_genbx(SPLAT(target.words[1]), spu_shuffle(g, g, reverse_endian), borrow); borrow = spu_genbx(SPLAT(target.words[0]), spu_shuffle(h, h, reverse_endian), borrow); solution = spu_gather(borrow); if (__builtin_expect(spu_extract(solution, 0) == 0, 1)) continue; /* we have a winner */ return nonce + (spu_extract(spu_cntlz(solution), 0) - 28); } return -1; }
vector double __divv2df3 (vector double a_in, vector double b_in) { /* Variables */ vec_int4 exp, exp_bias; vec_uint4 no_underflow, overflow; vec_float4 mant_bf, inv_bf; vec_ullong2 exp_a, exp_b; vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0; vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0; vec_ullong2 nan; vec_uint4 a_exp, b_exp; vec_ullong2 a_mant_0, b_mant_0; vec_ullong2 a_exp_1s, b_exp_1s; vec_ullong2 sign_exp_mask; vec_double2 a, b; vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult; /* Constants */ vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000); vec_uchar16 splat_hi = (vec_uchar16) { 0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11 }; vec_uchar16 swap_32 = (vec_uchar16) { 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL); vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL); vec_float4 onef = spu_splats(1.0f); vec_double2 one = spu_splats(1.0); vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL); sign_exp_mask = spu_or(sign_mask, exp_mask); /* Extract the floating point components from each of the operands including * exponent and mantissa. */ a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32); a_exp = spu_shuffle(a_exp, a_exp, splat_hi); b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32); b_exp = spu_shuffle(b_exp, b_exp, splat_hi); a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0); a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32)); b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0); b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32)); a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32); b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32); /* Identify all possible special values that must be accommodated including: * +-denorm, +-0, +-infinity, and NaNs. */ a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0); a_nan = spu_andc(a_exp_1s, a_mant_0); a_zero = spu_and (a_denorm0, a_mant_0); a_inf = spu_and (a_exp_1s, a_mant_0); a_denorm = spu_andc(a_denorm0, a_zero); b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0); b_nan = spu_andc(b_exp_1s, b_mant_0); b_zero = spu_and (b_denorm0, b_mant_0); b_inf = spu_and (b_exp_1s, b_mant_0); b_denorm = spu_andc(b_denorm0, b_zero); /* Scale denorm inputs to into normalized numbers by conditionally scaling the * input parameters. */ a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask)); a = spu_sel(a_in, a, a_denorm); b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask)); b = spu_sel(b_in, b, b_denorm); /* Extract the divisor and dividend exponent and force parameters into the signed * range [1.0,2.0) or [-1.0,2.0). */ exp_a = spu_and((vec_ullong2)a, exp_mask); exp_b = spu_and((vec_ullong2)b, exp_mask); mant_a = spu_sel(a, one, (vec_ullong2)exp_mask); mant_b = spu_sel(b, one, (vec_ullong2)exp_mask); /* Approximate the single reciprocal of b by using * the single precision reciprocal estimate followed by one * single precision iteration of Newton-Raphson. */ mant_bf = spu_roundtf(mant_b); inv_bf = spu_re(mant_bf); inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf); /* Perform 2 more Newton-Raphson iterations in double precision. The * result (q1) is in the range (0.5, 2.0). */ inv_b = spu_extend(inv_bf); inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b); q0 = spu_mul(mant_a, inv_b); q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0); /* Determine the exponent correction factor that must be applied * to q1 by taking into account the exponent of the normalized inputs * and the scale factors that were applied to normalize them. */ exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20); exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34))); /* Bias the quotient exponent depending on the sign of the exponent correction * factor so that a single multiplier will ensure the entire double precision * domain (including denorms) can be achieved. * * exp bias q1 adjust exp * ===== ======== ========== * positive 2^+65 -65 * negative 2^-64 +64 */ exp_bias = spu_xor(spu_rlmaska(exp, -31), 64); exp = spu_sub(exp, exp_bias); q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask); /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the * expected result. On overflow, clamp the multiplier to the maximum non-infinite * number in case the rounding mode is not round-to-nearest. */ exp = spu_add(exp, 0x3FF); no_underflow = spu_cmpgt(exp, 0); overflow = spu_cmpgt(exp, 0x7FE); exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow); exp = spu_and(exp, (vec_int4)exp_mask); mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow); /* Handle special value conditions. These include: * * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN * results. * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results. * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results. */ mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf)); mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero)); nan = spu_or(a_nan, b_nan); nan = spu_or(nan, spu_and(a_zero, b_zero)); nan = spu_or(nan, spu_and(a_inf, b_inf)); mult = spu_or(mult, (vec_double2)nan); /* Scale the final quotient */ q2 = spu_mul(q1, mult); return (q2); }
void process_render_tasks(unsigned long eah_render_tasks, unsigned long eal_render_tasks) { const vec_uchar16 SHUFFLE_MERGE_BYTES = (vec_uchar16) { // merge lo bytes from unsigned shorts (array) 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 }; const vec_uchar16 SHUFFLE_GET_BUSY_WITH_ONES = (vec_uchar16) { // get busy flag with ones in unused bytes 0xc0, 0xc0, 2, 3, 0xc0,0xc0,0xc0,0xc0, 0xc0,0xc0,0xc0,0xc0 }; const vec_uchar16 ZERO_BYTES = (vec_uchar16) spu_splats(0); char trianglebuffer[ 256 + TRIANGLE_MAX_SIZE ]; char sync_buffer[128+127]; void* aligned_sync_buffer = (void*) ( ((unsigned long)sync_buffer+127) & ~127 ); RenderableCacheLine* cache = (RenderableCacheLine*) aligned_sync_buffer; unsigned long long cache_ea; spu_mfcdma64(&cache_ea, eah_render_tasks, eal_render_tasks, sizeof(cache_ea), 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); while (cache_ea) { // terminate immediately if possible if (spu_stat_in_mbox()) return; // read the cache line spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); unsigned int endTriangle = cache->endTriangle; vec_ushort8 testTriangle = spu_splats((unsigned short) endTriangle); // first look for short chunks vec_uchar16 next = cache->chunkNext; vec_uchar16 nextmask = spu_and(next, spu_splats((unsigned char)CHUNKNEXT_MASK)); // change next to word offset, note we don't care what the low bit shifted in is vec_uchar16 firstshuf = (vec_uchar16) spu_sl( (vec_ushort8)nextmask, 1 ); vec_uchar16 trishufhi = spu_or ( firstshuf, spu_splats((unsigned char) 1)); vec_uchar16 trishuflo = spu_and( firstshuf, spu_splats((unsigned char) 254)); vec_ushort8 start0 = cache->chunkStart[0]; vec_ushort8 start1 = cache->chunkStart[1]; vec_ushort8 nstart0 = spu_shuffle( start0, start1, spu_shuffle( trishuflo, trishufhi, SHUF0 ) ); vec_ushort8 nstart1 = spu_shuffle( start0, start1, spu_shuffle( trishuflo, trishufhi, SHUF1 ) ); vec_ushort8 starteq0 = spu_cmpeq( nstart0, spu_splats((unsigned short)0) ); vec_ushort8 starteq1 = spu_cmpeq( nstart1, spu_splats((unsigned short)0) ); vec_ushort8 end0 = spu_sel( nstart0, spu_splats((unsigned short)4096), starteq0); vec_ushort8 end1 = spu_sel( nstart1, spu_splats((unsigned short)4096), starteq1); vec_ushort8 len0 = spu_sub( end0, start0); vec_ushort8 len1 = spu_sub( end1, start1); vec_ushort8 small0 = spu_cmpgt( spu_splats((unsigned short)17), len0); vec_ushort8 small1 = spu_cmpgt( spu_splats((unsigned short)17), len1); vec_uchar16 small = (vec_uchar16) spu_shuffle( small0, small1, MERGE ); vec_uint4 smallChunkGather = spu_gather(small); // check to see if chunk is already at the last triangle vec_uint4 doneChunkGather = spu_gather( (vec_uchar16) spu_shuffle( (vec_uchar16) spu_cmpeq(testTriangle, cache->chunkTriangle[0]), (vec_uchar16) spu_cmpeq(testTriangle, cache->chunkTriangle[1]), SHUFFLE_MERGE_BYTES) ); // check if the chunk is free vec_uint4 freeChunkGather = spu_gather( spu_cmpeq( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK ), cache->chunkNext ) ); // check to see if the chunk is being processed vec_uint4 busyChunkGather = spu_gather( spu_cmpgt( cache->chunkNext, //spu_and(cache->chunkNext, CHUNKNEXT_MASK), spu_splats( (unsigned char) (CHUNKNEXT_BUSY_BIT-1) ) ) ); // doneChunkGather, freeChunkGather, busyChunkGather - rightmost 16 bits of word 0 // note that if freeChunkGather is true then busyChunkGather must also be true // done=false, free=false, busy=false -> can process // free=false, busy=false -> can be merged // decide which chunk to process vec_uint4 mayProcessGather = spu_nor( doneChunkGather, busyChunkGather ); vec_uint4 mayProcessShortGather = spu_and( mayProcessGather, smallChunkGather ); vec_uint4 shortSelMask = spu_cmpeq( mayProcessShortGather, spu_splats(0U) ); vec_uint4 mayProcessSelection = spu_sel( mayProcessShortGather, mayProcessGather, shortSelMask ); /* if (!spu_extract(shortSelMask, 0)) printf("taken short: may=%04x short=%04x mayshort=%04x mask=%04x sel=%04x\n", spu_extract(mayProcessGather, 0) & 0xffff, spu_extract(smallChunkGather, 0), spu_extract(mayProcessShortGather, 0), spu_extract(shortSelMask, 0) & 0xffff, spu_extract(mayProcessSelection, 0) & 0xffff ); */ vec_uint4 mayProcessBits = spu_sl( mayProcessSelection, 16); unsigned int chunkToProcess = spu_extract( spu_cntlz( mayProcessBits ), 0); unsigned int freeChunk = spu_extract( spu_cntlz( spu_sl( freeChunkGather, 16 ) ), 0); // if there's nothing to process, try the next cache line in the rendering tasks list if (!spu_extract(mayProcessBits, 0)) { trynextcacheline: cache_ea = cache->next; // sleep(); continue; } unsigned int chunkStart = cache->chunkStartArray [chunkToProcess]; unsigned int chunkTriangle = cache->chunkTriangleArray[chunkToProcess]; unsigned int chunkNext = cache->chunkNextArray [chunkToProcess] & CHUNKNEXT_MASK; unsigned int chunkEnd = (cache->chunkStartArray [chunkNext]-1) & (NUMBER_OF_TILES-1); unsigned int chunkLength = 1 + chunkEnd-chunkStart; // only need an extra block if the block is especially long if (chunkLength <= NUMBER_OF_TILES_PER_CHUNK) { freeChunk = 32; } // mark this block as busy cache->chunkNextArray[chunkToProcess] |= CHUNKNEXT_BUSY_BIT; // if there's at least one free chunk, claim it if (freeChunk != 32) { cache->chunkNextArray[freeChunk] = CHUNKNEXT_RESERVED; cache->chunkTriangleArray[freeChunk] = chunkTriangle; } // write the cache line back spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); if (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS) continue; #ifdef INFO printf("[%d] Claimed chunk %d (%d-%d len %d) at tri %x end %x with free chunk %d\n", _SPUID, chunkToProcess, chunkStart, chunkEnd, chunkLength, chunkTriangle, endTriangle, freeChunk!=32 ? freeChunk : -1 ); // debug_render_tasks(cache); #endif Triangle* triangle; int firstTile; do { // read the triangle data for the current triangle unsigned int extra = chunkTriangle & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (chunkTriangle & ~127); triangle = (Triangle*) (trianglebuffer+extra); unsigned int length = (extra + TRIANGLE_MAX_SIZE + 127) & ~127; // ensure DMA slot available do {} while (!spu_readchcnt(MFC_Cmd)); spu_mfcdma64(trianglebuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), length, 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); // get the triangle deltas firstTile = findFirstTriangleTile(triangle, chunkStart, chunkEnd); if (firstTile>=0) break; // no match, try next triangle chunkTriangle = triangle->next_triangle; } while (chunkTriangle != endTriangle); // if we actually have something to process... if (firstTile>=0) { // the "normal" splitting will now become: // chunkStart .. (firstTile-1) -> triangle->next_triangle // firstTile .. (firstTile+NUM-1) -> chunkTriangle (BUSY) // (firstTile+NUM) .. chunkEnd -> chunkTriangle (FREE) int tailChunk; int thisChunk; int nextBlockStart; int thisBlockStart; int realBlockStart; do { retry: // read the cache line spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); // calculate start of next block nextBlockStart = firstTile + NUMBER_OF_TILES_PER_CHUNK; if (nextBlockStart > chunkEnd) nextBlockStart = chunkEnd+1; // calculate start of block to mark as busy thisBlockStart = nextBlockStart - NUMBER_OF_TILES_PER_CHUNK; if (thisBlockStart < chunkStart) thisBlockStart = chunkStart; realBlockStart = thisBlockStart; #ifdef INFO printf("[%d] nextBlockStart=%d, realBlockStart=%d, thisBlockStart=%d, chunkStart=%d\n", _SPUID, nextBlockStart, realBlockStart, thisBlockStart, chunkStart); #endif // allocate some more free chunks vec_uint4 freeChunkGather2 = spu_sl(spu_gather(spu_cmpeq( spu_splats((unsigned char)CHUNKNEXT_FREE_BLOCK), cache->chunkNext)), 16); unsigned int freeChunk2 = spu_extract(spu_cntlz(freeChunkGather2), 0); if (freeChunk == 32) { // if we didn't have one before, try again freeChunk = freeChunk2; // and try to get the second one freeChunkGather2 = spu_andc( freeChunkGather2, spu_promote(0x80000000>>freeChunk2, 0) ); freeChunk2 = spu_extract(spu_cntlz(freeChunkGather2), 0); } else { // speculatively clear the free chunk just in case we don't need it cache->chunkNextArray[freeChunk] = CHUNKNEXT_FREE_BLOCK; } #ifdef INFO printf("[%d] Free chunks %d and %d, cN=%d, nBS=%d, cE=%d, tBS=%d, cS=%d\n", _SPUID, freeChunk, freeChunk2, chunkNext, nextBlockStart, chunkEnd, thisBlockStart, chunkStart ); #endif // mark region after as available for processing if required if (nextBlockStart < chunkEnd) { if (freeChunk==32) { // if no free chunk, relinquish entire block and write back cache->chunkNextArray[chunkToProcess] = chunkNext; spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); // if writeback failed, we *might* have a free block, retry if (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS) goto retry; // otherwise give up and try the next cache line goto trynextcacheline; } cache->chunkStartArray[freeChunk] = nextBlockStart; cache->chunkNextArray[freeChunk] = chunkNext; cache->chunkTriangleArray[freeChunk] = chunkTriangle; cache->chunkNextArray[chunkToProcess] = freeChunk | CHUNKNEXT_BUSY_BIT; tailChunk = freeChunk; #ifdef INFO printf("[%d] Insert tail, tailChunk=%d, chunkNext=%d, chunkToProcess=%d\n", _SPUID, tailChunk, chunkNext, chunkToProcess); debug_render_tasks(cache); #endif } else { // we're gonna use freeChunk2 for the "in front" block, as we've not // used freeChunk, let's use it as it's more likely to have a free chunk freeChunk2 = freeChunk; tailChunk = chunkNext; } // mark region before as available if required and possible thisChunk = chunkToProcess; if (thisBlockStart > chunkStart) { if (freeChunk2 != 32) { // mark this region as busy cache->chunkStartArray[freeChunk2]=thisBlockStart; cache->chunkNextArray[freeChunk2]=tailChunk | CHUNKNEXT_BUSY_BIT; cache->chunkTriangleArray[freeChunk2]=chunkTriangle; // mark region before as available for processing cache->chunkNextArray[chunkToProcess]=freeChunk2; cache->chunkTriangleArray[chunkToProcess]=triangle->next_triangle; thisChunk = freeChunk2; #ifdef INFO printf("[%d] Insert new head, tailChunk=%d, chunkNext=%d, thisChunk=%d\n", _SPUID, tailChunk, chunkNext, thisChunk); debug_render_tasks(cache); #endif } else { // need to keep whole block, update info and mark bust cache->chunkTriangleArray[chunkToProcess]=chunkTriangle; cache->chunkNextArray[chunkToProcess]=tailChunk | CHUNKNEXT_BUSY_BIT; realBlockStart = chunkStart; printf("[%d] Keep whole block, tailChunk=%d, chunkNext=%d, thisChunk=%d\n", _SPUID, tailChunk, chunkNext, thisChunk); debug_render_tasks(cache); #ifdef INFO #endif sleep(); } } // merge chunks merge_cache_blocks(cache); // write the cache line back spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); } while (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS); // finally after the write succeeded, update the variables chunkNext = tailChunk; chunkToProcess = thisChunk; chunkStart = firstTile; //thisBlockStart; chunkLength = nextBlockStart - firstTile; chunkEnd = chunkStart + chunkLength - 1; freeChunk = 32; // now we can process the block up to endTriangle initTileBuffers(thisBlockStart, chunkEnd); int ok=0; while (chunkTriangle != endTriangle) { #ifdef INFO printf("[%d] Processing chunk %d at %4d len %4d, triangle %04x first=%d tbs=%d\n", _SPUID, chunkToProcess, chunkStart, chunkLength, chunkTriangle, firstTile, thisBlockStart); #endif // and actually process that triangle on these chunks processTriangleChunks(triangle, cache, thisBlockStart, chunkEnd, chunkTriangle, ok); ok=1; #ifdef PAUSE sleep(); #endif // and advance to the next-triangle chunkTriangle = triangle->next_triangle; // this should only ever happen if we're running really low on cache line slots // basically, if we pick up a block with more than NUMBER_OF_TILES_PER_CHUNK and // there's no slot to store the pre-NUMBER_OF_TILES_PER_CHUNK tiles. // in this case, we process from thisBlockStart only (because we know that from // chunkStart to there has no result) and then we only process one triangle if (chunkStart != realBlockStart) { /* printf("[%d] chunkStart=%d != realBlockStart %d, chunkEnd=%d, " "firstTile=%d chunk=%d\n", _SPUID, chunkStart, realBlockStart, chunkEnd, firstTile, chunkToProcess); debug_render_tasks(cache); */ // abort the while loop break; } // read the next triangle unsigned int extra = chunkTriangle & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (chunkTriangle & ~127); triangle = (Triangle*) (trianglebuffer+extra); unsigned int length = (extra + TRIANGLE_MAX_SIZE + 127) & ~127; // ensure DMA slot available do {} while (!spu_readchcnt(MFC_Cmd)); spu_mfcdma64(trianglebuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), length, 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); } // until chunkTriangle == endTriangle // flush any output buffers flushTileBuffers(thisBlockStart, chunkEnd); } // firstTile>=0
int allequal_float4( vec_float4 x, vec_float4 y ) { return ( spu_extract( spu_gather( (vec_uint4)spu_cmpeq( x, y ) ), 0 ) == 0xf ); }
void merge_buffers(){ vector unsigned int cmp_v, cmp_v2; const vector signed int one_at_0 = {1,0,0,0}; const vector signed int one_at_1 = {0,1,0,0}; const vector signed int one_at_2 = {0,0,1,0}; const vector signed int ones = {1,1,1,1}; const vector signed int zeros = {0,0,0,0}; const vector unsigned char cmp_v_shuffle_mask = {31,31,31,31, 31,31,31,31, 31,31,31,31, 31,31,31,31}; vector unsigned char rev_mask; const vector unsigned char rev_left = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3}; const vector unsigned char rev_right = {28,29,30,31, 24,25,26,27, 20,21,22,23, 16,17,18,19}; vector signed int *out_head_idx; if(mcb[am].local[OUT] < 255){ int parent_idx = mcb[am].local[OUT]; int side = (mcb[am].id+1)&1; out_head_idx = (vector signed int*) &md[parent_idx].idx[side][HEAD]; } else { out_head_idx = (vector signed int*) &md[am].idx[OUT][HEAD]; } vector signed int *left_tail_idx = (vector signed int*) &md[am].idx[LEFT][TAIL]; vector signed int *right_tail_idx = (vector signed int*) &md[am].idx[RIGHT][TAIL]; vector signed int size_v = {mcb[am].buffer_size[LEFT], mcb[am].buffer_size[RIGHT], mcb[am].buffer_size[OUT], 0}; vector signed int avail_v = {num_in_buffer(LEFT), num_in_buffer(RIGHT), num_free_in_buffer(OUT), 1}; vector signed int avail_before = { spu_extract(avail_v, 0), spu_extract(avail_v, 1), 0, 0 }; vector unsigned int avail = spu_gather( spu_cmpgt(avail_v, zeros) ); // avail = 0x0F if all avail_v > zeros vector signed int *left, *right, *out; left = (vector signed int*) &md[am].buffer[LEFT][ spu_extract(*left_tail_idx,0) ]; right = (vector signed int*) &md[am].buffer[RIGHT][ spu_extract(*right_tail_idx,0) ]; out = (vector signed int*) &md[am].buffer[OUT][ spu_extract(*out_head_idx,0) ]; #ifdef TRACE_TIME dec_val2 = spu_read_decrementer(); #endif while(spu_extract(avail,0) == 0x0F){ // cmp left and right to determine who gets eaten cmp_v = spu_cmpgt(*left,*right); cmp_v = spu_shuffle(cmp_v, cmp_v, cmp_v_shuffle_mask); // cmp_v = {FFFF,FFFF,FFFF,FFFF} if left[3] > right[3] *out = spu_sel(*left,*right,cmp_v); rev_mask = spu_sel(rev_right,rev_left,(vector unsigned char)cmp_v); *left = spu_shuffle(*left,*right,rev_mask); // data to be sorted is now in out and left, left in descending order sort_vectors(out,left); // update index of the used side if( spu_extract(cmp_v,0) ){ // left[3] > right[3] *right_tail_idx = spu_add(*right_tail_idx,ones); avail_v = spu_sub(avail_v, one_at_1); right++; // modulus hack cmp_v2 = spu_cmpeq(*right_tail_idx, size_v); if( __builtin_expect( spu_extract(cmp_v2,0) ,0) ){ *right_tail_idx = zeros; right = (vector signed int*) &md[am].buffer[RIGHT][0]; } } else { *right = *left; *left_tail_idx = spu_add(*left_tail_idx,ones); avail_v = spu_sub(avail_v, one_at_0); left++; // modulus hack cmp_v2 = spu_cmpeq(*left_tail_idx, size_v); if( __builtin_expect( spu_extract(cmp_v2,0) ,0) ){ *left_tail_idx = zeros; left = (vector signed int*) &md[am].buffer[LEFT][0]; } } // update out head idx *out_head_idx = spu_add(*out_head_idx,ones); avail_v = spu_sub(avail_v, one_at_2); out++; // modulus hack cmp_v2 = spu_cmpeq(*out_head_idx, size_v); if( __builtin_expect(spu_extract(cmp_v2,0),0) ){ out = (vector signed int*) &md[am].buffer[OUT][0]; *out_head_idx = zeros; } // is there data still available? avail = spu_gather(spu_cmpgt(avail_v, zeros)); } #ifdef TRACE_TIME merge_loop_ticks += -(spu_read_decrementer() - dec_val2); #endif // how much got produced? vector signed int consumed = spu_sub(avail_before, avail_v); int consumed_left = spu_extract(consumed, 0); int consumed_right = spu_extract(consumed, 1); if(consumed_left) update_tail(LEFT); if(consumed_right) update_tail(RIGHT); md[am].consumed[LEFT] += consumed_left; md[am].consumed[RIGHT] += consumed_right; if(md[am].consumed[LEFT] == mcb[am].data_size[LEFT]) md[am].depleted[LEFT] = 1; if(md[am].consumed[RIGHT] == mcb[am].data_size[RIGHT]) md[am].depleted[RIGHT] = 1; if(mcb[am].local[OUT] < 255 && md[am].depleted[LEFT] && md[am].depleted[RIGHT]){ md[am].done = 1; --num_active_mergers; } }
int allequal_int4( vec_int4 x, vec_int4 y ) { return ( spu_extract( spu_gather( spu_cmpeq( x, y ) ), 0 ) == 0xf ); }
Triangle* getTriangleBuffer(Context* context) { // if we've already allocated a triangle buffer (and we're in the same context) if (context == _currentTriangleContext && _currentTriangle) return _currentTriangle; // trash the default values _currentTriangleContext = context; _currentTriangle = NULL; // read the current renderable cache line to ensure there is room for the triangle data // in the cache line buffer; we do this by comparing against all 16 cache line blocks // to make sure that extending the write pointer wouldn't clobber the data unsigned long long cache_ea = context->renderableCacheLine; if (cache_ea == 0) return NULL; char cachebuffer[128+127]; RenderableCacheLine* cache = (RenderableCacheLine*) ( ((unsigned int)cachebuffer+127) & ~127 ); // printf("GTB: reading to %x from %x:%x\n", cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea)); spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); // extendvalid = ( read<=write && test<end ) || ( read>write && test<read ) // extendvalid = ( read>write && read>test ) || ( read<=write && end>test ) // simplifies to extendvalid = selb(end, read, read>write) > test // or extendvalid = selb(end>test, read>test, read>write) // rewind = next >= end // rewindvalid = read != 0 // valid = extendvalid && (!rewind || rewindvalid) // = extendvalid && (!rewind || !rewindinvalid) // = extendvalid && !(rewind && rewindinvalid) // invalid = ! (extendvalid && !(rewind && rewindinvalid)) // = (!extendvalid || (rewind && rewindinvalid)) vec_ushort8 v_writeptr = spu_splats( cache->endTriangle ); vec_ushort8 v_readptr0 = cache->chunkTriangle[0]; vec_ushort8 v_readptr1 = cache->chunkTriangle[1]; vec_ushort8 v_testptr = spu_add(v_writeptr, TRIANGLE_MAX_SIZE); vec_ushort8 v_nextptr = spu_add(v_writeptr, 2*TRIANGLE_MAX_SIZE); vec_ushort8 v_endptr = spu_splats( (unsigned short)TRIANGLE_BUFFER_SIZE); vec_ushort8 v_zero = spu_splats( (unsigned short) 0 ); vec_uchar16 v_merger = (vec_uchar16) { 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 }; vec_ushort8 v_max0_test = spu_sel( v_endptr, v_readptr0, spu_cmpgt( v_readptr0, v_writeptr ) ); vec_ushort8 v_max1_test = spu_sel( v_endptr, v_readptr1, spu_cmpgt( v_readptr1, v_writeptr ) ); vec_ushort8 v_extend0_valid = spu_cmpgt( v_max0_test, v_testptr ); vec_ushort8 v_extend1_valid = spu_cmpgt( v_max1_test, v_testptr ); vec_ushort8 v_rewind0_invalid = spu_cmpeq( v_readptr0, v_zero ); vec_ushort8 v_rewind1_invalid = spu_cmpeq( v_readptr1, v_zero ); vec_ushort8 v_rewind8 = spu_cmpgt( v_nextptr, v_endptr ); vec_uchar16 v_extend_valid = (vec_uchar16) spu_shuffle( v_extend0_valid, v_extend1_valid, v_merger ); vec_uchar16 v_rewind_invalid = (vec_uchar16) spu_shuffle( v_rewind0_invalid, v_rewind1_invalid, v_merger ); vec_uchar16 v_rewind = (vec_uchar16) v_rewind8; vec_uchar16 v_valid_rhs = spu_and( v_rewind_invalid, v_rewind ); vec_uchar16 v_invalid = spu_orc( v_valid_rhs, v_extend_valid ); // check to see if the chunk is being processed vec_uint4 v_free = spu_gather( spu_cmpeq( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK ), cache->chunkNext ) ); vec_uint4 v_invalid_bits = spu_andc( spu_gather( v_invalid ), (vec_uint4) v_free ); // if any of the bits are invalid, then no can do if ( spu_extract(v_invalid_bits, 0) ) { return NULL; } // fetch in the data before this triangle in the cache buffer unsigned int offset = cache->endTriangle; _currentTriangleBufferExtra = offset & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (offset & ~127); if (_currentTriangleBufferExtra) { spu_mfcdma64(_currentTriangleBuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), 128, 0, MFC_GET_CMD); // ensure DMA did actually complete mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); } // final bit of initialisation _currentTriangle = (Triangle*) (_currentTriangleBuffer+_currentTriangleBufferExtra); _currentTriangleOffset = offset; _currentTriangleRewind = v_rewind8; _currentTriangleCacheEndTriangleEAL = mfc_ea2l(cache_ea) + (((char*)&cache->endTriangle) - ((char*)cache)); _currentTriangleCacheEndTriangleEAH = mfc_ea2h(cache_ea); _currentTriangleBufferEA = trianglebuffer_ea; // printf("Allocated new triangle buffer: %x\n", offset); // and return the buffer ready to go return _currentTriangle; }