Esempio n. 1
0
std::unique_ptr<ir::IRContext> BuildModule(spv_target_env env,
                                           MessageConsumer consumer,
                                           const uint32_t* binary,
                                           const size_t size) {
  auto context = spvContextCreate(env);
  libspirv::SetContextMessageConsumer(context, consumer);

  auto irContext = MakeUnique<ir::IRContext>(env, consumer);
  ir::IrLoader loader(consumer, irContext->module());

  spv_result_t status = spvBinaryParse(context, &loader, binary, size,
                                       SetSpvHeader, SetSpvInst, nullptr);
  loader.EndModule();

  spvContextDestroy(context);

  return status == SPV_SUCCESS ? std::move(irContext) : nullptr;
}
// Use the SPIRV-Tools disassembler to print SPIR-V.
void SpirvToolsDisassemble(std::ostream& out, const std::vector<unsigned int>& spirv)
{
    // disassemble
    spv_context context = spvContextCreate(SPV_ENV_UNIVERSAL_1_3);
    spv_text text;
    spv_diagnostic diagnostic = nullptr;
    spvBinaryToText(context, spirv.data(), spirv.size(),
        SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES | SPV_BINARY_TO_TEXT_OPTION_INDENT,
        &text, &diagnostic);

    // dump
    if (diagnostic == nullptr)
        out << text->str;
    else
        spvDiagnosticPrint(diagnostic);

    // teardown
    spvDiagnosticDestroy(diagnostic);
    spvContextDestroy(context);
}
// Apply the SPIRV-Tools validator to generated SPIR-V.
void SpirvToolsValidate(const glslang::TIntermediate& intermediate, std::vector<unsigned int>& spirv,
                        spv::SpvBuildLogger* logger)
{
    // validate
    spv_context context = spvContextCreate(MapToSpirvToolsEnv(intermediate.getSpv(), logger));
    spv_const_binary_t binary = { spirv.data(), spirv.size() };
    spv_diagnostic diagnostic = nullptr;
    spv_validator_options options = spvValidatorOptionsCreate();
    spvValidatorOptionsSetRelaxBlockLayout(options, intermediate.usingHlslOffsets());
    spvValidateWithOptions(context, options, &binary, &diagnostic);

    // report
    if (diagnostic != nullptr) {
        logger->error("SPIRV-Tools Validation Errors");
        logger->error(diagnostic->error);
    }

    // tear down
    spvValidatorOptionsDestroy(options);
    spvDiagnosticDestroy(diagnostic);
    spvContextDestroy(context);
}
int sample_main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "SPIR-V Specialization";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);

    /* VULKAN_KEY_START */

    // Pass in nullptr for fragment shader so we can setup specialization
    init_shaders(info, vertShaderText, nullptr);

    // This structure maps constant ids to data locations.
    // NOTE: Padding bool to 32-bits for simplicity
    const VkSpecializationMapEntry entries[] =
        // id,  offset,                size
        {{5, 0, sizeof(uint32_t)},
         {7, 1 * sizeof(uint32_t), sizeof(uint32_t)},
         {8, 2 * sizeof(uint32_t), sizeof(uint32_t)},
         {9, 3 * sizeof(uint32_t), sizeof(uint32_t)}};

    // Initialize the values we want our mini-ubershader to use
    const bool drawUserColor = true;
    const float userColor[] = {0.0f, 0.0f, 1.0f};

    // Populate our data entry
    uint32_t data[4] = {};
    data[0] = drawUserColor ? 1 : 0;
    ((float *)data)[1] = userColor[0];
    ((float *)data)[2] = userColor[1];
    ((float *)data)[3] = userColor[2];

    // Set up the info describing our spec map and data
    const VkSpecializationInfo specInfo = {
        4,                  // mapEntryCount
        entries,            // pMapEntries
        4 * sizeof(float),  // dataSize
        data,               // pData
    };

    // Provide the specialization data to fragment stage
    info.shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
    info.shaderStages[1].pNext = NULL;
    info.shaderStages[1].pSpecializationInfo = &specInfo;
    info.shaderStages[1].flags = 0;
    info.shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
    info.shaderStages[1].pName = "main";

    VkShaderModuleCreateInfo moduleCreateInfo;
    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;
    moduleCreateInfo.flags = 0;

    if (use_SPIRV_asm) {
        // Use the hand edited SPIR-V assembly
        spv_context spvContext = spvContextCreate(SPV_ENV_VULKAN_1_0);
        spv_binary fragmentBinary = {};
        spv_diagnostic fragmentDiag = {};
        spv_result_t fragmentResult = spvTextToBinary(spvContext, fragmentSPIRV_specialized.c_str(),
                                                      fragmentSPIRV_specialized.length(), &fragmentBinary, &fragmentDiag);
        if (fragmentDiag) {
            printf("Diagnostic info from fragment shader:\n");
            spvDiagnosticPrint(fragmentDiag);
        }
        assert(fragmentResult == SPV_SUCCESS);
        moduleCreateInfo.codeSize = fragmentBinary->wordCount * sizeof(unsigned int);
        moduleCreateInfo.pCode = fragmentBinary->code;
        spvDiagnosticDestroy(fragmentDiag);
        spvContextDestroy(spvContext);

    } else {
        // Convert GLSL to SPIR-V
        init_glslang();
        std::vector<unsigned int> fragSpv;
        bool U_ASSERT_ONLY retVal = GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT, fragShaderText, fragSpv);
        assert(retVal);
        finalize_glslang();

        moduleCreateInfo.codeSize = fragSpv.size() * sizeof(unsigned int);
        moduleCreateInfo.pCode = fragSpv.data();
    }

    res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL, &info.shaderStages[1].module);
    assert(res == VK_SUCCESS);

    /* VULKAN_KEY_END */

    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data), sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);
    init_presentable_image(info);

    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);

    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);
    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.graphics_queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);

    /* Make sure command buffer is finished before presenting */
    do {
        res = vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.present_queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images) write_ppm(info, "spirv_specialization");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.imageAcquiredSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
Esempio n. 5
0
TEST(CreateContext, VulkanEnvironment) {
  auto c = spvContextCreate(SPV_ENV_VULKAN_1_0);
  EXPECT_THAT(c, NotNull());
  spvContextDestroy(c);
}
Esempio n. 6
0
TEST(CreateContext, UniversalEnvironment) {
  auto c = spvContextCreate(SPV_ENV_UNIVERSAL_1_0);
  EXPECT_THAT(c, NotNull());
  spvContextDestroy(c);
}
// clang-format on
int main(int argc, char *argv[]) {
    VkResult U_ASSERT_ONLY res;
    struct sample_info info = {};
    char sample_title[] = "SPIR-V Assembly";
    const bool depthPresent = true;

    process_command_line_args(info, argc, argv);
    init_global_layer_properties(info);
    init_instance_extension_names(info);
    init_device_extension_names(info);
    init_instance(info, sample_title);
    init_enumerate_device(info);
    init_window_size(info, 500, 500);
    init_connection(info);
    init_window(info);
    init_swapchain_extension(info);
    init_device(info);
    init_command_pool(info);
    init_command_buffer(info);
    execute_begin_command_buffer(info);
    init_device_queue(info);
    init_swap_chain(info);
    init_depth_buffer(info);
    init_texture(info);
    init_uniform_buffer(info);
    init_descriptor_and_pipeline_layouts(info, true);
    init_renderpass(info, depthPresent);

    /* VULKAN_KEY_START */

    // Init the assembler context
    spv_context spvContext = spvContextCreate();

    // Convert the vertex assembly into binary format
    spv_binary vertexBinary = {};
    spv_diagnostic vertexDiag = {};
    spv_result_t vertexResult =
        spvTextToBinary(spvContext, vertexSPIRV.c_str(), vertexSPIRV.length(),
                        &vertexBinary, &vertexDiag);
    if (vertexDiag) {
        printf("Diagnostic info from vertex shader:\n");
        spvDiagnosticPrint(vertexDiag);
    }
    assert(vertexResult == SPV_SUCCESS);

    // Convert the fragment assembly into binary format
    spv_binary fragmentBinary = {};
    spv_diagnostic fragmentDiag = {};
    spv_result_t fragmentResult =
        spvTextToBinary(spvContext, fragmentSPIRV.c_str(),
                        fragmentSPIRV.length(), &fragmentBinary, &fragmentDiag);
    if (fragmentDiag) {
        printf("Diagnostic info from fragment shader:\n");
        spvDiagnosticPrint(fragmentDiag);
    }
    assert(fragmentResult == SPV_SUCCESS);

    info.shaderStages[0].sType =
        VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
    info.shaderStages[0].pNext = NULL;
    info.shaderStages[0].pSpecializationInfo = NULL;
    info.shaderStages[0].flags = 0;
    info.shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
    info.shaderStages[0].pName = "main";
    VkShaderModuleCreateInfo moduleCreateInfo;
    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;
    moduleCreateInfo.flags = 0;
    // Use wordCount and code pointers from the spv_binary
    moduleCreateInfo.codeSize = vertexBinary->wordCount * sizeof(unsigned int);
    moduleCreateInfo.pCode = vertexBinary->code;
    res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL,
                               &info.shaderStages[0].module);
    assert(res == VK_SUCCESS);

    info.shaderStages[1].sType =
        VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
    info.shaderStages[1].pNext = NULL;
    info.shaderStages[1].pSpecializationInfo = NULL;
    info.shaderStages[1].flags = 0;
    info.shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
    info.shaderStages[1].pName = "main";
    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;
    moduleCreateInfo.flags = 0;
    // Use wordCount and code pointers from the spv_binary
    moduleCreateInfo.codeSize =
        fragmentBinary->wordCount * sizeof(unsigned int);
    moduleCreateInfo.pCode = fragmentBinary->code;
    res = vkCreateShaderModule(info.device, &moduleCreateInfo, NULL,
                               &info.shaderStages[1].module);
    assert(res == VK_SUCCESS);

    // Clean up the diagnostics
    spvDiagnosticDestroy(vertexDiag);
    spvDiagnosticDestroy(fragmentDiag);

    // Clean up the assembler context
    spvContextDestroy(spvContext);

    /* VULKAN_KEY_END */

    init_framebuffers(info, depthPresent);
    init_vertex_buffer(info, g_vb_texture_Data, sizeof(g_vb_texture_Data),
                       sizeof(g_vb_texture_Data[0]), true);
    init_descriptor_pool(info, true);
    init_descriptor_set(info, true);
    init_pipeline_cache(info);
    init_pipeline(info, depthPresent);
    init_presentable_image(info);

    VkClearValue clear_values[2];
    init_clear_color_and_depth(info, clear_values);

    VkRenderPassBeginInfo rp_begin;
    init_render_pass_begin_info(info, rp_begin);
    rp_begin.clearValueCount = 2;
    rp_begin.pClearValues = clear_values;

    vkCmdBeginRenderPass(info.cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);

    vkCmdBindPipeline(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, info.pipeline);
    vkCmdBindDescriptorSets(info.cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
                            info.pipeline_layout, 0, NUM_DESCRIPTOR_SETS,
                            info.desc_set.data(), 0, NULL);

    const VkDeviceSize offsets[1] = {0};
    vkCmdBindVertexBuffers(info.cmd, 0, 1, &info.vertex_buffer.buf, offsets);

    init_viewports(info);
    init_scissors(info);

    vkCmdDraw(info.cmd, 12 * 3, 1, 0, 0);
    vkCmdEndRenderPass(info.cmd);

    execute_pre_present_barrier(info);

    res = vkEndCommandBuffer(info.cmd);
    assert(res == VK_SUCCESS);

    VkFence drawFence = {};
    init_fence(info, drawFence);
    VkPipelineStageFlags pipe_stage_flags =
        VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
    VkSubmitInfo submit_info = {};
    init_submit_info(info, submit_info, pipe_stage_flags);

    /* Queue the command buffer for execution */
    res = vkQueueSubmit(info.queue, 1, &submit_info, drawFence);
    assert(res == VK_SUCCESS);

    /* Now present the image in the window */
    VkPresentInfoKHR present = {};
    init_present_info(info, present);

    /* Make sure command buffer is finished before presenting */
    do {
        res =
            vkWaitForFences(info.device, 1, &drawFence, VK_TRUE, FENCE_TIMEOUT);
    } while (res == VK_TIMEOUT);
    assert(res == VK_SUCCESS);
    res = vkQueuePresentKHR(info.queue, &present);
    assert(res == VK_SUCCESS);

    wait_seconds(1);
    if (info.save_images)
        write_ppm(info, "spirv_assembly");

    vkDestroyFence(info.device, drawFence, NULL);
    vkDestroySemaphore(info.device, info.presentCompleteSemaphore, NULL);
    destroy_pipeline(info);
    destroy_pipeline_cache(info);
    destroy_textures(info);
    destroy_descriptor_pool(info);
    destroy_vertex_buffer(info);
    destroy_framebuffers(info);
    destroy_shaders(info);
    destroy_renderpass(info);
    destroy_descriptor_and_pipeline_layouts(info);
    destroy_uniform_buffer(info);
    destroy_depth_buffer(info);
    destroy_swap_chain(info);
    destroy_command_buffer(info);
    destroy_command_pool(info);
    destroy_device(info);
    destroy_window(info);
    destroy_instance(info);
    return 0;
}
Esempio n. 8
0
ValidateBase<T, OPTIONS>::~ValidateBase() {
  spvContextDestroy(context_);
}
Esempio n. 9
0
int main(int argc, char** argv) {
  if (2 > argc) {
    print_usage(argv[0]);
    return 1;
  }

  const char* inFile = nullptr;
  uint32_t options = 0;

  for (int argi = 1; argi < argc; ++argi) {
    if ('-' == argv[argi][0]) {
      if (!strcmp("basic", argv[argi] + 1)) {
        options |= SPV_VALIDATE_BASIC_BIT;
      } else if (!strcmp("layout", argv[argi] + 1)) {
        options |= SPV_VALIDATE_LAYOUT_BIT;
      } else if (!strcmp("id", argv[argi] + 1)) {
        options |= SPV_VALIDATE_ID_BIT;
      } else if (!strcmp("rules", argv[argi] + 1)) {
        options |= SPV_VALIDATE_RULES_BIT;
      } else {
        print_usage(argv[0]);
        return 1;
      }
    } else {
      if (!inFile) {
        inFile = argv[argi];
      } else {
        print_usage(argv[0]);
        return 1;
      }
    }
  }

  if (!inFile) {
    fprintf(stderr, "error: input file is empty.\n");
    return 1;
  }

  std::vector<uint32_t> contents;
  if (FILE* fp = fopen(inFile, "rb")) {
    uint32_t buf[1024];
    while (size_t len = fread(buf, sizeof(uint32_t),
                              sizeof(buf) / sizeof(uint32_t), fp)) {
      contents.insert(contents.end(), buf, buf + len);
    }
    fclose(fp);
  } else {
    fprintf(stderr, "error: file does not exist '%s'\n", inFile);
    return 1;
  }

  spv_const_binary_t binary = {contents.data(), contents.size()};

  spv_diagnostic diagnostic = nullptr;
  spv_context context = spvContextCreate();
  spv_result_t error = spvValidate(context, &binary, options, &diagnostic);
  spvContextDestroy(context);
  if (error) {
    spvDiagnosticPrint(diagnostic);
    spvDiagnosticDestroy(diagnostic);
    return error;
  }

  return 0;
}