/* ** The text between zStart and zEnd represents a phrase within a larger ** SQL statement. Make a copy of this phrase in space obtained form ** sqlite3DbMalloc(). Omit leading and trailing whitespace. */ char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ int n; while( sqlite3Isspace(zStart[0]) ) zStart++; n = (int)(zEnd - zStart); while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--; return sqlite3DbStrNDup(db, zStart, n); }
/* ** Parse a timezone extension on the end of a date-time. ** The extension is of the form: ** ** (+/-)HH:MM ** ** Or the "zulu" notation: ** ** Z ** ** If the parse is successful, write the number of minutes ** of change in p->tz and return 0. If a parser error occurs, ** return non-zero. ** ** A missing specifier is not considered an error. */ static int parseTimezone(const char *zDate, DateTime *p){ int sgn = 0; int nHr, nMn; int c; while( sqlite3Isspace(*zDate) ){ zDate++; } p->tz = 0; c = *zDate; if( c=='-' ){ sgn = -1; }else if( c=='+' ){ sgn = +1; }else if( c=='Z' || c=='z' ){ zDate++; goto zulu_time; }else{ return c!=0; } zDate++; if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ return 1; } zDate += 5; p->tz = sgn*(nMn + nHr*60); zulu_time: while( sqlite3Isspace(*zDate) ){ zDate++; } p->tzSet = 1; return *zDate!=0; }
/* ** Return TRUE if zNum is a 64-bit signed integer and write ** the value of the integer into *pNum. If zNum is not an integer ** or is an integer that is too large to be expressed with 64 bits, ** then return false. ** ** When this routine was originally written it dealt with only ** 32-bit numbers. At that time, it was much faster than the ** atoi() library routine in RedHat 7.2. */ int sqlite3Atoi64(const char *zNum, i64 *pNum){ i64 v = 0; int neg; int i, c; const char *zStart; while( sqlite3Isspace(*zNum) ) zNum++; if( *zNum=='-' ){ neg = 1; zNum++; }else if( *zNum=='+' ){ neg = 0; zNum++; }else{ neg = 0; } zStart = zNum; while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ v = v*10 + c - '0'; } *pNum = neg ? -v : v; if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ /* zNum is empty or contains non-numeric text or is longer ** than 19 digits (thus guaranting that it is too large) */ return 0; }else if( i<19 ){ /* Less than 19 digits, so we know that it fits in 64 bits */ return 1; }else{ /* 19-digit numbers must be no larger than 9223372036854775807 if positive ** or 9223372036854775808 if negative. Note that 9223372036854665808 ** is 2^63. */ return compare2pow63(zNum)<neg; } }
/* ** File control method. For custom operations on an tvfs-file. */ static int tvfsFileControl(sqlite3_file *pFile, int op, void *pArg){ TestvfsFd *p = tvfsGetFd(pFile); if( op==SQLITE_FCNTL_PRAGMA ){ char **argv = (char**)pArg; if( sqlite3_stricmp(argv[1],"error")==0 ){ int rc = SQLITE_ERROR; if( argv[2] ){ const char *z = argv[2]; int x = atoi(z); if( x ){ rc = x; while( sqlite3Isdigit(z[0]) ){ z++; } while( sqlite3Isspace(z[0]) ){ z++; } } if( z[0] ) argv[0] = sqlite3_mprintf("%s", z); } return rc; } if( sqlite3_stricmp(argv[1], "filename")==0 ){ argv[0] = sqlite3_mprintf("%s", p->zFilename); return SQLITE_OK; } } return sqlite3OsFileControl(p->pReal, op, pArg); }
/* ** Parse dates of the form ** ** YYYY-MM-DD HH:MM:SS.FFF ** YYYY-MM-DD HH:MM:SS ** YYYY-MM-DD HH:MM ** YYYY-MM-DD ** ** Write the result into the DateTime structure and return 0 ** on success and 1 if the input string is not a well-formed ** date. */ static int parseYyyyMmDd(const char *zDate, DateTime *p){ int Y, M, D, neg; if( zDate[0]=='-' ){ zDate++; neg = 1; }else{ neg = 0; } if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ return 1; } zDate += 10; while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } if( parseHhMmSs(zDate, p)==0 ){ /* We got the time */ }else if( *zDate==0 ){ p->validHMS = 0; }else{ return 1; } p->validJD = 0; p->validYMD = 1; p->Y = neg ? -Y : Y; p->M = M; p->D = D; if( p->validTZ ){ computeJD(p); } return 0; }
/* ** Convert zNum to a 64-bit signed integer. ** ** If the zNum value is representable as a 64-bit twos-complement ** integer, then write that value into *pNum and return 0. ** ** If zNum is exactly 9223372036854665808, return 2. This special ** case is broken out because while 9223372036854665808 cannot be a ** signed 64-bit integer, its negative -9223372036854665808 can be. ** ** If zNum is too big for a 64-bit integer and is not ** 9223372036854665808 then return 1. ** ** length is the number of bytes in the string (bytes, not characters). ** The string is not necessarily zero-terminated. The encoding is ** given by enc. */ int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ int incr = (enc==SQLITE_UTF8?1:2); u64 u = 0; int neg = 0; /* assume positive */ int i; int c = 0; const char *zStart; const char *zEnd = zNum + length; if( enc==SQLITE_UTF16BE ) zNum++; while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; if( zNum<zEnd ){ if( *zNum=='-' ){ neg = 1; zNum+=incr; }else if( *zNum=='+' ){ zNum+=incr; } } zStart = zNum; while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } if( u>LARGEST_INT64 ){ *pNum = SMALLEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } testcase( i==18 ); testcase( i==19 ); testcase( i==20 ); if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ /* zNum is empty or contains non-numeric text or is longer ** than 19 digits (thus guaranteeing that it is too large) */ return 1; }else if( i<19*incr ){ /* Less than 19 digits, so we know that it fits in 64 bits */ assert( u<=LARGEST_INT64 ); return 0; }else{ /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ c = compare2pow63(zNum, incr); if( c<0 ){ /* zNum is less than 9223372036854775808 so it fits */ assert( u<=LARGEST_INT64 ); return 0; }else if( c>0 ){ /* zNum is greater than 9223372036854775808 so it overflows */ return 1; }else{ /* zNum is exactly 9223372036854775808. Fits if negative. The ** special case 2 overflow if positive */ assert( u-1==LARGEST_INT64 ); assert( (*pNum)==SMALLEST_INT64 ); return neg ? 0 : 2; } } }
int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ int incr = (enc==SQLITE_UTF8?1:2); u64 u = 0; int neg = 0; int i; int c = 0; const char *zStart; const char *zEnd = zNum + length; if( enc==SQLITE_UTF16BE ) zNum++; while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; if( zNum<zEnd ){ if( *zNum=='-' ){ neg = 1; zNum+=incr; }else if( *zNum=='+' ){ zNum+=incr; } } zStart = zNum; while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ u = u*10 + c - '0'; } if( u>LARGEST_INT64 ){ *pNum = SMALLEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } testcase( i==18 ); testcase( i==19 ); testcase( i==20 ); if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ return 1; }else if( i<19*incr ){ assert( u<=LARGEST_INT64 ); return 0; }else{ c = compare2pow63(zNum, incr); if( c<0 ){ assert( u<=LARGEST_INT64 ); return 0; }else if( c>0 ){ return 1; }else{ assert( u-1==LARGEST_INT64 ); assert( (*pNum)==SMALLEST_INT64 ); return neg ? 0 : 2; } } }
/* ** This function is called after an "ALTER TABLE ... ADD" statement ** has been parsed. Argument pColDef contains the text of the new ** column definition. ** ** The Table structure pParse->pNewTable was extended to include ** the new column during parsing. 在“ALTER TABLE…添加“声明解析后这个函数被调用。 参数pColDef包含新列定义的文本。 表结构pParse - > pNewTable扩大到包括在解析新列。 */ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ Table *pNew; /* Copy of pParse->pNewTable pParse->pNew表的副本*/ Table *pTab; /* Table being altered 被修改的表*/ int iDb; /* Database number 数据库数*/ const char *zDb; /* Database name 数据库名*/ const char *zTab; /* Table name 表名*/ char *zCol; /* Null-terminated column definition 空值终止列定义*/ Column *pCol; /* The new column 新列*/ Expr *pDflt; /* Default value for the new column 为新列默认数值*/ sqlite3 *db; /* The database connection; 数据库的连接*/ db = pParse->db; if( pParse->nErr || db->mallocFailed ) return; pNew = pParse->pNewTable; assert( pNew ); assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pNew->pSchema); zDb = db->aDb[iDb].zName; zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name 跳过“sqlite_altertab_”前缀的名称*/ pCol = &pNew->aCol[pNew->nCol-1]; pDflt = pCol->pDflt; pTab = sqlite3FindTable(db, zTab, zDb); assert( pTab ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. 调用授权回调*/ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ return; } #endif /* If the default value for the new column was specified with a ** literal NULL, then set pDflt to 0. This simplifies checking ** for an SQL NULL default below. 如果新列的默认值是用文字指定NULL,那么pDflt设置为0。 这简化了检查SQL空下面的默认。 */ if( pDflt && pDflt->op==TK_NULL ){ pDflt = 0; } /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. ** If there is a NOT NULL constraint, then the default value for the ** column must not be NULL. 检查新列没有指定主键或唯一的。 如果有一个非空约束,然后列的默认值不能为空。 */ if( pCol->isPrimKey ){ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); return; } if( pNew->pIndex ){ sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); return; } if( (db->flags&SQLITE_ForeignKeys) && pNew->pFKey && pDflt ){ sqlite3ErrorMsg(pParse, "Cannot add a REFERENCES column with non-NULL default value"); return; } if( pCol->notNull && !pDflt ){ sqlite3ErrorMsg(pParse, "Cannot add a NOT NULL column with default value NULL"); return; } /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) 确保默认表达式是sqlite3ValueFromExpr()可以处理的事(即不是当前时间等。) */ if( pDflt ){ sqlite3_value *pVal; if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){ db->mallocFailed = 1; return; } if( !pVal ){ sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); return; } sqlite3ValueFree(pVal); } /* Modify the CREATE TABLE statement. 修改CREATE TABLE语句。*/ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); if( zCol ){ char *zEnd = &zCol[pColDef->n-1]; int savedDbFlags = db->flags; while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){ *zEnd-- = '\0'; } db->flags |= SQLITE_PreferBuiltin; sqlite3NestedParse(pParse, "UPDATE \"%w\".%s SET " "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) " "WHERE type = 'table' AND name = %Q", zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1, zTab ); sqlite3DbFree(db, zCol); db->flags = savedDbFlags; } /* If the default value of the new column is NULL, then set the file ** format to 2. If the default value of the new column is not NULL, ** the file format becomes 3. 如果新列的默认值为空,那么将文件格式设置为2。如果新列的默认值不为空,文件格式变成3。 */ sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2); /* Reload the schema of the modified table. 重新加载修改后的表的模式。*/ reloadTableSchema(pParse, pTab, pTab->zName); }
/* ** This function is called after an "ALTER TABLE ... ADD" statement ** has been parsed. Argument pColDef contains the text of the new ** column definition. ** ** The Table structure pParse->pNewTable was extended to include ** the new column during parsing. */ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ Table *pNew; /* Copy of pParse->pNewTable */ Table *pTab; /* Table being altered */ int iDb; /* Database number */ const char *zDb; /* Database name */ const char *zTab; /* Table name */ char *zCol; /* Null-terminated column definition */ Column *pCol; /* The new column */ Expr *pDflt; /* Default value for the new column */ sqlite3 *db; /* The database connection; */ db = pParse->db; if( pParse->nErr || db->mallocFailed ) return; pNew = pParse->pNewTable; assert( pNew ); assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pNew->pSchema); zDb = db->aDb[iDb].zName; zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */ pCol = &pNew->aCol[pNew->nCol-1]; pDflt = pCol->pDflt; pTab = sqlite3FindTable(db, zTab, zDb); assert( pTab ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ return; } #endif /* If the default value for the new column was specified with a ** literal NULL, then set pDflt to 0. This simplifies checking ** for an SQL NULL default below. */ if( pDflt && pDflt->op==TK_NULL ){ pDflt = 0; } /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. ** If there is a NOT NULL constraint, then the default value for the ** column must not be NULL. */ if( pCol->isPrimKey ){ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); return; } if( pNew->pIndex ){ sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); return; } if( pCol->notNull && !pDflt ){ sqlite3ErrorMsg(pParse, "Cannot add a NOT NULL column with default value NULL"); return; } /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal; if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){ db->mallocFailed = 1; return; } if( !pVal ){ sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); return; } sqlite3ValueFree(pVal); } /* Modify the CREATE TABLE statement. */ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); if( zCol ){ char *zEnd = &zCol[pColDef->n-1]; while( (zEnd>zCol && *zEnd==';') || sqlite3Isspace(*zEnd) ){ *zEnd-- = '\0'; } sqlite3NestedParse(pParse, "UPDATE \"%w\".%s SET " "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) " "WHERE type = 'table' AND name = %Q", zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1, zTab ); sqlite3DbFree(db, zCol); } /* If the default value of the new column is NULL, then set the file ** format to 2. If the default value of the new column is not NULL, ** the file format becomes 3. */ sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2); /* Reload the schema of the modified table. */ reloadTableSchema(pParse, pTab, pTab->zName); }
/* ** This function is called after an "ALTER TABLE ... ADD" statement ** has been parsed. Argument pColDef contains the text of the new ** column definition. ** ** The Table structure pParse->pNewTable was extended to include ** the new column during parsing. */ void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ Table *pNew; /* Copy of pParse->pNewTable */ Table *pTab; /* Table being altered */ int iDb; /* Database number */ const char *zDb; /* Database name */ const char *zTab; /* Table name */ char *zCol; /* Null-terminated column definition */ Column *pCol; /* The new column */ Expr *pDflt; /* Default value for the new column */ sqlite3 *db; /* The database connection; */ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ db = pParse->db; if( pParse->nErr || db->mallocFailed ) return; assert( v!=0 ); pNew = pParse->pNewTable; assert( pNew ); assert( sqlite3BtreeHoldsAllMutexes(db) ); iDb = sqlite3SchemaToIndex(db, pNew->pSchema); zDb = db->aDb[iDb].zName; zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */ pCol = &pNew->aCol[pNew->nCol-1]; pDflt = pCol->pDflt; pTab = sqlite3FindTable(db, zTab, zDb); assert( pTab ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Invoke the authorization callback. */ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ return; } #endif /* If the default value for the new column was specified with a ** literal NULL, then set pDflt to 0. This simplifies checking ** for an SQL NULL default below. */ if( pDflt && pDflt->op==TK_NULL ){ pDflt = 0; } /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. ** If there is a NOT NULL constraint, then the default value for the ** column must not be NULL. */ if( pCol->colFlags & COLFLAG_PRIMKEY ){ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); return; } if( pNew->pIndex ){ sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); return; } if( (db->flags&SQLITE_ForeignKeys) && pNew->pFKey && pDflt ){ sqlite3ErrorMsg(pParse, "Cannot add a REFERENCES column with non-NULL default value"); return; } if( pCol->notNull && !pDflt ){ sqlite3ErrorMsg(pParse, "Cannot add a NOT NULL column with default value NULL"); return; } /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal = 0; int rc; rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); if( rc!=SQLITE_OK ){ assert( db->mallocFailed == 1 ); return; } if( !pVal ){ sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); return; } sqlite3ValueFree(pVal); } /* Modify the CREATE TABLE statement. */ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); if( zCol ){ char *zEnd = &zCol[pColDef->n-1]; int savedDbFlags = db->flags; while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){ *zEnd-- = '\0'; } db->flags |= SQLITE_PreferBuiltin; sqlite3NestedParse(pParse, "UPDATE \"%w\".%s SET " "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) " "WHERE type = 'table' AND name = %Q", zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1, zTab ); sqlite3DbFree(db, zCol); db->flags = savedDbFlags; } /* If the default value of the new column is NULL, then the file ** format to 2. If the default value of the new column is not NULL, ** the file format be 3. Back when this feature was first added ** in 2006, we went to the trouble to upgrade the file format to the ** minimum support values. But 10-years on, we can assume that all ** extent versions of SQLite support file-format 4, so we always and ** unconditionally upgrade to 4. */ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, SQLITE_MAX_FILE_FORMAT); /* Reload the schema of the modified table. */ reloadTableSchema(pParse, pTab, pTab->zName); }
/* ** The string z[] is an text representation of a real number. ** Convert this string to a double and write it into *pResult. ** ** The string z[] is length bytes in length (bytes, not characters) and ** uses the encoding enc. The string is not necessarily zero-terminated. ** ** Return TRUE if the result is a valid real number (or integer) and FALSE ** if the string is empty or contains extraneous text. Valid numbers ** are in one of these formats: ** ** [+-]digits[E[+-]digits] ** [+-]digits.[digits][E[+-]digits] ** [+-].digits[E[+-]digits] ** ** Leading and trailing whitespace is ignored for the purpose of determining ** validity. ** ** If some prefix of the input string is a valid number, this routine ** returns FALSE but it still converts the prefix and writes the result ** into *pResult. */ int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ #ifndef SQLITE_OMIT_FLOATING_POINT int incr; const char *zEnd = z + length; /* sign * significand * (10 ^ (esign * exponent)) */ int sign = 1; /* sign of significand */ i64 s = 0; /* significand */ int d = 0; /* adjust exponent for shifting decimal point */ int esign = 1; /* sign of exponent */ int e = 0; /* exponent */ int eValid = 1; /* True exponent is either not used or is well-formed */ double result; int nDigits = 0; int nonNum = 0; assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); *pResult = 0.0; /* Default return value, in case of an error */ if( enc==SQLITE_UTF8 ){ incr = 1; }else{ int i; incr = 2; assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); for(i=3-enc; i<length && z[i]==0; i+=2){} nonNum = i<length; zEnd = z+i+enc-3; z += (enc&1); } /* skip leading spaces */ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; if( z>=zEnd ) return 0; /* get sign of significand */ if( *z=='-' ){ sign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* skip leading zeroes */ while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; /* copy max significant digits to significand */ while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ s = s*10 + (*z - '0'); z+=incr, nDigits++; } /* skip non-significant significand digits ** (increase exponent by d to shift decimal left) */ while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; if( z>=zEnd ) goto do_atof_calc; /* if decimal point is present */ if( *z=='.' ){ z+=incr; /* copy digits from after decimal to significand ** (decrease exponent by d to shift decimal right) */ while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ s = s*10 + (*z - '0'); z+=incr, nDigits++, d--; } /* skip non-significant digits */ while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; } if( z>=zEnd ) goto do_atof_calc; /* if exponent is present */ if( *z=='e' || *z=='E' ){ z+=incr; eValid = 0; if( z>=zEnd ) goto do_atof_calc; /* get sign of exponent */ if( *z=='-' ){ esign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } /* copy digits to exponent */ while( z<zEnd && sqlite3Isdigit(*z) ){ e = e<10000 ? (e*10 + (*z - '0')) : 10000; z+=incr; eValid = 1; } } /* skip trailing spaces */ if( nDigits && eValid ){ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; } do_atof_calc: /* adjust exponent by d, and update sign */ e = (e*esign) + d; if( e<0 ) { esign = -1; e *= -1; } else { esign = 1; } /* if 0 significand */ if( !s ) { /* In the IEEE 754 standard, zero is signed. ** Add the sign if we've seen at least one digit */ result = (sign<0 && nDigits) ? -(double)0 : (double)0; } else { /* attempt to reduce exponent */ if( esign>0 ){ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; }else{ while( !(s%10) && e>0 ) e--,s/=10; } /* adjust the sign of significand */ s = sign<0 ? -s : s; /* if exponent, scale significand as appropriate ** and store in result. */ if( e ){ LONGDOUBLE_TYPE scale = 1.0; /* attempt to handle extremely small/large numbers better */ if( e>307 && e<342 ){ while( e%308 ) { scale *= 1.0e+1; e -= 1; } if( esign<0 ){ result = s / scale; result /= 1.0e+308; }else{ result = s * scale; result *= 1.0e+308; } }else if( e>=342 ){ if( esign<0 ){ result = 0.0*s; }else{ result = 1e308L*1e308L*s; /* Infinity */ } }else{ /* 1.0e+22 is the largest power of 10 than can be ** represented exactly. */ while( e%22 ) { scale *= 1.0e+1; e -= 1; } while( e>0 ) { scale *= 1.0e+22; e -= 22; } if( esign<0 ){ result = s / scale; }else{ result = s * scale; } } } else { result = (double)s; } } /* store the result */ *pResult = result; /* return true if number and no extra non-whitespace chracters after */ return z>=zEnd && nDigits>0 && eValid && nonNum==0; #else return !sqlite3Atoi64(z, pResult, length, enc); #endif /* SQLITE_OMIT_FLOATING_POINT */ }
/* ** Execute SQL code. Return one of the SQLITE_ success/failure ** codes. Also write an error message into memory obtained from ** malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result ** the xCallback() function is called. pArg becomes the first ** argument to xCallback(). If xCallback=NULL then no callback ** is invoked, even for queries. */ int sqlite3_exec( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite3_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; /* Return code */ const char *zLeftover; /* Tail of unprocessed SQL */ sqlite3_stmt *pStmt = 0; /* The current SQL statement */ char **azCols = 0; /* Names of result columns */ int nRetry = 0; /* Number of retry attempts */ int callbackIsInit; /* True if callback data is initialized */ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; if( zSql==0 ) zSql = ""; #ifdef SQLITE_ENABLE_SQLRR SRRecExec(db, zSql); #endif sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK, 0); while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ int nCol; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; continue; } callbackIsInit = 0; nCol = sqlite3_column_count(pStmt); while( 1 ){ int i; rc = sqlite3_step(pStmt); /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !callbackIsInit && db->flags&SQLITE_NullCallback)) ){ if( !callbackIsInit ){ azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1); if( azCols==0 ){ goto exec_out; } for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); /* sqlite3VdbeSetColName() installs column names as UTF8 ** strings so there is no way for sqlite3_column_name() to fail. */ assert( azCols[i]!=0 ); } callbackIsInit = 1; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ db->mallocFailed = 1; goto exec_out; } } } if( xCallback(pArg, nCol, azVals, azCols) ){ rc = SQLITE_ABORT; sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; sqlite3Error(db, SQLITE_ABORT, 0); goto exec_out; } } if( rc!=SQLITE_ROW ){ rc = sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; if( rc!=SQLITE_SCHEMA ){ nRetry = 0; zSql = zLeftover; while( sqlite3Isspace(zSql[0]) ) zSql++; } break; } } sqlite3DbFree(db, azCols); azCols = 0; } exec_out: if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); sqlite3DbFree(db, azCols); #ifdef SQLITE_ENABLE_SQLRR SRRecExecEnd(db); #endif rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){ int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db)); *pzErrMsg = sqlite3Malloc(nErrMsg); if( *pzErrMsg ){ memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); }else{ rc = SQLITE_NOMEM; sqlite3Error(db, SQLITE_NOMEM, 0); } }else if( pzErrMsg ){ *pzErrMsg = 0; } assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; }
/* ** Return the length of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ int sqlite3GetToken(const unsigned char *z, int *tokenType){ int i, c; switch( *z ){ case ' ': case '\t': case '\n': case '\f': case '\r': { for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case '-': { if( z[1]=='-' ){ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; return i; } *tokenType = TK_MINUS; return 1; } case '(': { *tokenType = TK_LP; return 1; } case ')': { *tokenType = TK_RP; return 1; } case ';': { *tokenType = TK_SEMI; return 1; } case '+': { *tokenType = TK_PLUS; return 1; } case '*': { *tokenType = TK_STAR; return 1; } case '/': { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; return i; } case '%': { *tokenType = TK_REM; return 1; } case '=': { *tokenType = TK_EQ; return 1 + (z[1]=='='); } case '<': { if( (c=z[1])=='=' ){ *tokenType = TK_LE; return 2; }else if( c=='>' ){ *tokenType = TK_NE; return 2; }else if( c=='<' ){ *tokenType = TK_LSHIFT; return 2; }else{ *tokenType = TK_LT; return 1; } } case '>': { if( (c=z[1])=='=' ){ *tokenType = TK_GE; return 2; }else if( c=='>' ){ *tokenType = TK_RSHIFT; return 2; }else{ *tokenType = TK_GT; return 1; } } case '!': { if( z[1]!='=' ){ *tokenType = TK_ILLEGAL; return 2; }else{ *tokenType = TK_NE; return 2; } } case '|': { if( z[1]!='|' ){ *tokenType = TK_BITOR; return 1; }else{ *tokenType = TK_CONCAT; return 2; } } case ',': { *tokenType = TK_COMMA; return 1; } case '&': { *tokenType = TK_BITAND; return 1; } case '~': { *tokenType = TK_BITNOT; return 1; } case '`': case '\'': case '"': { int delim = z[0]; for(i=1; (c=z[i])!=0; i++){ if( c==delim ){ if( z[i+1]==delim ){ i++; }else{ break; } } } if( c=='\'' ){ *tokenType = TK_STRING; return i+1; }else if( c!=0 ){ *tokenType = TK_ID; return i+1; }else{ *tokenType = TK_ILLEGAL; return i; } } case '.': { #ifndef SQLITE_OMIT_FLOATING_POINT if( !sqlite3Isdigit(z[1]) ) #endif { *tokenType = TK_DOT; return 1; } /* If the next character is a digit, this is a floating point ** number that begins with ".". Fall thru into the next case */ } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { *tokenType = TK_INTEGER; for(i=0; sqlite3Isdigit(z[i]); i++){} #ifndef SQLITE_OMIT_FLOATING_POINT if( z[i]=='.' ){ i++; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } if( (z[i]=='e' || z[i]=='E') && ( sqlite3Isdigit(z[i+1]) || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2])) ) ){ i += 2; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } #endif while( IdChar(z[i]) ){ *tokenType = TK_ILLEGAL; i++; } return i; } case '[': { for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} *tokenType = c==']' ? TK_ID : TK_ILLEGAL; return i; } case '?': { *tokenType = TK_VARIABLE; for(i=1; sqlite3Isdigit(z[i]); i++){} return i; } case '#': { for(i=1; sqlite3Isdigit(z[i]); i++){} if( i>1 ){ /* Parameters of the form #NNN (where NNN is a number) are used ** internally by sqlite3NestedParse. */ *tokenType = TK_REGISTER; return i; } /* Fall through into the next case if the '#' is not followed by ** a digit. Try to match #AAAA where AAAA is a parameter name. */ } #ifndef SQLITE_OMIT_TCL_VARIABLE case '$': #endif case '@': /* For compatibility with MS SQL Server */ case ':': { int n = 0; *tokenType = TK_VARIABLE; for(i=1; (c=z[i])!=0; i++){ if( IdChar(c) ){ n++; #ifndef SQLITE_OMIT_TCL_VARIABLE }else if( c=='(' && n>0 ){ do{ i++; }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' ); if( c==')' ){ i++; }else{ *tokenType = TK_ILLEGAL; } break; }else if( c==':' && z[i+1]==':' ){ i++; #endif }else{ break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } #ifndef SQLITE_OMIT_BLOB_LITERAL case 'x': case 'X': { if( z[1]=='\'' ){ *tokenType = TK_BLOB; for(i=2; (c=z[i])!=0 && c!='\''; i++){ if( !sqlite3Isxdigit(c) ){ *tokenType = TK_ILLEGAL; } } if( i%2 || !c ) *tokenType = TK_ILLEGAL; if( c ) i++; return i; } /* Otherwise fall through to the next case */ } #endif default: { if( !IdChar(*z) ){ break; } for(i=1; IdChar(z[i]); i++){} *tokenType = keywordCode((char*)z, i); return i; } } *tokenType = TK_ILLEGAL; return 1; }
/* ** Execute SQL code. Return one of the SQLITE_ success/failure ** codes. Also write an error message into memory obtained from ** malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result ** the xCallback() function is called. pArg becomes the first ** argument to xCallback(). If xCallback=NULL then no callback ** is invoked, even for queries. */ int sqlite3_exec( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite3_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; const char *zLeftover; sqlite3_stmt *pStmt = 0; char **azCols = 0; int nRetry = 0; int nCallback; if( zSql==0 ) zSql = ""; sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK, 0); while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ int nCol; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; continue; } nCallback = 0; nCol = sqlite3_column_count(pStmt); while( 1 ){ int i; rc = sqlite3_step(pStmt); /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){ if( 0==nCallback ){ if( azCols==0 ){ azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1); if( azCols==0 ){ goto exec_out; } } for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); /* sqlite3VdbeSetColName() installs column names as UTF8 ** strings so there is no way for sqlite3_column_name() to fail. */ assert( azCols[i]!=0 ); } nCallback++; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ db->mallocFailed = 1; goto exec_out; } } } if( xCallback(pArg, nCol, azVals, azCols) ){ rc = SQLITE_ABORT; sqlite3_finalize(pStmt); pStmt = 0; sqlite3Error(db, SQLITE_ABORT, 0); goto exec_out; } } if( rc!=SQLITE_ROW ){ rc = sqlite3_finalize(pStmt); pStmt = 0; if( rc!=SQLITE_SCHEMA ){ nRetry = 0; zSql = zLeftover; while( sqlite3Isspace(zSql[0]) ) zSql++; } break; } } sqlite3DbFree(db, azCols); azCols = 0; } exec_out: if( pStmt ) sqlite3_finalize(pStmt); sqlite3DbFree(db, azCols); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){ int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db)); *pzErrMsg = sqlite3Malloc(nErrMsg); if( *pzErrMsg ){ memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); } }else if( pzErrMsg ){ *pzErrMsg = 0; } assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; }
/* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours ** NNN minutes ** NNN.NNNN seconds ** NNN months ** NNN years ** start of month ** start of year ** start of week ** start of day ** weekday N ** unixepoch ** localtime ** utc ** ** Return 0 on success and 1 if there is any kind of error. If the error ** is in a system call (i.e. localtime()), then an error message is written ** to context pCtx. If the error is an unrecognized modifier, no error is ** written to pCtx. */ static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ int rc = 1; int n; double r; char *z, zBuf[30]; z = zBuf; for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; } z[n] = 0; switch( z[0] ){ #ifndef SQLITE_OMIT_LOCALTIME case 'l': { /* localtime ** ** Assuming the current time value is UTC (a.k.a. GMT), shift it to ** show local time. */ if( strcmp(z, "localtime")==0 ){ computeJD(p); p->iJD += localtimeOffset(p, pCtx, &rc); clearYMD_HMS_TZ(p); } break; } #endif case 'u': { /* ** unixepoch ** ** Treat the current value of p->iJD as the number of ** seconds since 1970. Convert to a real julian day number. */ if( strcmp(z, "unixepoch")==0 && p->validJD ){ p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; clearYMD_HMS_TZ(p); rc = 0; } #ifndef SQLITE_OMIT_LOCALTIME else if( strcmp(z, "utc")==0 ){ if( p->tzSet==0 ){ sqlite3_int64 c1; computeJD(p); c1 = localtimeOffset(p, pCtx, &rc); if( rc==SQLITE_OK ){ p->iJD -= c1; clearYMD_HMS_TZ(p); p->iJD += c1 - localtimeOffset(p, pCtx, &rc); } p->tzSet = 1; }else{ rc = SQLITE_OK; } } #endif break; } case 'w': { /* ** weekday N ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( strncmp(z, "weekday ", 8)==0 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) && (n=(int)r)==r && n>=0 && r<7 ){ sqlite3_int64 Z; computeYMD_HMS(p); p->validTZ = 0; p->validJD = 0; computeJD(p); Z = ((p->iJD + 129600000)/86400000) % 7; if( Z>n ) Z -= 7; p->iJD += (n - Z)*86400000; clearYMD_HMS_TZ(p); rc = 0; } break; } case 's': { /* ** start of TTTTT ** ** Move the date backwards to the beginning of the current day, ** or month or year. */ if( strncmp(z, "start of ", 9)!=0 ) break; z += 9; computeYMD(p); p->validHMS = 1; p->h = p->m = 0; p->s = 0.0; p->validTZ = 0; p->validJD = 0; if( strcmp(z,"month")==0 ){ p->D = 1; rc = 0; }else if( strcmp(z,"year")==0 ){ computeYMD(p); p->M = 1; p->D = 1; rc = 0; }else if( strcmp(z,"day")==0 ){ rc = 0; } break; } case '+': case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { double rRounder; for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ rc = 1; break; } if( z[n]==':' ){ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the ** specified number of hours, minutes, seconds, and fractional seconds ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be ** omitted. */ const char *z2 = z; DateTime tx; sqlite3_int64 day; if( !sqlite3Isdigit(*z2) ) z2++; memset(&tx, 0, sizeof(tx)); if( parseHhMmSs(z2, &tx) ) break; computeJD(&tx); tx.iJD -= 43200000; day = tx.iJD/86400000; tx.iJD -= day*86400000; if( z[0]=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n>10 || n<3 ) break; if( z[n-1]=='s' ){ z[n-1] = 0; n--; } computeJD(p); rc = 0; rRounder = r<0 ? -0.5 : +0.5; if( n==3 && strcmp(z,"day")==0 ){ p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); }else if( n==4 && strcmp(z,"hour")==0 ){ p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); }else if( n==6 && strcmp(z,"minute")==0 ){ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); }else if( n==6 && strcmp(z,"second")==0 ){ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); }else if( n==5 && strcmp(z,"month")==0 ){ int x, y; computeYMD_HMS(p); p->M += (int)r; x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; p->validJD = 0; computeJD(p); y = (int)r; if( y!=r ){ p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); } }else if( n==4 && strcmp(z,"year")==0 ){ int y = (int)r; computeYMD_HMS(p); p->Y += y; p->validJD = 0; computeJD(p); if( y!=r ){ p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); } }else{ rc = 1; } clearYMD_HMS_TZ(p); break; } default: { break; } } return rc; }
/* ** The string z[] is an ascii representation of a real number. ** Convert this string to a double. ** ** This routine assumes that z[] really is a valid number. If it ** is not, the result is undefined. ** ** This routine is used instead of the library atof() function because ** the library atof() might want to use "," as the decimal point instead ** of "." depending on how locale is set. But that would cause problems ** for SQL. So this routine always uses "." regardless of locale. */ int sqlite3AtoF(const char *z, double *pResult){ #ifndef SQLITE_OMIT_FLOATING_POINT int sign = 1; const char *zBegin = z; LONGDOUBLE_TYPE v1 = 0.0; int nSignificant = 0; while( sqlite3Isspace(*z) ) z++; if( *z=='-' ){ sign = -1; z++; }else if( *z=='+' ){ z++; } while( z[0]=='0' ){ z++; } while( sqlite3Isdigit(*z) ){ v1 = v1*10.0 + (*z - '0'); z++; nSignificant++; } if( *z=='.' ){ LONGDOUBLE_TYPE divisor = 1.0; z++; if( nSignificant==0 ){ while( z[0]=='0' ){ divisor *= 10.0; z++; } } while( sqlite3Isdigit(*z) ){ if( nSignificant<18 ){ v1 = v1*10.0 + (*z - '0'); divisor *= 10.0; nSignificant++; } z++; } v1 /= divisor; } if( *z=='e' || *z=='E' ){ int esign = 1; int eval = 0; LONGDOUBLE_TYPE scale = 1.0; z++; if( *z=='-' ){ esign = -1; z++; }else if( *z=='+' ){ z++; } while( sqlite3Isdigit(*z) ){ eval = eval*10 + *z - '0'; z++; } while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } if( esign<0 ){ v1 /= scale; }else{ v1 *= scale; } } *pResult = (double)(sign<0 ? -v1 : v1); return (int)(z - zBegin); #else return sqlite3Atoi64(z, pResult); #endif /* SQLITE_OMIT_FLOATING_POINT */ }
/* ** Return the length of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ int sqlite3GetToken(const unsigned char *z, int *tokenType){ int i, c; switch( *z ){ case ' ': case '\t': case '\n': case '\f': case '\r': { testcase( z[0]==' ' ); testcase( z[0]=='\t' ); testcase( z[0]=='\n' ); testcase( z[0]=='\f' ); testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case '-': { if( z[1]=='-' ){ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } *tokenType = TK_MINUS; return 1; } case '(': { *tokenType = TK_LP; return 1; } case ')': { *tokenType = TK_RP; return 1; } case ';': { *tokenType = TK_SEMI; return 1; } case '+': { *tokenType = TK_PLUS; return 1; } case '*': { *tokenType = TK_STAR; return 1; } case '/': { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case '%': { *tokenType = TK_REM; return 1; } case '=': { *tokenType = TK_EQ; return 1 + (z[1]=='='); } case '<': { if( (c=z[1])=='=' ){ *tokenType = TK_LE; return 2; }else if( c=='>' ){ *tokenType = TK_NE; return 2; }else if( c=='<' ){ *tokenType = TK_LSHIFT; return 2; }else{ *tokenType = TK_LT; return 1; } } case '>': { if( (c=z[1])=='=' ){ *tokenType = TK_GE; return 2; }else if( c=='>' ){ *tokenType = TK_RSHIFT; return 2; }else{ *tokenType = TK_GT; return 1; } } case '!': { if( z[1]!='=' ){ *tokenType = TK_ILLEGAL; return 2; }else{ *tokenType = TK_NE; return 2; } } case '|': { if( z[1]!='|' ){ *tokenType = TK_BITOR; return 1; }else{ *tokenType = TK_CONCAT; return 2; } } case ',': { *tokenType = TK_COMMA; return 1; } case '&': { *tokenType = TK_BITAND; return 1; } case '~': { *tokenType = TK_BITNOT; return 1; } case '`': case '\'': case '"': { int delim = z[0]; testcase( delim=='`' ); testcase( delim=='\'' ); testcase( delim=='"' ); for(i=1; (c=z[i])!=0; i++){ if( c==delim ){ if( z[i+1]==delim ){ i++; }else{ break; } } } if( c=='\'' ){ *tokenType = TK_STRING; return i+1; }else if( c!=0 ){ *tokenType = TK_ID; return i+1; }else{ *tokenType = TK_ILLEGAL; return i; } } case '.': { #ifndef SQLITE_OMIT_FLOATING_POINT if( !sqlite3Isdigit(z[1]) ) #endif { *tokenType = TK_DOT; return 1; } /* If the next character is a digit, this is a floating point ** number that begins with ".". Fall thru into the next case */ } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); testcase( z[0]=='9' ); *tokenType = TK_INTEGER; #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){ for(i=3; sqlite3Isxdigit(z[i]); i++){} return i; } #endif for(i=0; sqlite3Isdigit(z[i]); i++){} #ifndef SQLITE_OMIT_FLOATING_POINT if( z[i]=='.' ){ i++; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } if( (z[i]=='e' || z[i]=='E') && ( sqlite3Isdigit(z[i+1]) || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2])) ) ){ i += 2; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } #endif while( IdChar(z[i]) ){ *tokenType = TK_ILLEGAL; i++; } return i; } case '[': { for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} *tokenType = c==']' ? TK_ID : TK_ILLEGAL; return i; } case '?': { *tokenType = TK_VARIABLE; for(i=1; sqlite3Isdigit(z[i]); i++){} return i; } #ifndef SQLITE_OMIT_TCL_VARIABLE case '$': #endif case '@': /* For compatibility with MS SQL Server */ case '#': case ':': { int n = 0; testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' ); testcase( z[0]=='#' ); *tokenType = TK_VARIABLE; for(i=1; (c=z[i])!=0; i++){ if( IdChar(c) ){ n++; #ifndef SQLITE_OMIT_TCL_VARIABLE }else if( c=='(' && n>0 ){ do{ i++; }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' ); if( c==')' ){ i++; }else{ *tokenType = TK_ILLEGAL; } break; }else if( c==':' && z[i+1]==':' ){ i++; #endif }else{ break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } #ifndef SQLITE_OMIT_BLOB_LITERAL case 'x': case 'X': { testcase( z[0]=='x' ); testcase( z[0]=='X' ); if( z[1]=='\'' ){ *tokenType = TK_BLOB; for(i=2; sqlite3Isxdigit(z[i]); i++){} if( z[i]!='\'' || i%2 ){ *tokenType = TK_ILLEGAL; while( z[i] && z[i]!='\'' ){ i++; } } if( z[i] ) i++; return i; } /* Otherwise fall through to the next case */ } #endif default: { if( !IdChar(*z) ){ break; } for(i=1; IdChar(z[i]); i++){} *tokenType = keywordCode((char*)z, i); return i; } } *tokenType = TK_ILLEGAL; return 1; }
/* ** Duplicate a range of text from an SQL statement, then convert all ** whitespace characters into ordinary space characters. */ static char *triggerSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ char *z = sqlite3DbSpanDup(db, zStart, zEnd); int i; if( z ) for(i=0; z[i]; i++) if( sqlite3Isspace(z[i]) ) z[i] = ' '; return z; }
int sqlite3_exec( sqlite3 *db, const char *zSql, sqlite3_callback xCallback, void *pArg, char **pzErrMsg ){ int rc = SQLITE_OK; const char *zLeftover; sqlite3_stmt *pStmt = 0; char **azCols = 0; int nRetry = 0; int callbackIsInit; if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; if( zSql==0 ) zSql = ""; sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK, 0); while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ int nCol; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ zSql = zLeftover; continue; } callbackIsInit = 0; nCol = sqlite3_column_count(pStmt); while( 1 ){ int i; rc = sqlite3_step(pStmt); if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !callbackIsInit && db->flags&SQLITE_NullCallback)) ){ if( !callbackIsInit ){ azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1); if( azCols==0 ){ goto exec_out; } for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); assert( azCols[i]!=0 ); } callbackIsInit = 1; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ db->mallocFailed = 1; goto exec_out; } } } if( xCallback(pArg, nCol, azVals, azCols) ){ rc = SQLITE_ABORT; sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; sqlite3Error(db, SQLITE_ABORT, 0); goto exec_out; } } if( rc!=SQLITE_ROW ){ rc = sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; if( rc!=SQLITE_SCHEMA ){ nRetry = 0; zSql = zLeftover; while( sqlite3Isspace(zSql[0]) ) zSql++; } break; } } sqlite3DbFree(db, azCols); azCols = 0; } exec_out: if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); sqlite3DbFree(db, azCols); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){ int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db)); *pzErrMsg = sqlite3Malloc(nErrMsg); if( *pzErrMsg ){ memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); }else{ rc = SQLITE_NOMEM; sqlite3Error(db, SQLITE_NOMEM, 0); } }else if( pzErrMsg ){ *pzErrMsg = 0; } assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; }
/* ** Execute SQL code. ** Return one of the SQLITE_ success/failure codes. ** Also write an error message into memory obtained from malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result the xCallback() function is called. ** pArg becomes the first argument to xCallback(). ** If xCallback=NULL then no callback is invoked, even for queries. */ int sqlite3_exec( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite3_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; /* Return code */ const char *zLeftover; /* Tail of unprocessed SQL */ sqlite3_stmt *pStmt = 0; /* The current SQL statement */ char **azCols = 0; /* Names of result columns */ int callbackIsInit; /* True if callback data is initialized */ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; if( zSql==0 ) zSql = ""; sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK); while( rc==SQLITE_OK && zSql[0] ){ int nCol; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; continue; } callbackIsInit = 0; nCol = sqlite3_column_count(pStmt); while( 1 ){ int i; rc = sqlite3_step(pStmt); /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !callbackIsInit && db->flags&SQLITE_NullCallback)) ){ if( !callbackIsInit ){ azCols = sqlite3DbMallocRaw(db, (2*nCol+1)*sizeof(const char*)); if( azCols==0 ){ goto exec_out; } for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); /* sqlite3VdbeSetColName() installs column names as UTF8 ** strings so there is no way for sqlite3_column_name() to fail. */ assert( azCols[i]!=0 ); } callbackIsInit = 1; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ sqlite3OomFault(db); goto exec_out; } } azVals[i] = 0; } if( xCallback(pArg, nCol, azVals, azCols) ){ /* EVIDENCE-OF: R-38229-40159 If the callback function to ** sqlite3_exec() returns non-zero, then sqlite3_exec() will ** return SQLITE_ABORT. */ rc = SQLITE_ABORT; sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; sqlite3Error(db, SQLITE_ABORT); goto exec_out; } } if( rc!=SQLITE_ROW ){ rc = sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; zSql = zLeftover; while( sqlite3Isspace(zSql[0]) ) zSql++; break; } } sqlite3DbFree(db, azCols); azCols = 0; } exec_out: if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); sqlite3DbFree(db, azCols); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && pzErrMsg ){ *pzErrMsg = sqlite3DbStrDup(0, sqlite3_errmsg(db)); if( *pzErrMsg==0 ){ rc = SQLITE_NOMEM_BKPT; sqlite3Error(db, SQLITE_NOMEM); } }else if( pzErrMsg ){ *pzErrMsg = 0; } assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; }
/* ** Return the length (in bytes) of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ int sqlite3GetToken(const unsigned char *z, int *tokenType){ int i, c; switch( aiClass[*z] ){ /* Switch on the character-class of the first byte ** of the token. See the comment on the CC_ defines ** above. */ case CC_SPACE: { testcase( z[0]==' ' ); testcase( z[0]=='\t' ); testcase( z[0]=='\n' ); testcase( z[0]=='\f' ); testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case CC_MINUS: { if( z[1]=='-' ){ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } *tokenType = TK_MINUS; return 1; } case CC_LP: { *tokenType = TK_LP; return 1; } case CC_RP: { *tokenType = TK_RP; return 1; } case CC_SEMI: { *tokenType = TK_SEMI; return 1; } case CC_PLUS: { *tokenType = TK_PLUS; return 1; } case CC_STAR: { *tokenType = TK_STAR; return 1; } case CC_SLASH: { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case CC_PERCENT: { *tokenType = TK_REM; return 1; } case CC_EQ: { *tokenType = TK_EQ; return 1 + (z[1]=='='); } case CC_LT: { if( (c=z[1])=='=' ){ *tokenType = TK_LE; return 2; }else if( c=='>' ){ *tokenType = TK_NE; return 2; }else if( c=='<' ){ *tokenType = TK_LSHIFT; return 2; }else{ *tokenType = TK_LT; return 1; } } case CC_GT: { if( (c=z[1])=='=' ){ *tokenType = TK_GE; return 2; }else if( c=='>' ){ *tokenType = TK_RSHIFT; return 2; }else{ *tokenType = TK_GT; return 1; } } case CC_BANG: { if( z[1]!='=' ){ *tokenType = TK_ILLEGAL; return 1; }else{ *tokenType = TK_NE; return 2; } } case CC_PIPE: { if( z[1]!='|' ){ *tokenType = TK_BITOR; return 1; }else{ *tokenType = TK_CONCAT; return 2; } } case CC_COMMA: { *tokenType = TK_COMMA; return 1; } case CC_AND: { *tokenType = TK_BITAND; return 1; } case CC_TILDA: { *tokenType = TK_BITNOT; return 1; } case CC_QUOTE: { int delim = z[0]; testcase( delim=='`' ); testcase( delim=='\'' ); testcase( delim=='"' ); for(i=1; (c=z[i])!=0; i++){ if( c==delim ){ if( z[i+1]==delim ){ i++; }else{ break; } } } if( c=='\'' ){ *tokenType = TK_STRING; return i+1; }else if( c!=0 ){ *tokenType = TK_ID; return i+1; }else{ *tokenType = TK_ILLEGAL; return i; } } case CC_DOT: { #ifndef SQLITE_OMIT_FLOATING_POINT if( !sqlite3Isdigit(z[1]) ) #endif { *tokenType = TK_DOT; return 1; } /* If the next character is a digit, this is a floating point ** number that begins with ".". Fall thru into the next case */ } case CC_DIGIT: { testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); testcase( z[0]=='9' ); *tokenType = TK_INTEGER; #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){ for(i=3; sqlite3Isxdigit(z[i]); i++){} return i; } #endif for(i=0; sqlite3Isdigit(z[i]); i++){} #ifndef SQLITE_OMIT_FLOATING_POINT if( z[i]=='.' ){ i++; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } if( (z[i]=='e' || z[i]=='E') && ( sqlite3Isdigit(z[i+1]) || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2])) ) ){ i += 2; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } #endif while( IdChar(z[i]) ){ *tokenType = TK_ILLEGAL; i++; } return i; } case CC_QUOTE2: { for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} *tokenType = c==']' ? TK_ID : TK_ILLEGAL; return i; } case CC_VARNUM: { *tokenType = TK_VARIABLE; for(i=1; sqlite3Isdigit(z[i]); i++){} return i; } case CC_DOLLAR: case CC_VARALPHA: { int n = 0; testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' ); testcase( z[0]=='#' ); *tokenType = TK_VARIABLE; for(i=1; (c=z[i])!=0; i++){ if( IdChar(c) ){ n++; #ifndef SQLITE_OMIT_TCL_VARIABLE }else if( c=='(' && n>0 ){ do{ i++; }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' ); if( c==')' ){ i++; }else{ *tokenType = TK_ILLEGAL; } break; }else if( c==':' && z[i+1]==':' ){ i++; #endif }else{ break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } case CC_KYWD: { for(i=1; aiClass[z[i]]<=CC_KYWD; i++){} if( IdChar(z[i]) ){ /* This token started out using characters that can appear in keywords, ** but z[i] is a character not allowed within keywords, so this must ** be an identifier instead */ i++; break; } *tokenType = TK_ID; return keywordCode((char*)z, i, tokenType); } case CC_X: { #ifndef SQLITE_OMIT_BLOB_LITERAL testcase( z[0]=='x' ); testcase( z[0]=='X' ); if( z[1]=='\'' ){ *tokenType = TK_BLOB; for(i=2; sqlite3Isxdigit(z[i]); i++){} if( z[i]!='\'' || i%2 ){ *tokenType = TK_ILLEGAL; while( z[i] && z[i]!='\'' ){ i++; } } if( z[i] ) i++; return i; } #endif /* If it is not a BLOB literal, then it must be an ID, since no ** SQL keywords start with the letter 'x'. Fall through */ } case CC_ID: { i = 1; break; } case CC_NUL: { *tokenType = TK_ILLEGAL; return 0; } default: { *tokenType = TK_ILLEGAL; return 1; } } while( IdChar(z[i]) ){ i++; } *tokenType = TK_ID; return i; }
int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ #ifndef SQLITE_OMIT_FLOATING_POINT int incr = (enc==SQLITE_UTF8?1:2); const char *zEnd = z + length; int sign = 1; i64 s = 0; int d = 0; int esign = 1; int e = 0; int eValid = 1; double result; int nDigits = 0; *pResult = 0.0; if( enc==SQLITE_UTF16BE ) z++; while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; if( z>=zEnd ) return 0; if( *z=='-' ){ sign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ s = s*10 + (*z - '0'); z+=incr, nDigits++; } while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; if( z>=zEnd ) goto do_atof_calc; if( *z=='.' ){ z+=incr; while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ s = s*10 + (*z - '0'); z+=incr, nDigits++, d--; } while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; } if( z>=zEnd ) goto do_atof_calc; if( *z=='e' || *z=='E' ){ z+=incr; eValid = 0; if( z>=zEnd ) goto do_atof_calc; if( *z=='-' ){ esign = -1; z+=incr; }else if( *z=='+' ){ z+=incr; } while( z<zEnd && sqlite3Isdigit(*z) ){ e = e*10 + (*z - '0'); z+=incr; eValid = 1; } } if( nDigits && eValid ){ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; } do_atof_calc: e = (e*esign) + d; if( e<0 ) { esign = -1; e *= -1; } else { esign = 1; } if( !s ) { result = (sign<0 && nDigits) ? -(double)0 : (double)0; } else { if( esign>0 ){ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; }else{ while( !(s%10) && e>0 ) e--,s/=10; } s = sign<0 ? -s : s; if( e ){ double scale = 1.0; if( e>307 && e<342 ){ while( e%308 ) { scale *= 1.0e+1; e -= 1; } if( esign<0 ){ result = s / scale; result /= 1.0e+308; }else{ result = s * scale; result *= 1.0e+308; } }else{ while( e%22 ) { scale *= 1.0e+1; e -= 1; } while( e>0 ) { scale *= 1.0e+22; e -= 22; } if( esign<0 ){ result = s / scale; }else{ result = s * scale; } } } else { result = (double)s; } } *pResult = result; return z>=zEnd && nDigits>0 && eValid; #else return !sqlite3Atoi64(z, pResult, length, enc); #endif }