Esempio n. 1
0
/*
** Turn a relative pathname into a full pathname.  Write the full
** pathname into zFull[].  zFull[] will be at least pVfs->mxPathname
** bytes in size.
*/
static int os2FullPathname(
  sqlite3_vfs *pVfs,          /* Pointer to vfs object */
  const char *zRelative,      /* Possibly relative input path */
  int nFull,                  /* Size of output buffer in bytes */
  char *zFull                 /* Output buffer */
){
  if( strchr(zRelative, ':') ){
    sqlite3SetString( &zFull, zRelative, (char*)0 );
  }else{
    ULONG ulDriveNum = 0;
    ULONG ulDriveMap = 0;
    ULONG cbzBufLen = SQLITE_TEMPNAME_SIZE;
    char zDrive[2];
    char *zBuff = (char*)malloc( cbzBufLen );
    if( zBuff == 0 ){
      return SQLITE_NOMEM;
    }
    DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
    if( DosQueryCurrentDir( ulDriveNum, (PBYTE)zBuff, &cbzBufLen ) == NO_ERROR ){
      sprintf( zDrive, "%c", (char)('A' + ulDriveNum - 1) );
      sqlite3SetString( &zFull, zDrive, ":\\", zBuff,
                        "\\", zRelative, (char*)0 );
    }
    free( zBuff );
  }
  return SQLITE_OK;
}
Esempio n. 2
0
/*
** Turn a relative pathname into a full pathname.  Return a pointer
** to the full pathname stored in space obtained from sqliteMalloc().
** The calling function is responsible for freeing this space once it
** is no longer needed.
*/
char *sqlite3OsFullPathname(const char *zRelative){
  char *zFull = 0;
  if( zRelative[0]=='/' ){
    sqlite3SetString(&zFull, zRelative, (char*)0);
  }else{
    char zBuf[5000];
    sqlite3SetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
                    (char*)0);
  }
  return zFull;
}
Esempio n. 3
0
/*
** Execute zSql on database db.
**
** If zSql returns rows, then each row will have exactly one
** column.  (This will only happen if zSql begins with "SELECT".)
** Take each row of result and call execSql() again recursively.
**
** The execSqlF() routine does the same thing, except it accepts
** a format string as its third argument
*/
static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
  sqlite3_stmt *pStmt;
  int rc;

  /* printf("SQL: [%s]\n", zSql); fflush(stdout); */
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
    const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0);
    assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 );
    /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX,
    ** or INSERT.  Historically there have been attacks that first
    ** corrupt the sqlite_master.sql field with other kinds of statements
    ** then run VACUUM to get those statements to execute at inappropriate
    ** times. */
    if( zSubSql
     && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0)
    ){
      rc = execSql(db, pzErrMsg, zSubSql);
      if( rc!=SQLITE_OK ) break;
    }
  }
  assert( rc!=SQLITE_ROW );
  if( rc==SQLITE_DONE ) rc = SQLITE_OK;
  if( rc ){
    sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
  }
  (void)sqlite3_finalize(pStmt);
  return rc;
}
Esempio n. 4
0
/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
*/
static void corruptSchema(InitData *pData, const char *zExtra){
  if( !sqlite3MallocFailed() ){
    sqlite3SetString(pData->pzErrMsg, "malformed database schema",
       zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
  }
  pData->rc = SQLITE_CORRUPT;
}
Esempio n. 5
0
/*
** Finalize a prepared statement.  If there was an error, store the
** text of the error message in *pzErrMsg.  Return the result code.
** 
** Based on vacuumFinalize from vacuum.c
*/
static int sqlcipher_finalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){
  int rc;
  rc = sqlite3VdbeFinalize((Vdbe*)pStmt);
  if( rc ){
    sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
  }
  return rc;
}
Esempio n. 6
0
int btreeVacuum(Btree *p, char **pzErrMsg) {
	sqlite3 *db;
	int rc;
	u_int32_t truncatedPages;

	db = p->db;

	/* Return directly if vacuum is on progress */
	if (p->inVacuum)
		return SQLITE_OK;

	/*
	 * We're going to do updates in this transaction at the Berkeley DB
	 * Core level (i.e., call DB->compact), but we start it read-only at
	 * the SQL level to avoid overhead from checkpoint-on-commit.
	 */
	if ((rc = sqlite3BtreeBeginTrans(p, 0)) != SQLITE_OK) {
		sqlite3SetString(pzErrMsg, db,
		    "failed to begin a vacuum transaction");
		return rc;
	}

	p->inVacuum = 1;

	truncatedPages = 0;
	/* Go through all tables */
	do {
		rc = btreeIncrVacuum(p, &truncatedPages);
	} while (rc == SQLITE_OK);
	p->needVacuum = 0;

	if (rc != SQLITE_DONE) {
		sqlite3SetString(pzErrMsg, db,
		    "error during vacuum, rolled back");
		(void)sqlite3BtreeRollback(p);
	} else if ((rc = sqlite3BtreeCommit(p)) != SQLITE_OK) {
		sqlite3SetString(pzErrMsg, db,
		    "failed to commit the vacuum transaction");
	}

	p->inVacuum = 0;

	return rc;
}
Esempio n. 7
0
static void corruptSchema(
    InitData *pData,
    const char *zObj,
    const char *zExtra
) {
    sqlite3 *db = pData->db;
    if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ) {
        if( zObj==0 ) zObj = "?";
        sqlite3SetString(pData->pzErrMsg, db,
                         "malformed database schema (%s)", zObj);
        if( zExtra ) {
            *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg,
                                               "%s - %s", *pData->pzErrMsg, zExtra);
        }
    }
    pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT;
}
Esempio n. 8
0
/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
*/
static void corruptSchema(
    InitData *pData,     /* Initialization context */
    const char *zObj,    /* Object being parsed at the point of error */
    const char *zExtra   /* Error information */
) {
    sqlite3 *db = pData->db;
    if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ) {
        if( zObj==0 ) zObj = "?";
        sqlite3SetString(pData->pzErrMsg, db,
                         "malformed database schema (%s)", zObj);
        if( zExtra ) {
            *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg,
                                               "%s - %s", *pData->pzErrMsg, zExtra);
        }
    }
    pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT;
}
Esempio n. 9
0
/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/
int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db) {
	int rc;
	Btree *p;

	p = db->aDb[0].pBt;
	rc = SQLITE_OK;

	if (p->pBt->dbStorage != DB_STORE_NAMED)
		return SQLITE_OK;

	if ((rc = sqlite3Init(db, pzErrMsg)) != SQLITE_OK)
		return rc;

	if (!db->autoCommit) {
		sqlite3SetString(pzErrMsg, db,
		    "cannot VACUUM from within a transaction");
		return SQLITE_ERROR;
	}

	assert(sqlite3_mutex_held(db->mutex));
	rc = btreeVacuum(p, pzErrMsg);

	return rc;
}
Esempio n. 10
0
/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/
int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
  int rc = SQLITE_OK;     /* Return code from service routines */
  Btree *pMain;           /* The database being vacuumed */
  Pager *pMainPager;      /* Pager for database being vacuumed */
  Btree *pTemp;           /* The temporary database we vacuum into */
  char *zSql = 0;         /* SQL statements */
  int saved_flags;        /* Saved value of the db->flags */
  int saved_nChange;      /* Saved value of db->nChange */
  int saved_nTotalChange; /* Saved value of db->nTotalChange */
  Db *pDb = 0;            /* Database to detach at end of vacuum */
  int isMemDb;            /* True is vacuuming a :memory: database */
  int nRes;

  /* Save the current value of the write-schema flag before setting it. */
  saved_flags = db->flags;
  saved_nChange = db->nChange;
  saved_nTotalChange = db->nTotalChange;
  db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;

  if( !db->autoCommit ){
    sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
    rc = SQLITE_ERROR;
    goto end_of_vacuum;
  }
  pMain = db->aDb[0].pBt;
  pMainPager = sqlite3BtreePager(pMain);
  isMemDb = sqlite3PagerFile(pMainPager)->pMethods==0;

  /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
  ** can be set to 'off' for this file, as it is not recovered if a crash
  ** occurs anyway. The integrity of the database is maintained by a
  ** (possibly synchronous) transaction opened on the main database before
  ** sqlite3BtreeCopyFile() is called.
  **
  ** An optimisation would be to use a non-journaled pager.
  ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
  ** that actually made the VACUUM run slower.  Very little journalling
  ** actually occurs when doing a vacuum since the vacuum_db is initially
  ** empty.  Only the journal header is written.  Apparently it takes more
  ** time to parse and run the PRAGMA to turn journalling off than it does
  ** to write the journal header file.
  */
  zSql = "ATTACH '' AS vacuum_db;";
  rc = execSql(db, zSql);
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  pDb = &db->aDb[db->nDb-1];
  assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
  pTemp = db->aDb[db->nDb-1].pBt;

  nRes = sqlite3BtreeGetReserve(pMain);

  /* A VACUUM cannot change the pagesize of an encrypted database. */
#ifdef SQLITE_HAS_CODEC
  if( db->nextPagesize ){
    extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
    int nKey;
    char *zKey;
    sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
    if( nKey ) db->nextPagesize = 0;
  }
#endif

  if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes)
   || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes))
   || db->mallocFailed 
  ){
    rc = SQLITE_NOMEM;
    goto end_of_vacuum;
  }
  rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
  if( rc!=SQLITE_OK ){
    goto end_of_vacuum;
  }

#ifndef SQLITE_OMIT_AUTOVACUUM
  sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
                                           sqlite3BtreeGetAutoVacuum(pMain));
#endif

  /* Begin a transaction */
  rc = execSql(db, "BEGIN EXCLUSIVE;");
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Query the schema of the main database. Create a mirror schema
  ** in the temporary database.
  */
  rc = execExecSql(db, 
      "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
      "  FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
      "   AND rootpage>0"
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execExecSql(db, 
      "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
      "  FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execExecSql(db, 
      "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
      "  FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
  ** the contents to the temporary database.
  */
  rc = execExecSql(db, 
      "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
      "|| ' SELECT * FROM ' || quote(name) || ';'"
      "FROM sqlite_master "
      "WHERE type = 'table' AND name!='sqlite_sequence' "
      "  AND rootpage>0"

  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Copy over the sequence table
  */
  rc = execExecSql(db, 
      "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
      "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execExecSql(db, 
      "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
      "|| ' SELECT * FROM ' || quote(name) || ';' "
      "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;


  /* Copy the triggers, views, and virtual tables from the main database
  ** over to the temporary database.  None of these objects has any
  ** associated storage, so all we have to do is copy their entries
  ** from the SQLITE_MASTER table.
  */
  rc = execSql(db,
      "INSERT INTO vacuum_db.sqlite_master "
      "  SELECT type, name, tbl_name, rootpage, sql"
      "    FROM sqlite_master"
      "   WHERE type='view' OR type='trigger'"
      "      OR (type='table' AND rootpage=0)"
  );
  if( rc ) goto end_of_vacuum;

  /* At this point, unless the main db was completely empty, there is now a
  ** transaction open on the vacuum database, but not on the main database.
  ** Open a btree level transaction on the main database. This allows a
  ** call to sqlite3BtreeCopyFile(). The main database btree level
  ** transaction is then committed, so the SQL level never knows it was
  ** opened for writing. This way, the SQL transaction used to create the
  ** temporary database never needs to be committed.
  */
  if( rc==SQLITE_OK ){
    u32 meta;
    int i;

    /* This array determines which meta meta values are preserved in the
    ** vacuum.  Even entries are the meta value number and odd entries
    ** are an increment to apply to the meta value after the vacuum.
    ** The increment is used to increase the schema cookie so that other
    ** connections to the same database will know to reread the schema.
    */
    static const unsigned char aCopy[] = {
       1, 1,    /* Add one to the old schema cookie */
       3, 0,    /* Preserve the default page cache size */
       5, 0,    /* Preserve the default text encoding */
       6, 0,    /* Preserve the user version */
    };

    assert( 1==sqlite3BtreeIsInTrans(pTemp) );
    assert( 1==sqlite3BtreeIsInTrans(pMain) );

    /* Copy Btree meta values */
    for(i=0; i<ArraySize(aCopy); i+=2){
      rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
      if( rc!=SQLITE_OK ) goto end_of_vacuum;
      rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
      if( rc!=SQLITE_OK ) goto end_of_vacuum;
    }

    rc = sqlite3BtreeCopyFile(pMain, pTemp);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
    rc = sqlite3BtreeCommit(pTemp);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
#ifndef SQLITE_OMIT_AUTOVACUUM
    sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
#endif
    rc = sqlite3BtreeCommit(pMain);
  }

  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes);
  }

end_of_vacuum:
  /* Restore the original value of db->flags */
  db->flags = saved_flags;
  db->nChange = saved_nChange;
  db->nTotalChange = saved_nTotalChange;

  /* Currently there is an SQL level transaction open on the vacuum
  ** database. No locks are held on any other files (since the main file
  ** was committed at the btree level). So it safe to end the transaction
  ** by manually setting the autoCommit flag to true and detaching the
  ** vacuum database. The vacuum_db journal file is deleted when the pager
  ** is closed by the DETACH.
  */
  db->autoCommit = 1;

  if( pDb ){
    sqlite3BtreeClose(pDb->pBt);
    pDb->pBt = 0;
    pDb->pSchema = 0;
  }

  sqlite3ResetInternalSchema(db, 0);

  return rc;
}
Esempio n. 11
0
int sqlite3RunParser1(Parse *pParse, const char *zSql, int sqlLen, char **pzErrMsg) {
  int nErr = 0;
  int i;
  void *pEngine;
  int tokenType;
  int lastTokenParsed = -1;
 // sqlite3 *db = pParse->db;
  extern void *sqlite3ParserAlloc(void*(*)(int));
  extern void sqlite3ParserFree(void*, void(*)(void*));
  extern int sqlite3Parser(void*, int, Token, Parse*);

  //db->flags &= ~SQLITE_Interrupt;
  pParse->flags &= ~SQLITE_Interrupt;
  pParse->rc = SQLITE_OK;
  i = 0;
  pEngine = sqlite3ParserAlloc((void*(*)(int))sqlite3MallocX);
  if( pEngine==0 ){
    return SQLITE_NOMEM;
  }
  assert( pParse->sLastToken.dyn==0 );
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nVarExpr==0 );
  assert( pParse->nVarExprAlloc==0 );
  assert( pParse->apVarExpr==0 );
  pParse->zTail = pParse->zSql = zSql;
  while( !sqlite3MallocFailed() && /*zSql[i]!=0*/ i < sqlLen ){
    assert( i>=0 );
    pParse->sLastToken.z = (u8*)&zSql[i];
    assert( pParse->sLastToken.dyn==0 );
    pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    
    if (tokenType != TK_SPACE) {
        TokenItem tokenItem;
        tokenItem.token = pParse->sLastToken;
        tokenItem.tokenType = tokenType;
        sqlite3TokenArrayAppend(&pParse->tokens, &tokenItem);
    }

    switch( tokenType ){
      case TK_SPACE:
      case TK_COMMENT: {
        //if( (db->flags & SQLITE_Interrupt)!=0 ){
        if( (pParse->flags & SQLITE_Interrupt)!=0 ){
          pParse->rc = SQLITE_INTERRUPT;
          sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
          goto abort_parse;
        }
        break;
      }
      case TK_ILLEGAL: {
        if( pzErrMsg ){
          sqliteFree(*pzErrMsg);
          *pzErrMsg = sqlite3MPrintf("unrecognized token: \"%T\"",
                          &pParse->sLastToken);
        }
        nErr++;
        goto abort_parse;
      }
      case TK_SEMI: {
        pParse->zTail = &zSql[i];
        /* Fall thru into the default case */
      }
      default: {
        sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
        lastTokenParsed = tokenType;
        if( pParse->rc!=SQLITE_OK ){
          goto abort_parse;
        }
        break;
      }
    }
  }
abort_parse:
    while(!sqlite3MallocFailed() && i < sqlLen) {
        pParse->sLastToken.z = (u8*)&zSql[i];
        assert( pParse->sLastToken.dyn==0 );
        pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
        i += pParse->sLastToken.n;

        if (tokenType != TK_SPACE) {
            TokenItem tokenItem;
            tokenItem.token = pParse->sLastToken;
            tokenItem.tokenType = tokenType;
            sqlite3TokenArrayAppend(&pParse->tokens, &tokenItem);
        }
    }  

  if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
  sqlite3ParserFree(pEngine, sqlite3FreeX);
  if( sqlite3MallocFailed() ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
  }
  if( pParse->zErrMsg ){
    if( pzErrMsg && *pzErrMsg==0 ){
      *pzErrMsg = pParse->zErrMsg;
    }else{
      sqliteFree(pParse->zErrMsg);
    }
    pParse->zErrMsg = 0;
    if( !nErr ) nErr++;
  }
  /* if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){ */
  /*   sqlite3VdbeDelete(pParse->pVdbe); */
  /*   pParse->pVdbe = 0; */
  /* } */
/* #ifndef SQLITE_OMIT_SHARED_CACHE */
/*   if( pParse->nested==0 ){ */
/*     sqliteFree(pParse->aTableLock); */
/*     pParse->aTableLock = 0; */
/*     pParse->nTableLock = 0; */
/*   } */
/* #endif */
  //sqlite3DeleteTable(pParse->db, pParse->pNewTable);
  //sqlite3DeleteTrigger(pParse->pNewTrigger);
 // sqliteFree(pParse->apVarExpr);
  if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
    pParse->rc = SQLITE_ERROR;
  }
  if( pParse->rc==SQLITE_DONE ) { 
      pParse->rc = SQLITE_OK;
  }
  return nErr;
}
/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** and pzErrMsg!=NULL then an error message might be written into 
** memory obtained from malloc() and *pzErrMsg made to point to that
** error message.  Or maybe not.
*/
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
  int nErr = 0;
  int i;
  void *pEngine;
  int tokenType;
  int lastTokenParsed = -1;
  sqlite3 *db = pParse->db;
  extern void *sqlite3ParserAlloc(void*(*)(int));
  extern void sqlite3ParserFree(void*, void(*)(void*));
  extern int sqlite3Parser(void*, int, Token, Parse*);

  db->flags &= ~SQLITE_Interrupt;
  pParse->rc = SQLITE_OK;
  i = 0;
  pEngine = sqlite3ParserAlloc((void*(*)(int))sqlite3MallocX);
  if( pEngine==0 ){
    sqlite3SetString(pzErrMsg, "out of memory", (char*)0);
    return SQLITE_NOMEM;
  }
  assert( pParse->sLastToken.dyn==0 );
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nVarExpr==0 );
  assert( pParse->nVarExprAlloc==0 );
  assert( pParse->apVarExpr==0 );
  pParse->zTail = pParse->zSql = zSql;
  while( sqlite3_malloc_failed==0 && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    assert( pParse->sLastToken.dyn==0 );
    pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    switch( tokenType ){
      case TK_SPACE:
      case TK_COMMENT: {
        if( (db->flags & SQLITE_Interrupt)!=0 ){
          pParse->rc = SQLITE_INTERRUPT;
          sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
          goto abort_parse;
        }
        break;
      }
      case TK_ILLEGAL: {
        if( pzErrMsg ){
          sqliteFree(*pzErrMsg);
          *pzErrMsg = sqlite3MPrintf("unrecognized token: \"%T\"",
                          &pParse->sLastToken);
        }
        nErr++;
        goto abort_parse;
      }
      case TK_SEMI: {
        pParse->zTail = &zSql[i];
        /* Fall thru into the default case */
      }
      default: {
        sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
        lastTokenParsed = tokenType;
        if( pParse->rc!=SQLITE_OK ){
          goto abort_parse;
        }
        break;
      }
    }
  }
abort_parse:
  if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
  sqlite3ParserFree(pEngine, sqlite3FreeX);
  if( sqlite3_malloc_failed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc),
                    (char*)0);
  }
  if( pParse->zErrMsg ){
    if( pzErrMsg && *pzErrMsg==0 ){
      *pzErrMsg = pParse->zErrMsg;
    }else{
      sqliteFree(pParse->zErrMsg);
    }
    pParse->zErrMsg = 0;
    if( !nErr ) nErr++;
  }
  if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
    sqlite3VdbeDelete(pParse->pVdbe);
    pParse->pVdbe = 0;
  }
  sqlite3DeleteTable(pParse->db, pParse->pNewTable);
  sqlite3DeleteTrigger(pParse->pNewTrigger);
  sqliteFree(pParse->apVarExpr);
  if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
    pParse->rc = SQLITE_ERROR;
  }
  return nErr;
}
Esempio n. 13
0
/*
** Attempt to read the database schema and initialize internal
** data structures for a single database file.  The index of the
** database file is given by iDb.  iDb==0 is used for the main
** database.  iDb==1 should never be used.  iDb>=2 is used for
** auxiliary databases.  Return one of the SQLITE_ error codes to
** indicate success or failure.
*/
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
  int rc;
  BtCursor *curMain;
  int size;
  Table *pTab;
  Db *pDb;
  char const *azArg[4];
  int meta[10];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName = SCHEMA_TABLE(iDb);

  /*
  ** The master database table has a structure like this
  */
  static const char master_schema[] = 
     "CREATE TABLE sqlite_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#ifndef SQLITE_OMIT_TEMPDB
  static const char temp_master_schema[] = 
     "CREATE TEMP TABLE sqlite_temp_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;
  }else{
    zMasterSchema = master_schema;
  }
  zMasterName = SCHEMA_TABLE(iDb);

  /* Construct the schema tables.  */
  azArg[0] = zMasterName;
  azArg[1] = "1";
  azArg[2] = zMasterSchema;
  azArg[3] = 0;
  initData.db = db;
  initData.iDb = iDb;
  initData.rc = SQLITE_OK;
  initData.pzErrMsg = pzErrMsg;
  (void)sqlite3SafetyOff(db);
  sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
  (void)sqlite3SafetyOn(db);
  if( initData.rc ){
    rc = initData.rc;
    goto error_out;
  }
  pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->tabFlags |= TF_Readonly;
  }

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && iDb==1 ){
      DbSetProperty(db, 1, DB_SchemaLoaded);
    }
    return SQLITE_OK;
  }
  curMain = sqlite3MallocZero(sqlite3BtreeCursorSize());
  if( !curMain ){
    rc = SQLITE_NOMEM;
    goto error_out;
  }
  sqlite3BtreeEnter(pDb->pBt);
  rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
  if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
    sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
    goto initone_error_out;
  }

  /* Get the database meta information.
  **
  ** Meta values are as follows:
  **    meta[0]   Schema cookie.  Changes with each schema change.
  **    meta[1]   File format of schema layer.
  **    meta[2]   Size of the page cache.
  **    meta[3]   Use freelist if 0.  Autovacuum if greater than zero.
  **    meta[4]   Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
  **    meta[5]   The user cookie. Used by the application.
  **    meta[6]   Incremental-vacuum flag.
  **    meta[7]
  **    meta[8]
  **    meta[9]
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  if( rc==SQLITE_OK ){
    int i;
    for(i=0; i<ArraySize(meta); i++){
      rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
      if( rc ){
        sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
        goto initone_error_out;
      }
    }
  }else{
    memset(meta, 0, sizeof(meta));
  }
  pDb->pSchema->schema_cookie = meta[0];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[4] ){  /* text encoding */
    if( iDb==0 ){
      /* If opening the main database, set ENC(db). */
      ENC(db) = (u8)meta[4];
      db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
    }else{
      /* If opening an attached database, the encoding much match ENC(db) */
      if( meta[4]!=ENC(db) ){
        sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
            " text encoding as main database");
        rc = SQLITE_ERROR;
        goto initone_error_out;
      }
    }
  }else{
    DbSetProperty(db, iDb, DB_Empty);
  }
  pDb->pSchema->enc = ENC(db);

  if( pDb->pSchema->cache_size==0 ){
    size = meta[2];
    if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
    if( size<0 ) size = -size;
    pDb->pSchema->cache_size = size;
    sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
  }

  /*
  ** file_format==1    Version 3.0.0.
  ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
  ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
  ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
  */
  pDb->pSchema->file_format = (u8)meta[1];
  if( pDb->pSchema->file_format==0 ){
    pDb->pSchema->file_format = 1;
  }
  if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
    sqlite3SetString(pzErrMsg, db, "unsupported file format");
    rc = SQLITE_ERROR;
    goto initone_error_out;
  }

  /* Ticket #2804:  When we open a database in the newer file format,
  ** clear the legacy_file_format pragma flag so that a VACUUM will
  ** not downgrade the database and thus invalidate any descending
  ** indices that the user might have created.
  */
  if( iDb==0 && meta[1]>=4 ){
    db->flags &= ~SQLITE_LegacyFileFmt;
  }

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  if( rc==SQLITE_EMPTY ){
    /* For an empty database, there is nothing to read */
    rc = SQLITE_OK;
  }else{
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT name, rootpage, sql FROM '%q'.%s",
        db->aDb[iDb].zName, zMasterName);
    (void)sqlite3SafetyOff(db);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
      xAuth = db->xAuth;
      db->xAuth = 0;
#endif
      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
#ifndef SQLITE_OMIT_AUTHORIZATION
      db->xAuth = xAuth;
    }
#endif
    if( rc==SQLITE_OK ) rc = initData.rc;
    (void)sqlite3SafetyOn(db);
    sqlite3DbFree(db, zSql);
#ifndef SQLITE_OMIT_ANALYZE
    if( rc==SQLITE_OK ){
      sqlite3AnalysisLoad(db, iDb);
    }
#endif
  }
  if( db->mallocFailed ){
    rc = SQLITE_NOMEM;
    sqlite3ResetInternalSchema(db, 0);
  }
  if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
    /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
    ** the schema loaded, even if errors occurred. In this situation the 
    ** current sqlite3_prepare() operation will fail, but the following one
    ** will attempt to compile the supplied statement against whatever subset
    ** of the schema was loaded before the error occurred. The primary
    ** purpose of this is to allow access to the sqlite_master table
    ** even when its contents have been corrupted.
    */
    DbSetProperty(db, iDb, DB_SchemaLoaded);
    rc = SQLITE_OK;
  }

  /* Jump here for an error that occurs after successfully allocating
  ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
  ** before that point, jump to error_out.
  */
initone_error_out:
  sqlite3BtreeCloseCursor(curMain);
  sqlite3_free(curMain);
  sqlite3BtreeLeave(pDb->pBt);

error_out:
  if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}
Esempio n. 14
0
/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/
int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
  int rc = SQLITE_OK;     /* Return code from service routines */
#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
  const char *zFilename;  /* full pathname of the database file */
  int nFilename;          /* number of characters  in zFilename[] */
  char *zTemp = 0;        /* a temporary file in same directory as zFilename */
  int i;                  /* Loop counter */
  Btree *pMain;           /* The database being vacuumed */
  Btree *pTemp;
  char *zSql = 0;

  if( !db->autoCommit ){
    sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", 
       (char*)0);
    rc = SQLITE_ERROR;
    goto end_of_vacuum;
  }

  /* Get the full pathname of the database file and create a
  ** temporary filename in the same directory as the original file.
  */
  pMain = db->aDb[0].pBt;
  zFilename = sqlite3BtreeGetFilename(pMain);
  assert( zFilename );
  if( zFilename[0]=='\0' ){
    /* The in-memory database. Do nothing. Return directly to avoid causing
    ** an error trying to DETACH the vacuum_db (which never got attached)
    ** in the exit-handler.
    */
    return SQLITE_OK;
  }
  nFilename = strlen(zFilename);
  zTemp = sqliteMalloc( nFilename+100 );
  if( zTemp==0 ){
    rc = SQLITE_NOMEM;
    goto end_of_vacuum;
  }
  strcpy(zTemp, zFilename);
  i = 0;
  do {
    zTemp[nFilename] = '-';
    randomName((unsigned char*)&zTemp[nFilename+1]);
  } while( i<10 && sqlite3OsFileExists(zTemp) );

  /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
  ** can be set to 'off' for this file, as it is not recovered if a crash
  ** occurs anyway. The integrity of the database is maintained by a
  ** (possibly synchronous) transaction opened on the main database before
  ** sqlite3BtreeCopyFile() is called.
  **
  ** An optimisation would be to use a non-journaled pager.
  */
  zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp);
  if( !zSql ){
    rc = SQLITE_NOMEM;
    goto end_of_vacuum;
  }
  rc = execSql(db, zSql);
  sqliteFree(zSql);
  zSql = 0;
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
  pTemp = db->aDb[db->nDb-1].pBt;
  sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain),
     sqlite3BtreeGetReserve(pMain));
  assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) );
  execSql(db, "PRAGMA vacuum_db.synchronous=OFF");

  /* Begin a transaction */
  rc = execSql(db, "BEGIN;");
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Query the schema of the main database. Create a mirror schema
  ** in the temporary database.
  */
  rc = execExecSql(db, 
      "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) "
      "  FROM sqlite_master WHERE type='table' "
      "UNION ALL "
      "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000) "
      "  FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "
      "UNION ALL "
      "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) "
      "  FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"
      "UNION ALL "
      "SELECT 'CREATE VIEW vacuum_db.' || substr(sql,13,100000000) "
      "  FROM sqlite_master WHERE type='view'"
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
  ** the contents to the temporary database.
  */
  rc = execExecSql(db, 
      "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
      "|| ' SELECT * FROM ' || quote(name) || ';'"
      "FROM sqlite_master "
      "WHERE type = 'table';"
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Copy the triggers from the main database to the temporary database.
  ** This was deferred before in case the triggers interfered with copying
  ** the data. It's possible the indices should be deferred until this
  ** point also.
  */
  rc = execExecSql(db, 
      "SELECT 'CREATE TRIGGER  vacuum_db.' || substr(sql, 16, 1000000) "
      "FROM sqlite_master WHERE type='trigger'"
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;


  /* At this point, unless the main db was completely empty, there is now a
  ** transaction open on the vacuum database, but not on the main database.
  ** Open a btree level transaction on the main database. This allows a
  ** call to sqlite3BtreeCopyFile(). The main database btree level
  ** transaction is then committed, so the SQL level never knows it was
  ** opened for writing. This way, the SQL transaction used to create the
  ** temporary database never needs to be committed.
  */
  if( sqlite3BtreeIsInTrans(pTemp) ){
    u32 meta;

    assert( 0==sqlite3BtreeIsInTrans(pMain) );
    rc = sqlite3BtreeBeginTrans(pMain, 1);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;

    /* Copy Btree meta values 3 and 4. These correspond to SQL layer meta 
    ** values 2 and 3, the default values of a couple of pragmas.
    */
    rc = sqlite3BtreeGetMeta(pMain, 3, &meta);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
    rc = sqlite3BtreeUpdateMeta(pTemp, 3, meta);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
    rc = sqlite3BtreeGetMeta(pMain, 4, &meta);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
    rc = sqlite3BtreeUpdateMeta(pTemp, 4, meta);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;

    rc = sqlite3BtreeCopyFile(pMain, pTemp);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
    rc = sqlite3BtreeCommit(pMain);
  }

end_of_vacuum:
  /* Currently there is an SQL level transaction open on the vacuum
  ** database. No locks are held on any other files (since the main file
  ** was committed at the btree level). So it safe to end the transaction
  ** by manually setting the autoCommit flag to true and detaching the
  ** vacuum database. The vacuum_db journal file is deleted when the pager
  ** is closed by the DETACH.
  */
  db->autoCommit = 1;
  if( rc==SQLITE_OK ){
    rc = execSql(db, "DETACH vacuum_db;");
  }else{
    execSql(db, "DETACH vacuum_db;");
  }
  if( zTemp ){
    sqlite3OsDelete(zTemp);
    sqliteFree(zTemp);
  }
  if( zSql ) sqliteFree( zSql );
  sqlite3ResetInternalSchema(db, 0);
#endif
  return rc;
}
Esempio n. 15
0
int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
  int *pAutoinc               /* OUTPUT: True if colums is auto-increment */
){
  int rc;
  char *zErrMsg = 0;
  Table *pTab = 0;
  Column *pCol = 0;
  int iCol;

  char const *zDataType = 0;
  char const *zCollSeq = 0;
  int notnull = 0;
  int primarykey = 0;
  int autoinc = 0;

  /* Ensure the database schema has been loaded */
  if( sqlite3SafetyOn(db) ){
    return SQLITE_MISUSE;
  }
  rc = sqlite3Init(db, &zErrMsg);
  if( SQLITE_OK!=rc ){
    goto error_out;
  }

  /* Locate the table in question */
  pTab = sqlite3FindTable(db, zTableName, zDbName);
  if( !pTab || pTab->pSelect ){
    pTab = 0;
    goto error_out;
  }

  /* Find the column for which info is requested */
  if( sqlite3IsRowid(zColumnName) ){
    iCol = pTab->iPKey;
    if( iCol>=0 ){
      pCol = &pTab->aCol[iCol];
    }
  }else{
    for(iCol=0; iCol<pTab->nCol; iCol++){
      pCol = &pTab->aCol[iCol];
      if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
        break;
      }
    }
    if( iCol==pTab->nCol ){
      pTab = 0;
      goto error_out;
    }
  }

  /* The following block stores the meta information that will be returned
  ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
  ** and autoinc. At this point there are two possibilities:
  ** 
  **     1. The specified column name was rowid", "oid" or "_rowid_" 
  **        and there is no explicitly declared IPK column. 
  **
  **     2. The table is not a view and the column name identified an 
  **        explicitly declared column. Copy meta information from *pCol.
  */ 
  if( pCol ){
    zDataType = pCol->zType;
    zCollSeq = pCol->zColl;
    notnull = (pCol->notNull?1:0);
    primarykey  = (pCol->isPrimKey?1:0);
    autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0);
  }else{
    zDataType = "INTEGER";
    primarykey = 1;
  }
  if( !zCollSeq ){
    zCollSeq = "BINARY";
  }

error_out:
  if( sqlite3SafetyOff(db) ){
    rc = SQLITE_MISUSE;
  }

  /* Whether the function call succeeded or failed, set the output parameters
  ** to whatever their local counterparts contain. If an error did occur,
  ** this has the effect of zeroing all output parameters.
  */
  if( pzDataType ) *pzDataType = zDataType;
  if( pzCollSeq ) *pzCollSeq = zCollSeq;
  if( pNotNull ) *pNotNull = notnull;
  if( pPrimaryKey ) *pPrimaryKey = primarykey;
  if( pAutoinc ) *pAutoinc = autoinc;

  if( SQLITE_OK==rc && !pTab ){
    sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".", 
        zColumnName, 0);
    rc = SQLITE_ERROR;
  }
  sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
  sqliteFree(zErrMsg);
  return sqlite3ApiExit(db, rc);
}
Esempio n. 16
0
/*
** Give a listing of the program in the virtual machine.
**
** The interface is the same as sqlite3VdbeExec().  But instead of
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
*/
int sqlite3VdbeList(
  Vdbe *p                   /* The VDBE */
){
  sqlite3 *db = p->db;
  int i;
  int rc = SQLITE_OK;

  assert( p->explain );

  /* Even though this opcode does not put dynamic strings onto the
  ** the stack, they may become dynamic if the user calls
  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
  */
  if( p->pTos==&p->aStack[4] ){
    releaseMemArray(p->aStack, 5);
  }
  p->resOnStack = 0;

  i = p->pc++;
  if( i>=p->nOp ){
    p->rc = SQLITE_OK;
    rc = SQLITE_DONE;
  }else if( db->flags & SQLITE_Interrupt ){
    db->flags &= ~SQLITE_Interrupt;
    if( db->magic!=SQLITE_MAGIC_BUSY ){
      p->rc = SQLITE_MISUSE;
    }else{
      p->rc = SQLITE_INTERRUPT;
    }
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
  }else{
    Op *pOp = &p->aOp[i];
    Mem *pMem = p->aStack;
    pMem->flags = MEM_Int;
    pMem->type = SQLITE_INTEGER;
    pMem->i = i;                                /* Program counter */
    pMem++;

    pMem->flags = MEM_Static|MEM_Str|MEM_Term;
    pMem->z = sqlite3OpcodeNames[pOp->opcode];  /* Opcode */
    pMem->n = strlen(pMem->z);
    pMem->type = SQLITE_TEXT;
    pMem->enc = SQLITE_UTF8;
    pMem++;

    pMem->flags = MEM_Int;
    pMem->i = pOp->p1;                          /* P1 */
    pMem->type = SQLITE_INTEGER;
    pMem++;

    pMem->flags = MEM_Int;
    pMem->i = pOp->p2;                          /* P2 */
    pMem->type = SQLITE_INTEGER;
    pMem++;

    pMem->flags = MEM_Short|MEM_Str|MEM_Term;   /* P3 */
    pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
    pMem->type = SQLITE_TEXT;
    pMem->enc = SQLITE_UTF8;

    p->nResColumn = 5;
    p->pTos = pMem;
    p->rc = SQLITE_OK;
    p->resOnStack = 1;
    rc = SQLITE_ROW;
  }
  return rc;
}
Esempio n. 17
0
/*
** Generate code to do a constraint check prior to an INSERT or an UPDATE.
**
** When this routine is called, the stack contains (from bottom to top)
** the following values:
**
**    1.  The rowid of the row to be updated before the update.  This
**        value is omitted unless we are doing an UPDATE that involves a
**        change to the record number.
**
**    2.  The rowid of the row after the update.
**
**    3.  The data in the first column of the entry after the update.
**
**    i.  Data from middle columns...
**
**    N.  The data in the last column of the entry after the update.
**
** The old rowid shown as entry (1) above is omitted unless both isUpdate
** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
** INSERTs and rowidChng is true if the record number is being changed.
**
** The code generated by this routine pushes additional entries onto
** the stack which are the keys for new index entries for the new record.
** The order of index keys is the same as the order of the indices on
** the pTable->pIndex list.  A key is only created for index i if 
** aIdxUsed!=0 and aIdxUsed[i]!=0.
**
** This routine also generates code to check constraints.  NOT NULL,
** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
** then the appropriate action is performed.  There are five possible
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
**
**  Constraint type  Action       What Happens
**  ---------------  ----------   ----------------------------------------
**  any              ROLLBACK     The current transaction is rolled back and
**                                sqlite3_exec() returns immediately with a
**                                return code of SQLITE_CONSTRAINT.
**
**  any              ABORT        Back out changes from the current command
**                                only (do not do a complete rollback) then
**                                cause sqlite3_exec() to return immediately
**                                with SQLITE_CONSTRAINT.
**
**  any              FAIL         Sqlite_exec() returns immediately with a
**                                return code of SQLITE_CONSTRAINT.  The
**                                transaction is not rolled back and any
**                                prior changes are retained.
**
**  any              IGNORE       The record number and data is popped from
**                                the stack and there is an immediate jump
**                                to label ignoreDest.
**
**  NOT NULL         REPLACE      The NULL value is replace by the default
**                                value for that column.  If the default value
**                                is NULL, the action is the same as ABORT.
**
**  UNIQUE           REPLACE      The other row that conflicts with the row
**                                being inserted is removed.
**
**  CHECK            REPLACE      Illegal.  The results in an exception.
**
** Which action to take is determined by the overrideError parameter.
** Or if overrideError==OE_Default, then the pParse->onError parameter
** is used.  Or if pParse->onError==OE_Default then the onError value
** for the constraint is used.
**
** The calling routine must open a read/write cursor for pTab with
** cursor number "base".  All indices of pTab must also have open
** read/write cursors with cursor number base+i for the i-th cursor.
** Except, if there is no possibility of a REPLACE action then
** cursors do not need to be open for indices where aIdxUsed[i]==0.
**
** If the isUpdate flag is true, it means that the "base" cursor is
** initially pointing to an entry that is being updated.  The isUpdate
** flag causes extra code to be generated so that the "base" cursor
** is still pointing at the same entry after the routine returns.
** Without the isUpdate flag, the "base" cursor might be moved.
*/
void sqlite3GenerateConstraintChecks(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int base,           /* Index of a read/write cursor pointing at pTab */
  char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
  int rowidChng,      /* True if the record number will change */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int overrideError,  /* Override onError to this if not OE_Default */
  int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
){
  int i;
  Vdbe *v;
  int nCol;
  int onError;
  int addr;
  int extra;
  int iCur;
  Index *pIdx;
  int seenReplace = 0;
  int jumpInst1=0, jumpInst2;
  int hasTwoRowids = (isUpdate && rowidChng);

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;

  /* Test all NOT NULL constraints.
  */
  for(i=0; i<nCol; i++){
    if( i==pTab->iPKey ){
      continue;
    }
    onError = pTab->aCol[i].notNull;
    if( onError==OE_None ) continue;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
      onError = OE_Abort;
    }
    sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
    addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        char *zMsg = 0;
        sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
        sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
                        " may not be NULL", (char*)0);
        sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
        break;
      }
      case OE_Ignore: {
        sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
        sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
        sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
        break;
      }
    }
    sqlite3VdbeJumpHere(v, addr);
  }

  /* Test all CHECK constraints
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
    int allOk = sqlite3VdbeMakeLabel(v);
    assert( pParse->ckOffset==0 );
    pParse->ckOffset = nCol;
    sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
    assert( pParse->ckOffset==nCol );
    pParse->ckOffset = 0;
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    if( onError==OE_Ignore || onError==OE_Replace ){
      sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
      sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
    }else{
      sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
    }
    sqlite3VdbeResolveLabel(v, allOk);
  }
#endif /* !defined(SQLITE_OMIT_CHECK) */

  /* If we have an INTEGER PRIMARY KEY, make sure the primary key
  ** of the new record does not previously exist.  Except, if this
  ** is an UPDATE and the primary key is not changing, that is OK.
  */
  if( rowidChng ){
    onError = pTab->keyConf;
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    
    if( isUpdate ){
      sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
      sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
      jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
    }
    sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
    jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
      }
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
                         "PRIMARY KEY must be unique", P3_STATIC);
        break;
      }
      case OE_Replace: {
        sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
        if( isUpdate ){
          sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
          sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
        }
        seenReplace = 1;
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
        sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
    }
    sqlite3VdbeJumpHere(v, jumpInst2);
    if( isUpdate ){
      sqlite3VdbeJumpHere(v, jumpInst1);
      sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
      sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Add the new records to the indices as we go.
  */
  extra = -1;
  for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
    if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
    extra++;

    /* Create a key for accessing the index entry */
    sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
    for(i=0; i<pIdx->nColumn; i++){
      int idx = pIdx->aiColumn[i];
      if( idx==pTab->iPKey ){
        sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
      }else{
        sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
      }
    }
    jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
    sqlite3IndexAffinityStr(v, pIdx);

    /* Find out what action to take in case there is an indexing conflict */
    onError = pIdx->onError;
    if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }
    if( seenReplace ){
      if( onError==OE_Ignore ) onError = OE_Replace;
      else if( onError==OE_Fail ) onError = OE_Abort;
    }
    

    /* Check to see if the new index entry will be unique */
    sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
    jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);

    /* Generate code that executes if the new index entry is not unique */
    assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
        || onError==OE_Ignore || onError==OE_Replace );
    switch( onError ){
      case OE_Rollback:
      case OE_Abort:
      case OE_Fail: {
        int j, n1, n2;
        char zErrMsg[200];
        strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column ");
        n1 = strlen(zErrMsg);
        for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
          char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
          n2 = strlen(zCol);
          if( j>0 ){
            strcpy(&zErrMsg[n1], ", ");
            n1 += 2;
          }
          if( n1+n2>sizeof(zErrMsg)-30 ){
            strcpy(&zErrMsg[n1], "...");
            n1 += 3;
            break;
          }else{
            strcpy(&zErrMsg[n1], zCol);
            n1 += n2;
          }
        }
        strcpy(&zErrMsg[n1], 
            pIdx->nColumn>1 ? " are not unique" : " is not unique");
        sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
        break;
      }
      case OE_Ignore: {
        assert( seenReplace==0 );
        sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
        sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
        break;
      }
      case OE_Replace: {
        sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
        if( isUpdate ){
          sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
          sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
        }
        seenReplace = 1;
        break;
      }
    }
#if NULL_DISTINCT_FOR_UNIQUE
    sqlite3VdbeJumpHere(v, jumpInst1);
#endif
    sqlite3VdbeJumpHere(v, jumpInst2);
  }
}
Esempio n. 18
0
/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** then an and attempt is made to write an error message into 
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
  int nErr = 0;                   /* Number of errors encountered */
  int i;                          /* Loop counter */
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */


  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->activeVdbeCnt==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = pParse->zSql = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->sLastToken.dyn==0 );
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nVarExpr==0 );
  assert( pParse->nVarExprAlloc==0 );
  assert( pParse->apVarExpr==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  pParse->sLastToken.quoted = 1;
  while( !db->mallocFailed && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = (u8*)&zSql[i];
    assert( pParse->sLastToken.dyn==0 );
    assert( pParse->sLastToken.quoted );
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    if( i>mxSqlLen ){
      pParse->rc = SQLITE_TOOBIG;
      break;
    }
    switch( tokenType ){
      case TK_SPACE: {
        if( db->u1.isInterrupted ){
          pParse->rc = SQLITE_INTERRUPT;
          sqlite3SetString(pzErrMsg, db, "interrupt");
          goto abort_parse;
        }
        break;
      }
      case TK_ILLEGAL: {
        sqlite3DbFree(db, *pzErrMsg);
        *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
                        &pParse->sLastToken);
        nErr++;
        goto abort_parse;
      }
      case TK_SEMI: {
        pParse->zTail = &zSql[i];
        /* Fall thru into the default case */
      }
      default: {
        sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
        lastTokenParsed = tokenType;
        if( pParse->rc!=SQLITE_OK ){
          goto abort_parse;
        }
        break;
      }
    }
  }
abort_parse:
  if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
  }
  if( pParse->zErrMsg ){
    if( *pzErrMsg==0 ){
      *pzErrMsg = pParse->zErrMsg;
    }else{
      sqlite3DbFree(db, pParse->zErrMsg);
    }
    pParse->zErrMsg = 0;
    nErr++;
  }
  if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
    sqlite3VdbeDelete(pParse->pVdbe);
    pParse->pVdbe = 0;
  }
#ifndef SQLITE_OMIT_SHARED_CACHE
  if( pParse->nested==0 ){
    sqlite3DbFree(db, pParse->aTableLock);
    pParse->aTableLock = 0;
    pParse->nTableLock = 0;
  }
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3DbFree(db, pParse->apVtabLock);
#endif

  if( !IN_DECLARE_VTAB ){
    /* If the pParse->declareVtab flag is set, do not delete any table 
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(pParse->pNewTable);
  }

  sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  sqlite3DbFree(db, pParse->apVarExpr);
  sqlite3DbFree(db, pParse->aAlias);
  while( pParse->pZombieTab ){
    Table *p = pParse->pZombieTab;
    pParse->pZombieTab = p->pNextZombie;
    sqlite3DeleteTable(p);
  }
  if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
    pParse->rc = SQLITE_ERROR;
  }
  return nErr;
}
Esempio n. 19
0
/* CHANGE 1 of 3: Add function parameter nRes */
SQLITE_PRIVATE int sqlite3RunVacuumForRekey(char **pzErrMsg, sqlite3 *db, int iDb, int nRes){
  int rc = SQLITE_OK;     /* Return code from service routines */
  Btree *pMain;           /* The database being vacuumed */
  Btree *pTemp;           /* The temporary database we vacuum into */
  u16 saved_mDbFlags;     /* Saved value of db->mDbFlags */
  u32 saved_flags;        /* Saved value of db->flags */
  int saved_nChange;      /* Saved value of db->nChange */
  int saved_nTotalChange; /* Saved value of db->nTotalChange */
  u8 saved_mTrace;        /* Saved trace settings */
  Db *pDb = 0;            /* Database to detach at end of vacuum */
  int isMemDb;            /* True if vacuuming a :memory: database */
  /* CHANGE 2 of 3: Do not define local variable nRes */
  /*int nRes;*/               /* Bytes of reserved space at the end of each page */
  int nDb;                /* Number of attached databases */
  const char *zDbMain;    /* Schema name of database to vacuum */

  if (!db->autoCommit) {
    sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
    return SQLITE_ERROR;
  }
  if (db->nVdbeActive>1) {
    sqlite3SetString(pzErrMsg, db, "cannot VACUUM - SQL statements in progress");
    return SQLITE_ERROR;
  }

  /* Save the current value of the database flags so that it can be
  ** restored before returning. Then set the writable-schema flag, and
  ** disable CHECK and foreign key constraints.  */
  saved_flags = db->flags;
  saved_mDbFlags = db->mDbFlags;
  saved_nChange = db->nChange;
  saved_nTotalChange = db->nTotalChange;
  saved_mTrace = db->mTrace;
  db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
  db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum;
  db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_CountRows);
  db->mTrace = 0;

  zDbMain = db->aDb[iDb].zDbSName;
  pMain = db->aDb[iDb].pBt;
  isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));

  /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
  ** can be set to 'off' for this file, as it is not recovered if a crash
  ** occurs anyway. The integrity of the database is maintained by a
  ** (possibly synchronous) transaction opened on the main database before
  ** sqlite3BtreeCopyFile() is called.
  **
  ** An optimisation would be to use a non-journaled pager.
  ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
  ** that actually made the VACUUM run slower.  Very little journalling
  ** actually occurs when doing a vacuum since the vacuum_db is initially
  ** empty.  Only the journal header is written.  Apparently it takes more
  ** time to parse and run the PRAGMA to turn journalling off than it does
  ** to write the journal header file.
  */
  nDb = db->nDb;
  rc = execSql(db, pzErrMsg, "ATTACH''AS vacuum_db");
  if (rc != SQLITE_OK) goto end_of_vacuum;
  assert((db->nDb - 1) == nDb);
  pDb = &db->aDb[nDb];
  assert(strcmp(pDb->zDbSName, "vacuum_db") == 0);
  pTemp = pDb->pBt;

  /* The call to execSql() to attach the temp database has left the file
  ** locked (as there was more than one active statement when the transaction
  ** to read the schema was concluded. Unlock it here so that this doesn't
  ** cause problems for the call to BtreeSetPageSize() below.  */
  sqlite3BtreeCommit(pTemp);

  /* CHANGE 3 of 3: Do not call sqlite3BtreeGetOptimalReserve */
  /* nRes = sqlite3BtreeGetOptimalReserve(pMain); */

  /* A VACUUM cannot change the pagesize of an encrypted database. */
#ifdef SQLITE_HAS_CODEC
  if (db->nextPagesize) {
    extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
    int nKey;
    char *zKey;
    sqlite3CodecGetKey(db, iDb, (void**)&zKey, &nKey);
    if (nKey) db->nextPagesize = 0;
  }
#endif

  sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size);
  sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain, 0));
  sqlite3BtreeSetPagerFlags(pTemp, PAGER_SYNCHRONOUS_OFF | PAGER_CACHESPILL);

  /* Begin a transaction and take an exclusive lock on the main database
  ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below,
  ** to ensure that we do not try to change the page-size on a WAL database.
  */
  rc = execSql(db, pzErrMsg, "BEGIN");
  if (rc != SQLITE_OK) goto end_of_vacuum;
  rc = sqlite3BtreeBeginTrans(pMain, 2);
  if (rc != SQLITE_OK) goto end_of_vacuum;

  /* Do not attempt to change the page size for a WAL database */
  if (sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain))
    == PAGER_JOURNALMODE_WAL) {
    db->nextPagesize = 0;
  }

  if (sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0)
    || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0))
    || NEVER(db->mallocFailed)
    ) {
    rc = SQLITE_NOMEM_BKPT;
    goto end_of_vacuum;
  }

#ifndef SQLITE_OMIT_AUTOVACUUM
  sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac >= 0 ? db->nextAutovac :
    sqlite3BtreeGetAutoVacuum(pMain));
#endif

  /* Query the schema of the main database. Create a mirror schema
  ** in the temporary database.
  */
  db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */
  rc = execSqlF(db, pzErrMsg,
    "SELECT sql FROM \"%w\".sqlite_master"
    " WHERE type='table'AND name<>'sqlite_sequence'"
    " AND coalesce(rootpage,1)>0",
    zDbMain
  );
  if (rc != SQLITE_OK) goto end_of_vacuum;
  rc = execSqlF(db, pzErrMsg,
    "SELECT sql FROM \"%w\".sqlite_master"
    " WHERE type='index'",
    zDbMain
  );
  if (rc != SQLITE_OK) goto end_of_vacuum;
  db->init.iDb = 0;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy
  ** the contents to the temporary database.
  */
  rc = execSqlF(db, pzErrMsg,
    "SELECT'INSERT INTO vacuum_db.'||quote(name)"
    "||' SELECT*FROM\"%w\".'||quote(name)"
    "FROM vacuum_db.sqlite_master "
    "WHERE type='table'AND coalesce(rootpage,1)>0",
    zDbMain
  );
  assert((db->mDbFlags & DBFLAG_Vacuum) != 0);
  db->mDbFlags &= ~DBFLAG_Vacuum;
  if (rc != SQLITE_OK) goto end_of_vacuum;

  /* Copy the triggers, views, and virtual tables from the main database
  ** over to the temporary database.  None of these objects has any
  ** associated storage, so all we have to do is copy their entries
  ** from the SQLITE_MASTER table.
  */
  rc = execSqlF(db, pzErrMsg,
    "INSERT INTO vacuum_db.sqlite_master"
    " SELECT*FROM \"%w\".sqlite_master"
    " WHERE type IN('view','trigger')"
    " OR(type='table'AND rootpage=0)",
    zDbMain
  );
  if (rc) goto end_of_vacuum;

  /* At this point, there is a write transaction open on both the
  ** vacuum database and the main database. Assuming no error occurs,
  ** both transactions are closed by this block - the main database
  ** transaction by sqlite3BtreeCopyFile() and the other by an explicit
  ** call to sqlite3BtreeCommit().
  */
  {
    u32 meta;
    int i;

    /* This array determines which meta meta values are preserved in the
    ** vacuum.  Even entries are the meta value number and odd entries
    ** are an increment to apply to the meta value after the vacuum.
    ** The increment is used to increase the schema cookie so that other
    ** connections to the same database will know to reread the schema.
    */
    static const unsigned char aCopy[] = {
      BTREE_SCHEMA_VERSION,     1,  /* Add one to the old schema cookie */
      BTREE_DEFAULT_CACHE_SIZE, 0,  /* Preserve the default page cache size */
      BTREE_TEXT_ENCODING,      0,  /* Preserve the text encoding */
      BTREE_USER_VERSION,       0,  /* Preserve the user version */
      BTREE_APPLICATION_ID,     0,  /* Preserve the application id */
    };

    assert(1 == sqlite3BtreeIsInTrans(pTemp));
    assert(1 == sqlite3BtreeIsInTrans(pMain));

    /* Copy Btree meta values */
    for (i = 0; i<ArraySize(aCopy); i += 2) {
      /* GetMeta() and UpdateMeta() cannot fail in this context because
      ** we already have page 1 loaded into cache and marked dirty. */
      sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
      rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta + aCopy[i + 1]);
      if (NEVER(rc != SQLITE_OK)) goto end_of_vacuum;
    }

    rc = sqlite3BtreeCopyFile(pMain, pTemp);
    if (rc != SQLITE_OK) goto end_of_vacuum;
    rc = sqlite3BtreeCommit(pTemp);
    if (rc != SQLITE_OK) goto end_of_vacuum;
#ifndef SQLITE_OMIT_AUTOVACUUM
    sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
#endif
  }

  assert(rc == SQLITE_OK);
  rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes, 1);

end_of_vacuum:
  /* Restore the original value of db->flags */
  db->init.iDb = 0;
  db->mDbFlags = saved_mDbFlags;
  db->flags = saved_flags;
  db->nChange = saved_nChange;
  db->nTotalChange = saved_nTotalChange;
  db->mTrace = saved_mTrace;
  sqlite3BtreeSetPageSize(pMain, -1, -1, 1);

  /* Currently there is an SQL level transaction open on the vacuum
  ** database. No locks are held on any other files (since the main file
  ** was committed at the btree level). So it safe to end the transaction
  ** by manually setting the autoCommit flag to true and detaching the
  ** vacuum database. The vacuum_db journal file is deleted when the pager
  ** is closed by the DETACH.
  */
  db->autoCommit = 1;

  if (pDb) {
    sqlite3BtreeClose(pDb->pBt);
    pDb->pBt = 0;
    pDb->pSchema = 0;
  }

  /* This both clears the schemas and reduces the size of the db->aDb[]
  ** array. */
  sqlite3ResetAllSchemasOfConnection(db);

  return rc;
}
Esempio n. 20
0
/*
** Attempt to read the database schema and initialize internal
** data structures for a single database file.  The index of the
** database file is given by iDb.  iDb==0 is used for the main
** database.  iDb==1 should never be used.  iDb>=2 is used for
** auxiliary databases.  Return one of the SQLITE_ error codes to
** indicate success or failure.
*/
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
  int rc;
  BtCursor *curMain;
  int size;
  Table *pTab;
  Db *pDb;
  char const *azArg[4];
  int meta[10];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName = SCHEMA_TABLE(iDb);

  /*
  ** The master database table has a structure like this
  */
  static const char master_schema[] = 
     "CREATE TABLE sqlite_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#ifndef SQLITE_OMIT_TEMPDB
  static const char temp_master_schema[] = 
     "CREATE TEMP TABLE sqlite_temp_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;
  }else{
    zMasterSchema = master_schema;
  }
  zMasterName = SCHEMA_TABLE(iDb);

  /* Construct the schema tables.  */
  sqlite3SafetyOff(db);
  azArg[0] = zMasterName;
  azArg[1] = "1";
  azArg[2] = zMasterSchema;
  azArg[3] = 0;
  initData.db = db;
  initData.iDb = iDb;
  initData.pzErrMsg = pzErrMsg;
  rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
  if( rc ){
    sqlite3SafetyOn(db);
    return initData.rc;
  }
  pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->readOnly = 1;
  }
  sqlite3SafetyOn(db);

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && iDb==1 ){
      DbSetProperty(db, 1, DB_SchemaLoaded);
    }
    return SQLITE_OK;
  }
  rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, 0, &curMain);
  if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
    sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
    return rc;
  }

  /* Get the database meta information.
  **
  ** Meta values are as follows:
  **    meta[0]   Schema cookie.  Changes with each schema change.
  **    meta[1]   File format of schema layer.
  **    meta[2]   Size of the page cache.
  **    meta[3]   Use freelist if 0.  Autovacuum if greater than zero.
  **    meta[4]   Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
  **    meta[5]   The user cookie. Used by the application.
  **    meta[6]   
  **    meta[7]
  **    meta[8]
  **    meta[9]
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  if( rc==SQLITE_OK ){
    int i;
    for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
      rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
    }
    if( rc ){
      sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
      sqlite3BtreeCloseCursor(curMain);
      return rc;
    }
  }else{
    memset(meta, 0, sizeof(meta));
  }
  pDb->pSchema->schema_cookie = meta[0];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[4] ){  /* text encoding */
    if( iDb==0 ){
      /* If opening the main database, set ENC(db). */
      ENC(db) = (u8)meta[4];
      db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
    }else{
      /* If opening an attached database, the encoding much match ENC(db) */
      if( meta[4]!=ENC(db) ){
        sqlite3BtreeCloseCursor(curMain);
        sqlite3SetString(pzErrMsg, "attached databases must use the same"
            " text encoding as main database", (char*)0);
        return SQLITE_ERROR;
      }
    }
  }else{
    DbSetProperty(db, iDb, DB_Empty);
  }
  pDb->pSchema->enc = ENC(db);

  size = meta[2];
  if( size==0 ){ size = MAX_PAGES; }
  pDb->pSchema->cache_size = size;
  sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);

  /*
  ** file_format==1    Version 3.0.0.
  ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
  ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
  ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
  */
  pDb->pSchema->file_format = meta[1];
  if( pDb->pSchema->file_format==0 ){
    pDb->pSchema->file_format = 1;
  }
  if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
    sqlite3BtreeCloseCursor(curMain);
    sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
    return SQLITE_ERROR;
  }


  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  if( rc==SQLITE_EMPTY ){
    /* For an empty database, there is nothing to read */
    rc = SQLITE_OK;
  }else{
    char *zSql;
    zSql = sqlite3MPrintf(
        "SELECT name, rootpage, sql FROM '%q'.%s",
        db->aDb[iDb].zName, zMasterName);
    sqlite3SafetyOff(db);
    rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
    if( rc==SQLITE_ABORT ) rc = initData.rc;
    sqlite3SafetyOn(db);
    sqliteFree(zSql);
#ifndef SQLITE_OMIT_ANALYZE
    if( rc==SQLITE_OK ){
      sqlite3AnalysisLoad(db, iDb);
    }
#endif
    sqlite3BtreeCloseCursor(curMain);
  }
  if( sqlite3MallocFailed() ){
    /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
    rc = SQLITE_NOMEM;
    sqlite3ResetInternalSchema(db, 0);
  }
  if( rc==SQLITE_OK ){
    DbSetProperty(db, iDb, DB_SchemaLoaded);
  }else{
    sqlite3ResetInternalSchema(db, iDb);
  }
  return rc;
}
/*
** Attempt to read the database schema and initialize internal
** data structures for a single database file.  The index of the
** database file is given by iDb.  iDb==0 is used for the main
** database.  iDb==1 should never be used.  iDb>=2 is used for
** auxiliary databases.  Return one of the SQLITE_ error codes to
** indicate success or failure.
*/
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
  int rc;
  BtCursor *curMain;
  int size;
  Table *pTab;
  char const *azArg[5];
  char zDbNum[30];
  int meta[10];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName = SCHEMA_TABLE(iDb);

  /*
  ** The master database table has a structure like this
  */
  static const char master_schema[] = 
     "CREATE TABLE sqlite_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#ifndef SQLITE_OMIT_TEMPDB
  static const char temp_master_schema[] = 
     "CREATE TEMP TABLE sqlite_temp_master(\n"
     "  type text,\n"
     "  name text,\n"
     "  tbl_name text,\n"
     "  rootpage integer,\n"
     "  sql text\n"
     ")"
  ;
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;
  }else{
    zMasterSchema = master_schema;
  }
  zMasterName = SCHEMA_TABLE(iDb);

  /* Construct the schema tables.  */
  sqlite3SafetyOff(db);
  azArg[0] = zMasterName;
  azArg[1] = "1";
  azArg[2] = zMasterSchema;
  sprintf(zDbNum, "%d", iDb);
  azArg[3] = zDbNum;
  azArg[4] = 0;
  initData.db = db;
  initData.pzErrMsg = pzErrMsg;
  rc = sqlite3InitCallback(&initData, 4, (char **)azArg, 0);
  if( rc!=SQLITE_OK ){
    sqlite3SafetyOn(db);
    return rc;
  }
  pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
  if( pTab ){
    pTab->readOnly = 1;
  }
  sqlite3SafetyOn(db);

  /* Create a cursor to hold the database open
  */
  if( db->aDb[iDb].pBt==0 ){
    if( !OMIT_TEMPDB && iDb==1 ) DbSetProperty(db, 1, DB_SchemaLoaded);
    return SQLITE_OK;
  }
  rc = sqlite3BtreeCursor(db->aDb[iDb].pBt, MASTER_ROOT, 0, 0, 0, &curMain);
  if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
    sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
    return rc;
  }

  /* Get the database meta information.
  **
  ** Meta values are as follows:
  **    meta[0]   Schema cookie.  Changes with each schema change.
  **    meta[1]   File format of schema layer.
  **    meta[2]   Size of the page cache.
  **    meta[3]   Use freelist if 0.  Autovacuum if greater than zero.
  **    meta[4]   Db text encoding. 1:UTF-8 3:UTF-16 LE 4:UTF-16 BE
  **    meta[5]   The user cookie. Used by the application.
  **    meta[6]   
  **    meta[7]
  **    meta[8]
  **    meta[9]
  **
  ** Note: The hash defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  if( rc==SQLITE_OK ){
    int i;
    for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
      rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, i+1, (u32 *)&meta[i]);
    }
    if( rc ){
      sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
      sqlite3BtreeCloseCursor(curMain);
      return rc;
    }
  }else{
    memset(meta, 0, sizeof(meta));
  }
  db->aDb[iDb].schema_cookie = meta[0];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[4] ){  /* text encoding */
    if( iDb==0 ){
      /* If opening the main database, set db->enc. */
      db->enc = (u8)meta[4];
      db->pDfltColl = sqlite3FindCollSeq(db, db->enc, "BINARY", 6, 0);
    }else{
      /* If opening an attached database, the encoding much match db->enc */
      if( meta[4]!=db->enc ){
        sqlite3BtreeCloseCursor(curMain);
        sqlite3SetString(pzErrMsg, "attached databases must use the same"
            " text encoding as main database", (char*)0);
        return SQLITE_ERROR;
      }
    }
  }

  size = meta[2];
  if( size==0 ){ size = MAX_PAGES; }
  db->aDb[iDb].cache_size = size;

  if( iDb==0 ){
    db->file_format = meta[1];
    if( db->file_format==0 ){
      /* This happens if the database was initially empty */
      db->file_format = 1;
    }

    if( db->file_format==2 || db->file_format==3 ){
      /* File format 2 is treated exactly as file format 1. New 
      ** databases are created with file format 1.
      */ 
      db->file_format = 1;
    }
  }

  /*
  ** file_format==1    Version 3.0.0.
  ** file_format==2    Version 3.1.3.
  ** file_format==3    Version 3.1.4.
  **
  ** Version 3.0 can only use files with file_format==1. Version 3.1.3
  ** can read and write files with file_format==1 or file_format==2.
  ** Version 3.1.4 can read and write file formats 1, 2 and 3.
  */
  if( meta[1]>3 ){
    sqlite3BtreeCloseCursor(curMain);
    sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
    return SQLITE_ERROR;
  }

  sqlite3BtreeSetCacheSize(db->aDb[iDb].pBt, db->aDb[iDb].cache_size);

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  if( rc==SQLITE_EMPTY ){
    /* For an empty database, there is nothing to read */
    rc = SQLITE_OK;
  }else{
    char *zSql;
    zSql = sqlite3MPrintf(
        "SELECT name, rootpage, sql, '%s' FROM '%q'.%s",
        zDbNum, db->aDb[iDb].zName, zMasterName);
    sqlite3SafetyOff(db);
    rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
    sqlite3SafetyOn(db);
    sqliteFree(zSql);
    sqlite3BtreeCloseCursor(curMain);
  }
  if( sqlite3_malloc_failed ){
    sqlite3SetString(pzErrMsg, "out of memory", (char*)0);
    rc = SQLITE_NOMEM;
    sqlite3ResetInternalSchema(db, 0);
  }
  if( rc==SQLITE_OK ){
    DbSetProperty(db, iDb, DB_SchemaLoaded);
  }else{
    sqlite3ResetInternalSchema(db, iDb);
  }
  return rc;
}
Esempio n. 22
0
/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/
int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
  int rc = SQLITE_OK;     /* Return code from service routines */
  const char *zFilename;  /* full pathname of the database file */
  int nFilename;          /* number of characters  in zFilename[] */
  char *zTemp = 0;        /* a temporary file in same directory as zFilename */
  Btree *pMain;           /* The database being vacuumed */
  Btree *pTemp;
  char *zSql = 0;
  int saved_flags;       /* Saved value of the db->flags */
  Db *pDb = 0;           /* Database to detach at end of vacuum */

  /* Save the current value of the write-schema flag before setting it. */
  saved_flags = db->flags;
  db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;

  if( !db->autoCommit ){
    sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", 
       (char*)0);
    rc = SQLITE_ERROR;
    goto end_of_vacuum;
  }

  /* Get the full pathname of the database file and create a
  ** temporary filename in the same directory as the original file.
  */
  pMain = db->aDb[0].pBt;
  zFilename = sqlite3BtreeGetFilename(pMain);
  assert( zFilename );
  if( zFilename[0]=='\0' ){
    /* The in-memory database. Do nothing. Return directly to avoid causing
    ** an error trying to DETACH the vacuum_db (which never got attached)
    ** in the exit-handler.
    */
    return SQLITE_OK;
  }
  nFilename = strlen(zFilename);
  zTemp = sqliteMalloc( nFilename+100 );
  if( zTemp==0 ){
    rc = SQLITE_NOMEM;
    goto end_of_vacuum;
  }
  strcpy(zTemp, zFilename);

  /* The randomName() procedure in the following loop uses an excellent
  ** source of randomness to generate a name from a space of 1.3e+31 
  ** possibilities.  So unless the directory already contains on the order
  ** of 1.3e+31 files, the probability that the following loop will
  ** run more than once or twice is vanishingly small.  We are certain
  ** enough that this loop will always terminate (and terminate quickly)
  ** that we don't even bother to set a maximum loop count.
  */
  do {
    zTemp[nFilename] = '-';
    randomName((unsigned char*)&zTemp[nFilename+1]);
  } while( sqlite3OsFileExists(zTemp) );

  /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
  ** can be set to 'off' for this file, as it is not recovered if a crash
  ** occurs anyway. The integrity of the database is maintained by a
  ** (possibly synchronous) transaction opened on the main database before
  ** sqlite3BtreeCopyFile() is called.
  **
  ** An optimisation would be to use a non-journaled pager.
  */
  zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp);
  if( !zSql ){
    rc = SQLITE_NOMEM;
    goto end_of_vacuum;
  }
  rc = execSql(db, zSql);
  sqliteFree(zSql);
  zSql = 0;
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  pDb = &db->aDb[db->nDb-1];
  assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
  pTemp = db->aDb[db->nDb-1].pBt;
  sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain),
     sqlite3BtreeGetReserve(pMain));
  assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) );
  rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
  if( rc!=SQLITE_OK ){
    goto end_of_vacuum;
  }

#ifndef SQLITE_OMIT_AUTOVACUUM
  sqlite3BtreeSetAutoVacuum(pTemp, sqlite3BtreeGetAutoVacuum(pMain));
#endif

  /* Begin a transaction */
  rc = execSql(db, "BEGIN EXCLUSIVE;");
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Query the schema of the main database. Create a mirror schema
  ** in the temporary database.
  */
  rc = execExecSql(db, 
      "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) "
      "  FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
      "   AND rootpage>0"
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execExecSql(db, 
      "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000)"
      "  FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execExecSql(db, 
      "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) "
      "  FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Loop through the tables in the main database. For each, do
  ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
  ** the contents to the temporary database.
  */
  rc = execExecSql(db, 
      "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
      "|| ' SELECT * FROM ' || quote(name) || ';'"
      "FROM sqlite_master "
      "WHERE type = 'table' AND name!='sqlite_sequence' "
      "  AND rootpage>0"

  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;

  /* Copy over the sequence table
  */
  rc = execExecSql(db, 
      "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
      "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;
  rc = execExecSql(db, 
      "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
      "|| ' SELECT * FROM ' || quote(name) || ';' "
      "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
  );
  if( rc!=SQLITE_OK ) goto end_of_vacuum;


  /* Copy the triggers, views, and virtual tables from the main database
  ** over to the temporary database.  None of these objects has any
  ** associated storage, so all we have to do is copy their entries
  ** from the SQLITE_MASTER table.
  */
  rc = execSql(db,
      "INSERT INTO vacuum_db.sqlite_master "
      "  SELECT type, name, tbl_name, rootpage, sql"
      "    FROM sqlite_master"
      "   WHERE type='view' OR type='trigger'"
      "      OR (type='table' AND rootpage=0)"
  );
  if( rc ) goto end_of_vacuum;

  /* At this point, unless the main db was completely empty, there is now a
  ** transaction open on the vacuum database, but not on the main database.
  ** Open a btree level transaction on the main database. This allows a
  ** call to sqlite3BtreeCopyFile(). The main database btree level
  ** transaction is then committed, so the SQL level never knows it was
  ** opened for writing. This way, the SQL transaction used to create the
  ** temporary database never needs to be committed.
  */
  if( rc==SQLITE_OK ){
    u32 meta;
    int i;

    /* This array determines which meta meta values are preserved in the
    ** vacuum.  Even entries are the meta value number and odd entries
    ** are an increment to apply to the meta value after the vacuum.
    ** The increment is used to increase the schema cookie so that other
    ** connections to the same database will know to reread the schema.
    */
    static const unsigned char aCopy[] = {
       1, 1,    /* Add one to the old schema cookie */
       3, 0,    /* Preserve the default page cache size */
       5, 0,    /* Preserve the default text encoding */
       6, 0,    /* Preserve the user version */
    };

    assert( 1==sqlite3BtreeIsInTrans(pTemp) );
    assert( 1==sqlite3BtreeIsInTrans(pMain) );

    /* Copy Btree meta values */
    for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
      rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
      if( rc!=SQLITE_OK ) goto end_of_vacuum;
      rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
      if( rc!=SQLITE_OK ) goto end_of_vacuum;
    }

    rc = sqlite3BtreeCopyFile(pMain, pTemp);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
    rc = sqlite3BtreeCommit(pTemp);
    if( rc!=SQLITE_OK ) goto end_of_vacuum;
    rc = sqlite3BtreeCommit(pMain);
  }

end_of_vacuum:
  /* Restore the original value of db->flags */
  db->flags = saved_flags;

  /* Currently there is an SQL level transaction open on the vacuum
  ** database. No locks are held on any other files (since the main file
  ** was committed at the btree level). So it safe to end the transaction
  ** by manually setting the autoCommit flag to true and detaching the
  ** vacuum database. The vacuum_db journal file is deleted when the pager
  ** is closed by the DETACH.
  */
  db->autoCommit = 1;

  if( pDb ){
    sqlite3MallocDisallow();
    sqlite3BtreeClose(pDb->pBt);
    sqlite3MallocAllow();
    pDb->pBt = 0;
    pDb->pSchema = 0;
  }

  if( zTemp ){
    sqlite3OsDelete(zTemp);
    sqliteFree(zTemp);
  }
  sqliteFree( zSql );
  sqlite3ResetInternalSchema(db, 0);

  return rc;
}
/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
*/
static void corruptSchema(InitData *pData, const char *zExtra){
  if( !sqlite3_malloc_failed ){
    sqlite3SetString(pData->pzErrMsg, "malformed database schema",
       zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
  }
}
Esempio n. 24
0
/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** and pzErrMsg!=NULL then an error message might be written into 
** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that
** error message.  Or maybe not.
*/
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
  int nErr = 0;
  int i;
  void *pEngine;
  int tokenType;
  int lastTokenParsed = -1;
  sqlite3 *db = pParse->db;

  if( db->activeVdbeCnt==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  i = 0;
  pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3_malloc);
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->sLastToken.dyn==0 );
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nVarExpr==0 );
  assert( pParse->nVarExprAlloc==0 );
  assert( pParse->apVarExpr==0 );
  pParse->zTail = pParse->zSql = zSql;
  while( !db->mallocFailed && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = (u8*)&zSql[i];
    assert( pParse->sLastToken.dyn==0 );
    pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    if( SQLITE_MAX_SQL_LENGTH>0 && i>SQLITE_MAX_SQL_LENGTH ){
      pParse->rc = SQLITE_TOOBIG;
      break;
    }
    switch( tokenType ){
      case TK_SPACE:
      case TK_COMMENT: {
        if( db->u1.isInterrupted ){
          pParse->rc = SQLITE_INTERRUPT;
          sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
          goto abort_parse;
        }
        break;
      }
      case TK_ILLEGAL: {
        if( pzErrMsg ){
          sqlite3_free(*pzErrMsg);
          *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
                          &pParse->sLastToken);
        }
        nErr++;
        goto abort_parse;
      }
      case TK_SEMI: {
        pParse->zTail = &zSql[i];
        /* Fall thru into the default case */
      }
      default: {
        sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
        lastTokenParsed = tokenType;
        if( pParse->rc!=SQLITE_OK ){
          goto abort_parse;
        }
        break;
      }
    }
  }
abort_parse:
  if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
  sqlite3ParserFree(pEngine, sqlite3_free);
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
  }
  if( pParse->zErrMsg ){
    if( pzErrMsg && *pzErrMsg==0 ){
      *pzErrMsg = pParse->zErrMsg;
    }else{
      sqlite3_free(pParse->zErrMsg);
    }
    pParse->zErrMsg = 0;
    nErr++;
  }
  if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
    sqlite3VdbeDelete(pParse->pVdbe);
    pParse->pVdbe = 0;
  }
#ifndef SQLITE_OMIT_SHARED_CACHE
  if( pParse->nested==0 ){
    sqlite3_free(pParse->aTableLock);
    pParse->aTableLock = 0;
    pParse->nTableLock = 0;
  }
#endif

  if( !IN_DECLARE_VTAB ){
    /* If the pParse->declareVtab flag is set, do not delete any table 
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(pParse->pNewTable);
  }

  sqlite3DeleteTrigger(pParse->pNewTrigger);
  sqlite3_free(pParse->apVarExpr);
  if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
    pParse->rc = SQLITE_ERROR;
  }
  return nErr;
}
Esempio n. 25
0
/*
** This routine is called once for each row in the result table.  Its job
** is to fill in the TabResult structure appropriately, allocating new
** memory as necessary.
*/
static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
  TabResult *p = (TabResult*)pArg;
  int need;
  int i;
  char *z;

  /* Make sure there is enough space in p->azResult to hold everything
  ** we need to remember from this invocation of the callback.
  */
  if( p->nRow==0 && argv!=0 ){
    need = nCol*2;
  }else{
    need = nCol;
  }
  if( p->nData + need >= p->nAlloc ){
    char **azNew;
    p->nAlloc = p->nAlloc*2 + need + 1;
    azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
    if( azNew==0 ) goto malloc_failed;
    p->azResult = azNew;
  }

  /* If this is the first row, then generate an extra row containing
  ** the names of all columns.
  */
  if( p->nRow==0 ){
    p->nColumn = nCol;
    for(i=0; i<nCol; i++){
      if( colv[i]==0 ){
        z = sqlite3_mprintf("");
      }else{
        z = sqlite3_mprintf("%s", colv[i]);
      }
      p->azResult[p->nData++] = z;
    }
  }else if( p->nColumn!=nCol ){
    sqlite3SetString(&p->zErrMsg,
       "sqlite3_get_table() called with two or more incompatible queries",
       (char*)0);
    p->rc = SQLITE_ERROR;
    return 1;
  }

  /* Copy over the row data
  */
  if( argv!=0 ){
    for(i=0; i<nCol; i++){
      if( argv[i]==0 ){
        z = 0;
      }else{
        z = sqlite3_malloc( strlen(argv[i])+1 );
        if( z==0 ) goto malloc_failed;
        strcpy(z, argv[i]);
      }
      p->azResult[p->nData++] = z;
    }
    p->nRow++;
  }
  return 0;

malloc_failed:
  p->rc = SQLITE_NOMEM;
  return 1;
}