Esempio n. 1
0
/*
** Create a string from the 2nd and subsequent arguments (up to the
** first NULL argument), store the string in memory obtained from
** sqliteMalloc() and make the pointer indicated by the 1st argument
** point to that string.  The 1st argument must either be NULL or 
** point to memory obtained from sqliteMalloc().
*/
void sqlite3SetString(char **pz, ...){
  va_list ap;
  int nByte;
  const char *z;
  char *zResult;

  if( pz==0 ) return;
  nByte = 1;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    nByte += strlen(z);
  }
  va_end(ap);
  sqliteFree(*pz);
  *pz = zResult = sqliteMallocRaw( nByte );
  if( zResult==0 ){
    return;
  }
  *zResult = 0;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    strcpy(zResult, z);
    zResult += strlen(zResult);
  }
  va_end(ap);
}
Esempio n. 2
0
/*
** Make a copy of a string in memory obtained from sqliteMalloc()
*/
char *sqlite3StrDup(const char *z){
  char *zNew;
  if( z==0 ) return 0;
  zNew = sqliteMallocRaw(strlen(z)+1);
  if( zNew ) strcpy(zNew, z);
  return zNew;
}
Esempio n. 3
0
/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem) {
    int n;
    u8 *z;
    if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ) {
        return SQLITE_OK;
    }
    assert( (pMem->flags & MEM_Dyn)==0 );
    assert( pMem->flags & (MEM_Str|MEM_Blob) );
    if( (n = pMem->n)+2<sizeof(pMem->zShort) ) {
        z = pMem->zShort;
        pMem->flags |= MEM_Short|MEM_Term;
    } else {
        z = sqliteMallocRaw( n+2 );
        if( z==0 ) {
            return SQLITE_NOMEM;
        }
        pMem->flags |= MEM_Dyn|MEM_Term;
        pMem->xDel = 0;
    }
    memcpy(z, pMem->z, n );
    z[n] = 0;
    z[n+1] = 0;
    pMem->z = z;
    pMem->flags &= ~(MEM_Ephem|MEM_Static);
    return SQLITE_OK;
}
Esempio n. 4
0
static int createModule(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux,                     /* Context pointer for xCreate/xConnect */
  void (*xDestroy)(void *)        /* Module destructor function */
) {
  int nName = strlen(zName);
  Module *pMod = (Module *)sqliteMallocRaw(sizeof(Module) + nName + 1);
  if( pMod ){
    char *zCopy = (char *)(&pMod[1]);
    memcpy(zCopy, zName, nName+1);
    pMod->zName = zCopy;
    pMod->pModule = pModule;
    pMod->pAux = pAux;
    pMod->xDestroy = xDestroy;
    pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
    if( pMod && pMod->xDestroy ){
      pMod->xDestroy(pMod->pAux);
    }
    sqliteFree(pMod);
    sqlite3ResetInternalSchema(db, 0);
  }
  return sqlite3ApiExit(db, SQLITE_OK);
}
Esempio n. 5
0
/*
** Create a string from the 2nd and subsequent arguments (up to the
** first NULL argument), store the string in memory obtained from
** sqliteMalloc() and make the pointer indicated by the 1st argument
** point to that string.  The 1st argument must either be NULL or 
** point to memory obtained from sqliteMalloc().
*/
void sqlite3SetString(char **pz, ...){
  va_list ap;
  int nByte;
  const char *z;
  char *zResult;

  if( pz==0 ) return;
  nByte = 1;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    nByte += strlen(z);
  }
  va_end(ap);
  sqliteFree(*pz);
  *pz = zResult = sqliteMallocRaw( nByte );
  if( zResult==0 ){
    return;
  }
  *zResult = 0;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    strcpy(zResult, z);
    zResult += strlen(zResult);
  }
  va_end(ap);
#ifdef SQLITE_MEMDEBUG
#if SQLITE_MEMDEBUG>1
  fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
#endif
#endif
}
Esempio n. 6
0
/*
** The following group or routines are employed by installable functions
** to return their results.
**
** The sqlite_set_result_string() routine can be used to return a string
** value or to return a NULL.  To return a NULL, pass in NULL for zResult.
** A copy is made of the string before this routine returns so it is safe
** to pass in an ephemeral string.
**
** sqlite_set_result_error() works like sqlite_set_result_string() except
** that it signals a fatal error.  The string argument, if any, is the
** error message.  If the argument is NULL a generic substitute error message
** is used.
**
** The sqlite_set_result_int() and sqlite_set_result_double() set the return
** value of the user function to an integer or a double.
**
** These routines are defined here in vdbe.c because they depend on knowing
** the internals of the sqlite_func structure which is only defined in 
** this source file.
*/
char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
  assert( !p->isStep );
  if( p->s.flags & MEM_Dyn ){
    sqliteFree(p->s.z);
  }
  if( zResult==0 ){
    p->s.flags = MEM_Null;
    n = 0;
    p->s.z = 0;
    p->s.n = 0;
  }else{
    if( n<0 ) n = strlen(zResult);
    if( n<NBFS-1 ){
      memcpy(p->s.zShort, zResult, n);
      p->s.zShort[n] = 0;
      p->s.flags = MEM_Str | MEM_Short;
      p->s.z = p->s.zShort;
    }else{
      p->s.z = sqliteMallocRaw( n+1 );
      if( p->s.z ){
        memcpy(p->s.z, zResult, n);
        p->s.z[n] = 0;
      }
      p->s.flags = MEM_Str | MEM_Dyn;
    }
    p->s.n = n+1;
  }
  return p->s.z;
}
Esempio n. 7
0
/*
** Works like sqliteSetString, but each string is now followed by
** a length integer which specifies how much of the source string 
** to copy (in bytes).  -1 means use the whole string.  The 1st 
** argument must either be NULL or point to memory obtained from 
** sqliteMalloc().
*/
void sqliteSetNString(char **pz, ...){
  va_list ap;
  int nByte;
  const char *z;
  char *zResult;
  int n;

  if( pz==0 ) return;
  nByte = 0;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    n = va_arg(ap, int);
    if( n<=0 ) n = strlen(z);
    nByte += n;
  }
  va_end(ap);
  sqliteFree(*pz);
  *pz = zResult = sqliteMallocRaw( nByte + 1 );
  if( zResult==0 ) return;
  va_start(ap, pz);
  while( (z = va_arg(ap, const char*))!=0 ){
    n = va_arg(ap, int);
    if( n<=0 ) n = strlen(z);
    strncpy(zResult, z, n);
    zResult += n;
  }
  *zResult = 0;
#ifdef MEMORY_DEBUG
#if MEMORY_DEBUG>1
  fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
#endif
#endif
  va_end(ap);
}
Esempio n. 8
0
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem structure is assumed to be uninitialized.  Any prior content
** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  int offset,       /* Offset from the start of data to return bytes from. */
  int amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;      /* Data from the btree layer */
  int available;    /* Number of bytes available on the local btree page */

  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }

  pMem->n = amt;
  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
  }else{
    int rc;
    if( amt>NBFS-2 ){
      zData = (char *)sqliteMallocRaw(amt+2);
      if( !zData ){
        return SQLITE_NOMEM;
      }
      pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
      pMem->xDel = 0;
    }else{
      zData = &(pMem->zShort[0]);
      pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
    }
    pMem->z = zData;
    pMem->enc = 0;
    pMem->type = SQLITE_BLOB;

    if( key ){
      rc = sqlite3BtreeKey(pCur, offset, amt, zData);
    }else{
      rc = sqlite3BtreeData(pCur, offset, amt, zData);
    }
    zData[amt] = 0;
    zData[amt+1] = 0;
    if( rc!=SQLITE_OK ){
      if( amt>NBFS-2 ){
        assert( zData!=pMem->zShort );
        assert( pMem->flags & MEM_Dyn );
        sqliteFree(zData);
      } else {
        assert( zData==pMem->zShort );
        assert( pMem->flags & MEM_Short );
      }
      return rc;
    }
  }

  return SQLITE_OK;
}
Esempio n. 9
0
IdList *sqliteIdListDup(IdList *p){
  IdList *pNew;
  int i;
  if( p==0 ) return 0;
  pNew = sqliteMallocRaw( sizeof(*pNew) );
  if( pNew==0 ) return 0;
  pNew->nId = pNew->nAlloc = p->nId;
  pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
  if( pNew->a==0 ) return 0;
  for(i=0; i<p->nId; i++){
    struct IdList_item *pNewItem = &pNew->a[i];
    struct IdList_item *pOldItem = &p->a[i];
    pNewItem->zName = sqliteStrDup(pOldItem->zName);
    pNewItem->idx = pOldItem->idx;
  }
  return pNew;
}
Esempio n. 10
0
char *sqlite3StrNDup(const char *z, int n){
  char *zNew;
  if( z==0 ) return 0;
  zNew = sqliteMallocRaw(n+1);
  if( zNew ){
    memcpy(zNew, z, n);
    zNew[n] = 0;
  }
  return zNew;
}
Esempio n. 11
0
/*
** Allocate a new FifoPage and return a pointer to it.  Return NULL if
** we run out of memory.  Leave space on the page for nEntry entries.
*/
static FifoPage *allocateFifoPage(int nEntry){
  FifoPage *pPage;
  if( nEntry>32767 ){
    nEntry = 32767;
  }
  pPage = sqliteMallocRaw( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
  if( pPage ){
    pPage->nSlot = nEntry;
    pPage->iWrite = 0;
    pPage->iRead = 0;
    pPage->pNext = 0;
  }
  return pPage;
}
Esempio n. 12
0
/*
 * Empty table n of the Rbtree.
 */
static int memRbtreeClearTable(Rbtree* tree, int n)
{
  BtRbTree *pTree;
  BtRbNode *pNode;

  pTree = sqliteHashFind(&tree->tblHash, 0, n);
  assert(pTree);

  pNode = pTree->pHead;
  while( pNode ){
    if( pNode->pLeft ){
      pNode = pNode->pLeft;
    }
    else if( pNode->pRight ){
      pNode = pNode->pRight;
    }
    else {
      BtRbNode *pTmp = pNode->pParent;
      if( tree->eTransState == TRANS_ROLLBACK ){
        sqliteFree( pNode->pKey );
        sqliteFree( pNode->pData );
      }else{
        BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp));
        if( pRollbackOp==0 ) return SQLITE_NOMEM;
        pRollbackOp->eOp = ROLLBACK_INSERT;
        pRollbackOp->iTab = n;
        pRollbackOp->nKey = pNode->nKey;
        pRollbackOp->pKey = pNode->pKey;
        pRollbackOp->nData = pNode->nData;
        pRollbackOp->pData = pNode->pData;
        btreeLogRollbackOp(tree, pRollbackOp);
      }
      sqliteFree( pNode );
      if( pTmp ){
        if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
        else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
      }
      pNode = pTmp;
    }
  }

  pTree->pHead = 0;
  return SQLITE_OK;
}
Esempio n. 13
0
/*
** The following group of routines make deep copies of expressions,
** expression lists, ID lists, and select statements.  The copies can
** be deleted (by being passed to their respective ...Delete() routines)
** without effecting the originals.
**
** The expression list, ID, and source lists return by sqliteExprListDup(),
** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded 
** by subsequent calls to sqlite*ListAppend() routines.
**
** Any tables that the SrcList might point to are not duplicated.
*/
Expr *sqliteExprDup(Expr *p){
  Expr *pNew;
  if( p==0 ) return 0;
  pNew = sqliteMallocRaw( sizeof(*p) );
  if( pNew==0 ) return 0;
  memcpy(pNew, p, sizeof(*pNew));
  if( p->token.z!=0 ){
    pNew->token.z = sqliteStrDup(p->token.z);
    pNew->token.dyn = 1;
  }else{
    assert( pNew->token.z==0 );
  }
  pNew->span.z = 0;
  pNew->pLeft = sqliteExprDup(p->pLeft);
  pNew->pRight = sqliteExprDup(p->pRight);
  pNew->pList = sqliteExprListDup(p->pList);
  pNew->pSelect = sqliteSelectDup(p->pSelect);
  return pNew;
}
Esempio n. 14
0
/*
** Change the value of the P3 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqliteMalloc().
** A value of n==0 means copy bytes of zP3 up to and including the
** first null byte.  If n>0 then copy n+1 bytes of zP3.
**
** If n==P3_STATIC  it means that zP3 is a pointer to a constant static
** string and we can just copy the pointer.  n==P3_POINTER means zP3 is
** a pointer to some object other than a string.  n==P3_COLLSEQ and
** n==P3_KEYINFO mean that zP3 is a pointer to a CollSeq or KeyInfo
** structure.  A copy is made of KeyInfo structures into memory obtained
** from sqliteMalloc.
**
** If addr<0 then change P3 on the most recently inserted instruction.
*/
void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
  Op *pOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p==0 || p->aOp==0 ) return;
  if( addr<0 || addr>=p->nOp ){
    addr = p->nOp - 1;
    if( addr<0 ) return;
  }
  pOp = &p->aOp[addr];
  if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
    sqliteFree(pOp->p3);
    pOp->p3 = 0;
  }
  if( zP3==0 ){
    pOp->p3 = 0;
    pOp->p3type = P3_NOTUSED;
  }else if( n==P3_KEYINFO ){
    KeyInfo *pKeyInfo;
    int nField, nByte;
    nField = ((KeyInfo*)zP3)->nField;
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]);
    pKeyInfo = sqliteMallocRaw( nByte );
    pOp->p3 = (char*)pKeyInfo;
    if( pKeyInfo ){
      memcpy(pKeyInfo, zP3, nByte);
      pOp->p3type = P3_KEYINFO;
    }else{
      pOp->p3type = P3_NOTUSED;
    }
  }else if( n==P3_KEYINFO_HANDOFF ){
    pOp->p3 = (char*)zP3;
    pOp->p3type = P3_KEYINFO;
  }else if( n<0 ){
    pOp->p3 = (char*)zP3;
    pOp->p3type = n;
  }else{
    if( n==0 ) n = strlen(zP3);
    pOp->p3 = sqliteStrNDup(zP3, n);
    pOp->p3type = P3_DYNAMIC;
  }
}
Esempio n. 15
0
Select *sqliteSelectDup(Select *p){
  Select *pNew;
  if( p==0 ) return 0;
  pNew = sqliteMallocRaw( sizeof(*p) );
  if( pNew==0 ) return 0;
  pNew->isDistinct = p->isDistinct;
  pNew->pEList = sqliteExprListDup(p->pEList);
  pNew->pSrc = sqliteSrcListDup(p->pSrc);
  pNew->pWhere = sqliteExprDup(p->pWhere);
  pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
  pNew->pHaving = sqliteExprDup(p->pHaving);
  pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
  pNew->op = p->op;
  pNew->pPrior = sqliteSelectDup(p->pPrior);
  pNew->nLimit = p->nLimit;
  pNew->nOffset = p->nOffset;
  pNew->zSelect = 0;
  pNew->iLimit = -1;
  pNew->iOffset = -1;
  return pNew;
}
Esempio n. 16
0
/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemDynamicify(Mem *pMem) {
    int n = pMem->n;
    u8 *z;
    if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ) {
        return SQLITE_OK;
    }
    assert( (pMem->flags & MEM_Dyn)==0 );
    assert( pMem->flags & (MEM_Str|MEM_Blob) );
    z = sqliteMallocRaw( n+2 );
    if( z==0 ) {
        return SQLITE_NOMEM;
    }
    pMem->flags |= MEM_Dyn|MEM_Term;
    pMem->xDel = 0;
    memcpy(z, pMem->z, n );
    z[n] = 0;
    z[n+1] = 0;
    pMem->z = z;
    pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
    return SQLITE_OK;
}
Esempio n. 17
0
SrcList *sqliteSrcListDup(SrcList *p){
  SrcList *pNew;
  int i;
  int nByte;
  if( p==0 ) return 0;
  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
  pNew = sqliteMallocRaw( nByte );
  if( pNew==0 ) return 0;
  pNew->nSrc = pNew->nAlloc = p->nSrc;
  for(i=0; i<p->nSrc; i++){
    struct SrcList_item *pNewItem = &pNew->a[i];
    struct SrcList_item *pOldItem = &p->a[i];
    pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
    pNewItem->zName = sqliteStrDup(pOldItem->zName);
    pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
    pNewItem->jointype = pOldItem->jointype;
    pNewItem->iCursor = pOldItem->iCursor;
    pNewItem->pTab = 0;
    pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
    pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
    pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
  }
  return pNew;
}
Esempio n. 18
0
/*
** This routine transforms the internal text encoding used by pMem to
** desiredEnc. It is an error if the string is already of the desired
** encoding, or if *pMem does not contain a string value.
*/
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
  unsigned char zShort[NBFS]; /* Temporary short output buffer */
  int len;                    /* Maximum length of output string in bytes */
  unsigned char *zOut;                  /* Output buffer */
  unsigned char *zIn;                   /* Input iterator */
  unsigned char *zTerm;                 /* End of input */
  unsigned char *z;                     /* Output iterator */
  unsigned int c;

  assert( pMem->flags&MEM_Str );
  assert( pMem->enc!=desiredEnc );
  assert( pMem->enc!=0 );
  assert( pMem->n>=0 );

#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "INPUT:  %s\n", zBuf);
  }
#endif

  /* If the translation is between UTF-16 little and big endian, then 
  ** all that is required is to swap the byte order. This case is handled
  ** differently from the others.
  */
  if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
    u8 temp;
    int rc;
    rc = sqlite3VdbeMemMakeWriteable(pMem);
    if( rc!=SQLITE_OK ){
      assert( rc==SQLITE_NOMEM );
      return SQLITE_NOMEM;
    }
    zIn = (u8*)pMem->z;
    zTerm = &zIn[pMem->n];
    while( zIn<zTerm ){
      temp = *zIn;
      *zIn = *(zIn+1);
      zIn++;
      *zIn++ = temp;
    }
    pMem->enc = desiredEnc;
    goto translate_out;
  }

  /* Set len to the maximum number of bytes required in the output buffer. */
  if( desiredEnc==SQLITE_UTF8 ){
    /* When converting from UTF-16, the maximum growth results from
    ** translating a 2-byte character to a 4-byte UTF-8 character.
    ** A single byte is required for the output string
    ** nul-terminator.
    */
    len = pMem->n * 2 + 1;
  }else{
    /* When converting from UTF-8 to UTF-16 the maximum growth is caused
    ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
    ** character. Two bytes are required in the output buffer for the
    ** nul-terminator.
    */
    len = pMem->n * 2 + 2;
  }

  /* Set zIn to point at the start of the input buffer and zTerm to point 1
  ** byte past the end.
  **
  ** Variable zOut is set to point at the output buffer. This may be space
  ** obtained from malloc(), or Mem.zShort, if it large enough and not in
  ** use, or the zShort array on the stack (see above).
  */
  zIn = (u8*)pMem->z;
  zTerm = &zIn[pMem->n];
  if( len>NBFS ){
    zOut = sqliteMallocRaw(len);
    if( !zOut ) return SQLITE_NOMEM;
  }else{
    zOut = zShort;
  }
  z = zOut;

  if( pMem->enc==SQLITE_UTF8 ){
    if( desiredEnc==SQLITE_UTF16LE ){
      /* UTF-8 -> UTF-16 Little-endian */
      while( zIn<zTerm ){
        READ_UTF8(zIn, c); 
        WRITE_UTF16LE(z, c);
      }
    }else{
      assert( desiredEnc==SQLITE_UTF16BE );
      /* UTF-8 -> UTF-16 Big-endian */
      while( zIn<zTerm ){
        READ_UTF8(zIn, c); 
        WRITE_UTF16BE(z, c);
      }
    }
    pMem->n = z - zOut;
    *z++ = 0;
  }else{
    assert( desiredEnc==SQLITE_UTF8 );
    if( pMem->enc==SQLITE_UTF16LE ){
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        READ_UTF16LE(zIn, c); 
        WRITE_UTF8(z, c);
      }
    }else{
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        READ_UTF16BE(zIn, c); 
        WRITE_UTF8(z, c);
      }
    }
    pMem->n = z - zOut;
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );

  sqlite3VdbeMemRelease(pMem);
  pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
  pMem->enc = desiredEnc;
  if( zOut==zShort ){
    memcpy(pMem->zShort, zOut, len);
    zOut = (u8*)pMem->zShort;
    pMem->flags |= (MEM_Term|MEM_Short);
  }else{
    pMem->flags |= (MEM_Term|MEM_Dyn);
  }
  pMem->z = (char*)zOut;

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);
  }
#endif
  return SQLITE_OK;
}
Esempio n. 19
0
/*
** Process an UPDATE statement.
**
**   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
**          \_______/ \________/     \______/       \________________/
*            onError   pTabList      pChanges             pWhere
*/
void sqlite3Update(
  Parse *pParse,         /* The parser context */
  SrcList *pTabList,     /* The table in which we should change things */
  ExprList *pChanges,    /* Things to be changed */
  Expr *pWhere,          /* The WHERE clause.  May be null */
  int onError            /* How to handle constraint errors */
){
  int i, j;              /* Loop counters */
  Table *pTab;           /* The table to be updated */
  int addr = 0;          /* VDBE instruction address of the start of the loop */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Vdbe *v;               /* The virtual database engine */
  Index *pIdx;           /* For looping over indices */
  int nIdx;              /* Number of indices that need updating */
  int nIdxTotal;         /* Total number of indices */
  int iCur;              /* VDBE Cursor number of pTab */
  sqlite3 *db;           /* The database structure */
  Index **apIdx = 0;     /* An array of indices that need updating too */
  char *aIdxUsed = 0;    /* aIdxUsed[i]==1 if the i-th index is used */
  int *aXRef = 0;        /* aXRef[i] is the index in pChanges->a[] of the
                         ** an expression for the i-th column of the table.
                         ** aXRef[i]==-1 if the i-th column is not changed. */
  int chngRecno;         /* True if the record number is being changed */
  Expr *pRecnoExpr = 0;  /* Expression defining the new record number */
  int openAll = 0;       /* True if all indices need to be opened */
  AuthContext sContext;  /* The authorization context */
  NameContext sNC;       /* The name-context to resolve expressions in */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* Trying to update a view */
  int triggers_exist = 0;      /* True if any row triggers exist */
#endif

  int newIdx      = -1;  /* index of trigger "new" temp table       */
  int oldIdx      = -1;  /* index of trigger "old" temp table       */

  sContext.pParse = 0;
  if( pParse->nErr || sqlite3_malloc_failed ) goto update_cleanup;
  db = pParse->db;
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to update. 
  */
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 ) goto update_cleanup;

  /* Figure out if we have any triggers and if the table being
  ** updated is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
  isView = pTab->pSelect!=0;
#else
# define triggers_exist 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif

  if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
    goto update_cleanup;
  }
  if( isView ){
    if( sqlite3ViewGetColumnNames(pParse, pTab) ){
      goto update_cleanup;
    }
  }
  aXRef = sqliteMallocRaw( sizeof(int) * pTab->nCol );
  if( aXRef==0 ) goto update_cleanup;
  for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;

  /* If there are FOR EACH ROW triggers, allocate cursors for the
  ** special OLD and NEW tables
  */
  if( triggers_exist ){
    newIdx = pParse->nTab++;
    oldIdx = pParse->nTab++;
  }

  /* Allocate a cursors for the main database table and for all indices.
  ** The index cursors might not be used, but if they are used they
  ** need to occur right after the database cursor.  So go ahead and
  ** allocate enough space, just in case.
  */
  pTabList->a[0].iCursor = iCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    pParse->nTab++;
  }

  /* Initialize the name-context */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;

  /* Resolve the column names in all the expressions of the
  ** of the UPDATE statement.  Also find the column index
  ** for each column to be updated in the pChanges array.  For each
  ** column to be updated, make sure we have authorization to change
  ** that column.
  */
  chngRecno = 0;
  for(i=0; i<pChanges->nExpr; i++){
    if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
      goto update_cleanup;
    }
    for(j=0; j<pTab->nCol; j++){
      if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
        if( j==pTab->iPKey ){
          chngRecno = 1;
          pRecnoExpr = pChanges->a[i].pExpr;
        }
        aXRef[j] = i;
        break;
      }
    }
    if( j>=pTab->nCol ){
      if( sqlite3IsRowid(pChanges->a[i].zName) ){
        chngRecno = 1;
        pRecnoExpr = pChanges->a[i].pExpr;
      }else{
        sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
        goto update_cleanup;
      }
    }
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      int rc;
      rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
                           pTab->aCol[j].zName, db->aDb[pTab->iDb].zName);
      if( rc==SQLITE_DENY ){
        goto update_cleanup;
      }else if( rc==SQLITE_IGNORE ){
        aXRef[j] = -1;
      }
    }
#endif
  }

  /* Allocate memory for the array apIdx[] and fill it with pointers to every
  ** index that needs to be updated.  Indices only need updating if their
  ** key includes one of the columns named in pChanges or if the record
  ** number of the original table entry is changing.
  */
  for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
    if( chngRecno ){
      i = 0;
    }else {
      for(i=0; i<pIdx->nColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
      }
    }
    if( i<pIdx->nColumn ) nIdx++;
  }
  if( nIdxTotal>0 ){
    apIdx = sqliteMallocRaw( sizeof(Index*) * nIdx + nIdxTotal );
    if( apIdx==0 ) goto update_cleanup;
    aIdxUsed = (char*)&apIdx[nIdx];
  }
  for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    if( chngRecno ){
      i = 0;
    }else{
      for(i=0; i<pIdx->nColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
      }
    }
    if( i<pIdx->nColumn ){
      if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto update_cleanup;
      apIdx[nIdx++] = pIdx;
      aIdxUsed[j] = 1;
    }else{
      aIdxUsed[j] = 0;
    }
  }

  /* Resolve the column names in all the expressions in the
  ** WHERE clause.
  */
  if( sqlite3ExprResolveNames(&sNC, pWhere) ){
    goto update_cleanup;
  }

  /* Start the view context
  */
  if( isView ){
    sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, pTab->iDb);

  /* If we are trying to update a view, construct that view into
  ** a temporary table.
  */
  if( isView ){
    Select *pView;
    pView = sqlite3SelectDup(pTab->pSelect);
    sqlite3Select(pParse, pView, SRT_TempTable, iCur, 0, 0, 0, 0);
    sqlite3SelectDelete(pView);
  }

  /* Begin the database scan
  */
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
  if( pWInfo==0 ) goto update_cleanup;

  /* Remember the index of every item to be updated.
  */
  sqlite3VdbeAddOp(v, OP_Recno, iCur, 0);
  sqlite3VdbeAddOp(v, OP_ListWrite, 0, 0);

  /* End the database scan loop.
  */
  sqlite3WhereEnd(pWInfo);

  /* Initialize the count of updated rows
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
    sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
  }

  if( triggers_exist ){
    /* Create pseudo-tables for NEW and OLD
    */
    sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
    sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);

    /* The top of the update loop for when there are triggers.
    */
    sqlite3VdbeAddOp(v, OP_ListRewind, 0, 0);
    addr = sqlite3VdbeAddOp(v, OP_ListRead, 0, 0);
    sqlite3VdbeAddOp(v, OP_Dup, 0, 0);

    /* Open a cursor and make it point to the record that is
    ** being updated.
    */
    sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
    if( !isView ){
      sqlite3OpenTableForReading(v, iCur, pTab);
    }
    sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);

    /* Generate the OLD table
    */
    sqlite3VdbeAddOp(v, OP_Recno, iCur, 0);
    sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
    sqlite3VdbeAddOp(v, OP_PutIntKey, oldIdx, 0);

    /* Generate the NEW table
    */
    if( chngRecno ){
      sqlite3ExprCodeAndCache(pParse, pRecnoExpr);
    }else{
      sqlite3VdbeAddOp(v, OP_Recno, iCur, 0);
    }
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp(v, OP_String8, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( j<0 ){
        sqlite3VdbeAddOp(v, OP_Column, iCur, i);
        sqlite3ColumnDefault(v, pTab, i);
      }else{
        sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr);
      }
    }
    sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
    if( !isView ){
      sqlite3TableAffinityStr(v, pTab);
    }
    if( pParse->nErr ) goto update_cleanup;
    sqlite3VdbeAddOp(v, OP_PutIntKey, newIdx, 0);
    if( !isView ){
      sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
    }

    /* Fire the BEFORE and INSTEAD OF triggers
    */
    if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
          newIdx, oldIdx, onError, addr) ){
      goto update_cleanup;
    }
  }

  if( !isView ){
    /* 
    ** Open every index that needs updating.  Note that if any
    ** index could potentially invoke a REPLACE conflict resolution 
    ** action, then we need to open all indices because we might need
    ** to be deleting some records.
    */
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
    if( onError==OE_Replace ){
      openAll = 1;
    }else{
      openAll = 0;
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        if( pIdx->onError==OE_Replace ){
          openAll = 1;
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
        sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
                       (char*)&pIdx->keyInfo, P3_KEYINFO);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

    /* Loop over every record that needs updating.  We have to load
    ** the old data for each record to be updated because some columns
    ** might not change and we will need to copy the old value.
    ** Also, the old data is needed to delete the old index entires.
    ** So make the cursor point at the old record.
    */
    if( !triggers_exist ){
      sqlite3VdbeAddOp(v, OP_ListRewind, 0, 0);
      addr = sqlite3VdbeAddOp(v, OP_ListRead, 0, 0);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
    }
    sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr);

    /* If the record number will change, push the record number as it
    ** will be after the update. (The old record number is currently
    ** on top of the stack.)
    */
    if( chngRecno ){
      sqlite3ExprCode(pParse, pRecnoExpr);
      sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
    }

    /* Compute new data for this record.  
    */
    for(i=0; i<pTab->nCol; i++){
      if( i==pTab->iPKey ){
        sqlite3VdbeAddOp(v, OP_String8, 0, 0);
        continue;
      }
      j = aXRef[i];
      if( j<0 ){
        sqlite3VdbeAddOp(v, OP_Column, iCur, i);
        sqlite3ColumnDefault(v, pTab, i);
      }else{
        sqlite3ExprCode(pParse, pChanges->a[j].pExpr);
      }
    }

    /* Do constraint checks
    */
    sqlite3GenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRecno, 1,
                                   onError, addr);

    /* Delete the old indices for the current record.
    */
    sqlite3GenerateRowIndexDelete(db, v, pTab, iCur, aIdxUsed);

    /* If changing the record number, delete the old record.
    */
    if( chngRecno ){
      sqlite3VdbeAddOp(v, OP_Delete, iCur, 0);
    }

    /* Create the new index entries and the new record.
    */
    sqlite3CompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1);
  }

  /* Increment the row counter 
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack){
    sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
  }

  /* If there are triggers, close all the cursors after each iteration
  ** through the loop.  The fire the after triggers.
  */
  if( triggers_exist ){
    if( !isView ){
      for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
        if( openAll || aIdxUsed[i] )
          sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
      }
      sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
    }
    if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, 
          newIdx, oldIdx, onError, addr) ){
      goto update_cleanup;
    }
  }

  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
  sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v));
  sqlite3VdbeAddOp(v, OP_ListReset, 0, 0);

  /* Close all tables if there were no FOR EACH ROW triggers */
  if( !triggers_exist ){
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
      }
    }
    sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
  }else{
    sqlite3VdbeAddOp(v, OP_Close, newIdx, 0);
    sqlite3VdbeAddOp(v, OP_Close, oldIdx, 0);
  }

  /*
  ** Return the number of rows that were changed. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
    sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, "rows updated", P3_STATIC);
  }

update_cleanup:
  sqlite3AuthContextPop(&sContext);
  sqliteFree(apIdx);
  sqliteFree(aXRef);
  sqlite3SrcListDelete(pTabList);
  sqlite3ExprListDelete(pChanges);
  sqlite3ExprDelete(pWhere);
  return;
}
Esempio n. 20
0
/*
** This routine transforms the internal text encoding used by pMem to
** desiredEnc. It is an error if the string is already of the desired
** encoding, or if *pMem does not contain a string value.
*/
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
  unsigned char zShort[NBFS]; /* Temporary short output buffer */
  int len;                    /* Maximum length of output string in bytes */
  unsigned char *zOut;                  /* Output buffer */
  unsigned char *zIn;                   /* Input iterator */
  unsigned char *zTerm;                 /* End of input */
  unsigned char *z;                     /* Output iterator */
  unsigned int c;

  assert( pMem->flags&MEM_Str );
  assert( pMem->enc!=desiredEnc );
  assert( pMem->enc!=0 );
  assert( pMem->n>=0 );

#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "INPUT:  %s\n", zBuf);
  }
#endif

  /* If the translation is between UTF-16 little and big endian, then 
  ** all that is required is to swap the byte order. This case is handled
  ** differently from the others.
  */
  if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
    u8 temp;
    int rc;
    rc = sqlite3VdbeMemMakeWriteable(pMem);
    if( rc!=SQLITE_OK ){
      assert( rc==SQLITE_NOMEM );
      return SQLITE_NOMEM;
    }
    zIn = (u8*)pMem->z;
    zTerm = &zIn[pMem->n];
    while( zIn<zTerm ){
      temp = *zIn;
      *zIn = *(zIn+1);
      zIn++;
      *zIn++ = temp;
    }
    pMem->enc = desiredEnc;
    goto translate_out;
  }

  /* Set len to the maximum number of bytes required in the output buffer. */
  if( desiredEnc==SQLITE_UTF8 ){
    /* When converting from UTF-16, the maximum growth results from
    ** translating a 2-byte character to a 4-byte UTF-8 character.
    ** A single byte is required for the output string
    ** nul-terminator.
    */
    len = pMem->n * 2 + 1;
  }else{
    /* When converting from UTF-8 to UTF-16 the maximum growth is caused
    ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
    ** character. Two bytes are required in the output buffer for the
    ** nul-terminator.
    */
    len = pMem->n * 2 + 2;
  }

  /* Set zIn to point at the start of the input buffer and zTerm to point 1
  ** byte past the end.
  **
  ** Variable zOut is set to point at the output buffer. This may be space
  ** obtained from malloc(), or Mem.zShort, if it large enough and not in
  ** use, or the zShort array on the stack (see above).
  */
  zIn = (u8*)pMem->z;
  zTerm = &zIn[pMem->n];
  if( len>NBFS ){
    zOut = sqliteMallocRaw(len);
    if( !zOut ) return SQLITE_NOMEM;
  }else{
    zOut = zShort;
  }
  z = zOut;

  if( pMem->enc==SQLITE_UTF8 ){
    unsigned int iExtra = 0xD800;

    if( 0==(pMem->flags&MEM_Term) && zTerm>zIn && (zTerm[-1]&0x80) ){
      /* This UTF8 string is not nul-terminated, and the last byte is
      ** not a character in the ascii range (codpoints 0..127). This
      ** means the SQLITE_READ_UTF8() macro might read past the end
      ** of the allocated buffer.
      **
      ** There are four possibilities:
      **
      **   1. The last byte is the first byte of a non-ASCII character,
      **
      **   2. The final N bytes of the input string are continuation bytes
      **      and immediately preceding them is the first byte of a 
      **      non-ASCII character.
      **
      **   3. The final N bytes of the input string are continuation bytes
      **      and immediately preceding them is a byte that encodes a 
      **      character in the ASCII range.
      **
      **   4. The entire string consists of continuation characters.
      **
      ** Cases (3) and (4) require no special handling. The SQLITE_READ_UTF8()
      ** macro will not overread the buffer in these cases.
      */
      unsigned char *zExtra = &zTerm[-1];
      while( zExtra>zIn && (zExtra[0]&0xC0)==0x80 ){
        zExtra--;
      }

      if( (zExtra[0]&0xC0)==0xC0 ){
        /* Make a copy of the last character encoding in the input string.
        ** Then make sure it is nul-terminated and use SQLITE_READ_UTF8()
        ** to decode the codepoint. Store the codepoint in variable iExtra,
        ** it will be appended to the output string later.
        */
        unsigned char *zFree = 0;
        unsigned char zBuf[16];
        int nExtra = (pMem->n+zIn-zExtra);
        zTerm = zExtra;
        if( nExtra>15 ){
          zExtra = sqliteMallocRaw(nExtra+1);
          if( !zExtra ){
            return SQLITE_NOMEM;
          }
          zFree = zExtra;
        }else{
          zExtra = zBuf;
        }
        memcpy(zExtra, zTerm, nExtra);
        zExtra[nExtra] = '\0';
        SQLITE_READ_UTF8(zExtra, iExtra);
        sqliteFree(zFree);
      }
    }

    if( desiredEnc==SQLITE_UTF16LE ){
      /* UTF-8 -> UTF-16 Little-endian */
      while( zIn<zTerm ){
        SQLITE_READ_UTF8(zIn, c); 
        WRITE_UTF16LE(z, c);
      }
      if( iExtra!=0xD800 ){
        WRITE_UTF16LE(z, iExtra);
      }
    }else{
      assert( desiredEnc==SQLITE_UTF16BE );
      /* UTF-8 -> UTF-16 Big-endian */
      while( zIn<zTerm ){
        SQLITE_READ_UTF8(zIn, c); 
        WRITE_UTF16BE(z, c);
      }
      if( iExtra!=0xD800 ){
        WRITE_UTF16BE(z, iExtra);
      }
    }
    pMem->n = z - zOut;
    *z++ = 0;
  }else{
    assert( desiredEnc==SQLITE_UTF8 );
    if( pMem->enc==SQLITE_UTF16LE ){
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        READ_UTF16LE(zIn, c); 
        WRITE_UTF8(z, c);
      }
    }else{
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        READ_UTF16BE(zIn, c); 
        WRITE_UTF8(z, c);
      }
    }
    pMem->n = z - zOut;
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );

  sqlite3VdbeMemRelease(pMem);
  pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
  pMem->enc = desiredEnc;
  if( zOut==zShort ){
    memcpy(pMem->zShort, zOut, len);
    zOut = (u8*)pMem->zShort;
    pMem->flags |= (MEM_Term|MEM_Short);
  }else{
    pMem->flags |= (MEM_Term|MEM_Dyn);
  }
  pMem->z = (char*)zOut;

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);
  }
#endif
  return SQLITE_OK;
}
Esempio n. 21
0
/*
 * Insert a new record into the Rbtree.  The key is given by (pKey,nKey)
 * and the data is given by (pData,nData).  The cursor is used only to
 * define what database the record should be inserted into.  The cursor
 * is left pointing at the new record.
 *
 * If the key exists already in the tree, just replace the data. 
 */
static int memRbtreeInsert(
  RbtCursor* pCur,
  const void *pKey,
  int nKey,
  const void *pDataInput,
  int nData
){
  void * pData;
  int match;

  /* It is illegal to call sqliteRbtreeInsert() if we are
  ** not in a transaction */
  assert( pCur->pRbtree->eTransState != TRANS_NONE );

  /* Make sure some other cursor isn't trying to read this same table */
  if( checkReadLocks(pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Take a copy of the input data now, in case we need it for the 
   * replace case */
  pData = sqliteMallocRaw(nData);
  if( sqlite_malloc_failed ) return SQLITE_NOMEM;
  memcpy(pData, pDataInput, nData);

  /* Move the cursor to a node near the key to be inserted. If the key already
   * exists in the table, then (match == 0). In this case we can just replace
   * the data associated with the entry, we don't need to manipulate the tree.
   * 
   * If there is no exact match, then the cursor points at what would be either
   * the predecessor (match == -1) or successor (match == 1) of the
   * searched-for key, were it to be inserted. The new node becomes a child of
   * this node.
   * 
   * The new node is initially red.
   */
  memRbtreeMoveto( pCur, pKey, nKey, &match);
  if( match ){
    BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
    if( pNode==0 ) return SQLITE_NOMEM;
    pNode->nKey = nKey;
    pNode->pKey = sqliteMallocRaw(nKey);
    if( sqlite_malloc_failed ) return SQLITE_NOMEM;
    memcpy(pNode->pKey, pKey, nKey);
    pNode->nData = nData;
    pNode->pData = pData; 
    if( pCur->pNode ){
      switch( match ){
        case -1:
          assert( !pCur->pNode->pRight );
          pNode->pParent = pCur->pNode;
          pCur->pNode->pRight = pNode;
          break;
        case 1:
          assert( !pCur->pNode->pLeft );
          pNode->pParent = pCur->pNode;
          pCur->pNode->pLeft = pNode;
          break;
        default:
          assert(0);
      }
    }else{
      pCur->pTree->pHead = pNode;
    }

    /* Point the cursor at the node just inserted, as per SQLite requirements */
    pCur->pNode = pNode;

    /* A new node has just been inserted, so run the balancing code */
    do_insert_balancing(pCur->pTree, pNode);

    /* Set up a rollback-op in case we have to roll this operation back */
    if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
      BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
      if( pOp==0 ) return SQLITE_NOMEM;
      pOp->eOp = ROLLBACK_DELETE;
      pOp->iTab = pCur->iTree;
      pOp->nKey = pNode->nKey;
      pOp->pKey = sqliteMallocRaw( pOp->nKey );
      if( sqlite_malloc_failed ) return SQLITE_NOMEM;
      memcpy( pOp->pKey, pNode->pKey, pOp->nKey );
      btreeLogRollbackOp(pCur->pRbtree, pOp);
    }

  }else{ 
    /* No need to insert a new node in the tree, as the key already exists.
     * Just clobber the current nodes data. */

    /* Set up a rollback-op in case we have to roll this operation back */
    if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
      BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
      if( pOp==0 ) return SQLITE_NOMEM;
      pOp->iTab = pCur->iTree;
      pOp->nKey = pCur->pNode->nKey;
      pOp->pKey = sqliteMallocRaw( pOp->nKey );
      if( sqlite_malloc_failed ) return SQLITE_NOMEM;
      memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey );
      pOp->nData = pCur->pNode->nData;
      pOp->pData = pCur->pNode->pData;
      pOp->eOp = ROLLBACK_INSERT;
      btreeLogRollbackOp(pCur->pRbtree, pOp);
    }else{
      sqliteFree( pCur->pNode->pData );
    }

    /* Actually clobber the nodes data */
    pCur->pNode->pData = pData;
    pCur->pNode->nData = nData;
  }

  return SQLITE_OK;
}
/*
** Given a file descriptor, locate lockInfo and openCnt structures that
** describes that file descriptor.  Create a new ones if necessary.  The
** return values might be unset if an error occurs.
**
** Return the number of errors.
*/
static int findLockInfo(
  int fd,                      /* The file descriptor used in the key */
  struct lockInfo **ppLock,    /* Return the lockInfo structure here */
  struct openCnt **ppOpen      /* Return the openCnt structure here */
){
  int rc;
  struct lockKey key1;
  struct openKey key2;
  struct stat statbuf;
  struct lockInfo *pLock;
  struct openCnt *pOpen;
  rc = fstat(fd, &statbuf);
  if( rc!=0 ) return 1;
  memset(&key1, 0, sizeof(key1));
  key1.dev = statbuf.st_dev;
  key1.ino = statbuf.st_ino;
#ifdef SQLITE_UNIX_THREADS
  if( threadsOverrideEachOthersLocks<0 ){
    testThreadLockingBehavior(fd);
  }
  key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
#endif
  memset(&key2, 0, sizeof(key2));
  key2.dev = statbuf.st_dev;
  key2.ino = statbuf.st_ino;
  pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
  if( pLock==0 ){
    struct lockInfo *pOld;
    pLock = sqliteMallocRaw( sizeof(*pLock) );
    if( pLock==0 ) return 1;
    pLock->key = key1;
    pLock->nRef = 1;
    pLock->cnt = 0;
    pLock->locktype = 0;
    pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
    if( pOld!=0 ){
      assert( pOld==pLock );
      sqliteFree(pLock);
      return 1;
    }
  }else{
    pLock->nRef++;
  }
  *ppLock = pLock;
  pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
  if( pOpen==0 ){
    struct openCnt *pOld;
    pOpen = sqliteMallocRaw( sizeof(*pOpen) );
    if( pOpen==0 ){
      releaseLockInfo(pLock);
      return 1;
    }
    pOpen->key = key2;
    pOpen->nRef = 1;
    pOpen->nLock = 0;
    pOpen->nPending = 0;
    pOpen->aPending = 0;
    pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
    if( pOld!=0 ){
      assert( pOld==pOpen );
      sqliteFree(pOpen);
      releaseLockInfo(pLock);
      return 1;
    }
  }else{
    pOpen->nRef++;
  }
  *ppOpen = pOpen;
  return 0;
}