Esempio n. 1
0
// given the extent of the altitude and the difference beween the collinear 
// base intercept and the altitude's base intercept, we can use 
// Pythagorean's theorem to compute the length of the collinear line. 
byte Location::collinearHeight(byte i) {
	// use i altitude height and base; i collinear base
	return( d->Cb[i] >= d->Ab[i] ? // unsigned, so careful of order
		squareRoot( squared(d->Ah[i]) + squared(d->Cb[i]-d->Ab[i]) ) :
		squareRoot( squared(d->Ah[i]) + squared(d->Ab[i]-d->Cb[i]) )
	);
}
Esempio n. 2
0
TEST(SquareRootTest, PositiveNos)
{
    ASSERT_EQ(6, squareRoot(36.0));
    ASSERT_EQ(18.0, squareRoot(324.0));
    ASSERT_EQ(25.4, squareRoot(645.16));
    ASSERT_EQ(0, squareRoot(0.0));
}
Esempio n. 3
0
int main(void) {
    printf("squareRoot (2.0) = %f\n", squareRoot(2.0));
    printf("squareRoot (144.0) = %f\n", squareRoot(144.0));
    printf("squareRoot (17.5) = %f\n", squareRoot(17.5));

    return 0;
}
Esempio n. 4
0
int main(void)
{
  printf("square root (18.0,0.002) = %f \n",squareRoot(18,0.002));
  printf("square root (18.0,0.000002) = %f \n",squareRoot(18,0.0002));
  printf("square root (18.0,0.0000002) = %f \n",squareRoot(18,0.000002));
  return 0;
}
TEST(climbertest, SetName) {
	
    ASSERT_EQ(6, squareRoot(36.0));
    ASSERT_EQ(18.0, squareRoot(324.0));
    ASSERT_EQ(25.4, squareRoot(645.16));
    ASSERT_EQ(0, squareRoot(0.0));
}
Esempio n. 6
0
TEST(SquareRootTest, NegativeNos)
{
    //ASSERT_EQ执行失败,当前函数返回,该assert后面的语句不执行
    ASSERT_EQ(1.0, squareRoot(-15.0));
    //ASSERT_EQ(-1.0, squareRoot(-15.0));
    ASSERT_EQ(-1.0, squareRoot(-0.2));
}
Esempio n. 7
0
int main(void)
{
    printf("squareRoot(2.0, .01)  = %f\n", squareRoot(2.0, 0.01));
    printf("squareRoot(2.0, .001)  = %f\n", squareRoot(2.0, 0.001));
    printf("squareRoot(2.0, .0001)  = %f\n", squareRoot(2.0, 0.0001));

    return 0;
}
Esempio n. 8
0
int main()
{
    system("color B");

    printf ("squareRoot (2.0) = %.2f\n", squareRoot (2.0));
    printf ("squareRoot (144.0) = %.2f\n", squareRoot (144.0));
    printf ("squareRoot (17.5) = %.2f\n", squareRoot (17.5));

    return 0;
}
float	quadratic (int a, int b, int c)
{
	float d;
	float squareRoot (float x);

	d = ((b * b) - (4 * a * c));

	gX1 = (-b + squareRoot(d)) / (2 * a);
	gX2 = (-b - squareRoot(d)) / (2 * a);
}
Esempio n. 10
0
    bool SquareRoot::test() {
        for (int i = 0; i != 17; ++i) {
            if (squareRoot(i) != (int)sqrt(i)) {
                cout << i << " root should be " << (int)sqrt(i) << endl;
                cout << "Result " << squareRoot(i) << endl;
                return false;
            }
        }

        return true;
    }
Esempio n. 11
0
// given the altitude's distance along the side length and the distance,
// use Pythagorean's theorem to calculte the altitude 
byte Location::altitudeHeight(byte i) {
	// use right-i and left-i distance
	if( d->D[left(i)] + d->D[right(i)] < SL ) return( 0 );

	unsigned long s = semiPerimeter(i);
	unsigned long part1 = squareRoot(s*(s - d->D[left(i)]));
	unsigned long part2 = squareRoot((s-SL)*(s - d->D[right(i)]));
//	Serial << F("i=") << i << F("\ts=") << s << F("\tpart1=") << part1 << F("\tpart2=") << part2 << endl;
	
	return( 
		(2UL * part1 * part2) / SL // this big divide operator is slow.  bummer.
	);
}
Esempio n. 12
0
int main()
{
	int tc;
	int caseNum;
        caseNum = 1;
	scanf("%d", &tc);
	while(tc--)
	{
		int fs = 0;
                std::string lower;
                std::getline(std::cin, lower);
                std::string upper;
		std::getline(std::cin, upper);
                while(std::strcmp(lower, upper) != 0)
                {
                        bool square = squareRoot(lower);
                        bool fair = palidrone(lower);
			if(lower < 10)
			{
				square = false;
				fair = false;
				if(lower == 1 || lower == 4 || lower == 9)
				{
					square = true;
					fair = true;
				}
			}
                       	else
			{
				if(palidrone(lower) && squareRoot(lower))
				{
					int result = (int) sqrt(lower);
					if(palidrone(result)) fair == true;
					else	fair = false;
				}
			}
			if(fair && square)	
			{
				//printf("%d\n", lower);
				fs++;
			}
                        lower++;
                }
		printf("Case #%d: %d\n", caseNum, fs);
                caseNum++;
        }
}
Esempio n. 13
0
// given two distances and a known side length, we can calculate the 
// the altitude's distance along the side length of the altitude.
// from https://en.wikipedia.org/wiki/Heron%27s_formula#Algebraic_proof_using_the_Pythagorean_theorem
byte Location::altitudeBase(byte i) {
	if( d->D[left(i)] < d->Ah[i] ) return(0);
	
	// use left-i distance and ith height
	return(
		squareRoot( squared(d->D[left(i)]) - squared(d->Ah[i]) )
	);
}
Esempio n. 14
0
//Calculates the square roots of the given quadratic equation
void roots(int a,int b,int c)
{
  float disc;
  disc=discriminant(a,b,c);
  float root1,root2;
  if(disc<0)
    printf("it has imaginary square roots \n");
  else if(disc==0)
      {
        printf("The roots are \n%.2f\n%.2f\n",((float)-b/(2*a)),((float)-b/(2*a)));
      }
  else{
      root1=(-b+squareRoot(disc))/(2*a);
      root2=(-b-squareRoot(disc))/(2*a);
      printf("the square roots are : \n");
      printf("%.2f\n%.2f \n",root1,root2);
  }
}
Esempio n. 15
0
int main (int argc, char *argv []) {

  int i, mode = NONE;
  if(argc > 1 && argv[1][0] != '>')
    for(i=1; i<argc; i++)
      if(argv[i][0] == '-' && argv[i][1] != '\0')
        switch(argv[i][1]){
          case 'p':
            mode = PRIME;
            break;
          case 'g':
            mode = GCD;
            break;
          case 'r':
            mode = ROOT;
            break;
          default:
            return badArg();
        }

  switch(mode){
    case PRIME:
      if(argc >= 3 && argv[2][0] != '>' && (atoi(argv[2])) > 0){
        int c = atoi(argv[2]);
        printf("Checking if %d is prime...\n", c);
        if(isPrime(c))
          printf("%d is a prime number.\n" , c);
        else
          printf("%d is not a prime number.\n" , c);
      }
      else
        notEnoughInput();
      break;
    case GCD:
      if(argc >= 4 && argv[2][0] != '>' && (atoi(argv[2])) > 0 && argv[3][0] != '>' && (atoi(argv[3])) > 0){
        int a = atoi(argv[2]), b = atoi(argv[3]);
        printf("Calculating the greatest common divisor of %d and %d...\n", a, b);
        printf("gcd(%d,%d)=%d\n", a, b, gcd(a,b));
      }
      else
        notEnoughInput();
      break;
    case ROOT:
      if(argc >= 3 && argv[2][0] != '>' && (atof(argv[2])) > 0){
        double a = atof(argv[2]);
        printf("Calculating the square root of %f...\n", a);
	printf("sqrt(%f)=%f\n", a, squareRoot(a));
      }
      else
        notEnoughInput();
      break;
    default:
      badArg();
  }

  return 0;
}
Esempio n. 16
0
int main(void) {
    double num;
    printf("Enter number: ");
    scanf("%lf", &num);

    printf("%lf\n", squareRoot(num));

    return 0;
}
Esempio n. 17
0
void addRecordToDataset(Dataset* dataset, Record record) {

	float priceRelative, oldMean;

	dataset->sampleSize++;

	priceRelative = (float)record.x/record.y;
	oldMean = dataset->mean;
	dataset->mean = oldMean + (priceRelative - oldMean) / dataset->sampleSize;

	dataset->Q = dataset->Q + (priceRelative - oldMean) * (priceRelative - dataset->mean);
	dataset->variance = dataset->Q / dataset->sampleSize;

	dataset->stdDev = squareRoot(dataset->variance);
	

}
Esempio n. 18
0
int prime (n)
{
    if ( n == 2 ) {
        return 1;
    } else if ( n > 2 ) {
        bool isPrime = true;
        int i;

        for ( i = 2; i <= squareRoot ((float) n); i += (i > 2) ? 2 : 1 )
            if ( n % i == 0 )
                return 0;

        return 1;
    } else {
        return 0;
    }
}
Esempio n. 19
0
int main () {
	time_t end;
	double seconds;
	unsigned int i;
	unsigned int j;
	time_t start = time(NULL);
	for (i=0;i<65535;++i) {
		for (j=0;j<3600;j++) {
			//R0 is velocityDenominator for now
			R1 = area;
			R0 = density;
			R0 *= R1;
			//denominator at bp -16-24 = -40, so shift right to -24
			R0>>=16;
			R1 = coefficient;
			R0*=R1;
			//denominator at bp -24-16=-40, so shift right to -24
			R0>>=16;
			//move out 2 from calculation as part of binary point shifting
			//terminalVelocity = weight/velocityDenominator;
			R3= weight;
			R4 = R0;
			R0= R3/R4;
			//terminal velocity bp now at 1-32+24= -7
			R0>>=1;
			squareRoot();
			//R1 is dynamicPressure;
			//1/2 factored out into shifting bp
			R2=density;
			R2*=R0;
			R2*=R0;
			dynamicPressure=R2;
			//terminalVelocity bp at -3 from sqrt, so shift right to 0
			R0>>=3;
			//dynamicPressure bp =-1-16-3-3=-23, so shift right to 0
			R0 = dynamicPressure;
			R0>>=23;
		}
	}
	end = time(NULL);
	seconds = difftime(end,start);
	printf("time it took %f seconds\n",seconds);

	return 0;
}
int main () {
	/* bp -32*/
	unsigned int weight = 0x19eb851e;
	/* bp -16*/
	unsigned int coefficient = 0x8000;
	unsigned int density = 0x9b;
	//bp = 2^-22/4=2^-24
	//so area = (0.14*0.14*PI*2^(bp-2))
	unsigned int area = 258265;
	unsigned int terminalVelocity;
	unsigned int velocityDenominator;
	unsigned int dynamicPressure;

	time_t end;
	double seconds;
	unsigned int i;
	unsigned int j;
	time_t start = time(NULL);
	for (i=0;i<65535;++i) {
		for (j=0;j<3600;j++) {
			velocityDenominator = density*area;
			//denominator at bp -16-24 = -40, so shift right to -24
			velocityDenominator>>=16;
			velocityDenominator*=coefficient;
			//denominator at bp -24-16=-40, so shift right to -24
			velocityDenominator>>=16;
			//move out 2 from calculation as part of binary point shifting
			terminalVelocity = weight/velocityDenominator;
			//terminal velocity bp now at 1-32+24= -7
			terminalVelocity>>=1;
			terminalVelocity = squareRoot(terminalVelocity);
			//1/2 factored out into shifting bp
			dynamicPressure=density*terminalVelocity*terminalVelocity;
			//terminalVelocity bp at -3 from sqrt, so shift right to 0
			terminalVelocity>>=3;
			//dynamicPressure bp =-1-16-3-3=-23, so shift right to 0
			dynamicPressure>>=23;
		}
	}
	end = time(NULL);
	seconds = difftime(end,start);
	printf("time it took %f seconds\n",seconds);

	return 0;
}
Esempio n. 21
0
void testRoot(){

 printf("\nRoot finding and minimisation\n");
 golden(functionTest3,0,2);
 golden(functionTest1,3,7);
 golden(functionTest2,5,7);
 golden(poly,-0.5,1.0); 

 brute (poly,-1.0,1.0, 0.0001); 
 brute (functionTest1,3,7, 0.0001); 
 secant(poly,0.0,1.0);
 newton(poly, dpoly, 0.0); 
 regulaFalsi(poly,-1.0,1.0); 
 bisect(poly,-1.0,1.0);
 fixedPointIteration(cosine,1.0); 
 squareRoot(20); 
 
} 
// The Cholesky decomposition
// Uses a symmetric, positive-definite matrix
// to calculate a lower triangular matrix
void choldc(int n, uint32_t *a, float *l_test){
	for(int i = 0; i < n; ++i) {
		for(int j = 0; j < (i + 1); ++j) {
			float sum = a[i * n + j];
			for(int k = 0; k < j; ++k){
				sum -= l_test[i * n + k] * l_test[j * n + k];
			}

			if (i == j) {
				if (sum <= 0.0) {
					sum *= -1;
				}

				l_test[i * n + i] = squareRoot(sum);
			}
			else{
				l_test[i * n + j] = 1.0 / l_test[j * n + j] * sum;
			}
		}
	}
}
Esempio n. 23
0
int main(int argc,char * argv[]){

int i;
long double r = 123456789012345678;
long long int MAX_ITER;
if(argc != 2){
printf("ErroR...");
}
else{
MAX_ITER = atoi(argv[1]);
//r = MAX_ITER;
time_t t1,t2;
t1 = (double) time(NULL);
for(i=0;i <MAX_ITER;i++){
squareRoot(r);//Call Function
r--;
}
t2 = (double) time(NULL);
printf("\nThe Total time = %f  \n",difftime(t2,t1));
}
return 0;
}
Esempio n. 24
0
int main(int argc, char** argv) {
    FILE* fp;
    if(argc != 2) {
        printf("USAGE: MatrixRotation <fileContainingTestVectors>\n");
        return 1;
    }
    fp = fopen(argv[1], "r");
    if(fp == NULL) {
        printf("Failed to open the input file '%s' for reading!\n", argv[1]);
        return 2;
    }
    while(!feof(fp)) {
        int len = readMatrix(fp);
        if(len <= 0) {
            continue;
        }
        int dim = squareRoot(len);
        rotateMatrix(dim);
        printMatrix(len);
    }
    fclose(fp);
    return 0;
}
int main(void) {
  printf("%f",squareRoot(125348, 0.000000001));
  return 0;
}
Esempio n. 26
0
void printSqrt(double n)
{
    log("sqrt(" + n + ") = " + squareRoot(n));
}
Esempio n. 27
0
TEST(SquareRootTest, NegativeNos) {
    ASSERT_EQ(-1.0, squareRoot(-15.0));
    ASSERT_EQ(-1.0, squareRoot(-0.2));
}
int  main()

 {    

     _Bool C1,C2;
    unsigned int  i , j , k, l , mi , alpha ;
    double totald1[n1] , totald2[n2] = {} , irDist1[n1] = {}, irDist2[n2] = {}, costd1[n1]  = {} , costd2[n2] = {};
    double totalCost1[n1] , totalCost2[n2];
    int source1, source2, dest1 , dest2;
    unsigned int edgeCount = 0;
    double distance , totaldistance1 = 0, totaldistance2 = 0 , finalDistance = 0 , de1 = 0 , de2 = 0, del[n1] = {}, de2l[n2] = {};
    
    struct EdgeBag cab1[n1]; // pass the argument to this as the total number of customers there
    struct EdgeBag cab2[n2];  // same 
    
    struct Start s;  // create a starting point pair 
    struct Start d;  // create a destination pair

    /* Long Input */

    cab1[0].x = 2;
    cab1[1].x = 1;
    cab1[2].x = 1;
    cab1[3].x = 1;
    
    cab1[0].y = 2;
    cab1[1].y = 1;
    cab1[2].y = 0;
    cab1[3].y = -1;

    cab2[0].x = 3;
    cab2[0].x = 3;
    cab2[0].x = 3;
  

    cab2[0].y = 1;
    cab2[1].y = 0;
    cab2[2].y = -1;

    d.x = 0;
    d.y = 0;

    /* Optimal Cost
     *
 *-----------------------------------------
 *
 * */

// For the cab 1 

   for ( i = 0; i < n1 ; i++) {
     
       if (i != n1 ) {
           distance = squareRoot((cab1[i].x - cab1[i+1].x) * (cab1[i].x - cab1[i+1].x) + (cab1[i].y - cab1[i].y) *(cab1[i].y - cab1[i + 1].y));
           totald1[i] = distance / (i + 1);
        }

       else {
           distance = squareRoot((cab1[i].x - d.x) * (cab1[i].x - d.x) + (cab1[i].y - d.y) * (cab1[i].y - d.y));
           totald1[i] = distance / (i + 1);
       }

   }

    for ( i = 0; i < n1 ; i++) {
            costd1[i] +=  totald1[i];
        for ( j = i + 1; j < n1 ; j++) { 
            costd1[i] +=  totald1[j];
        }

        costd1[i] *=  alpha;
    }

  
// For the cab 2
    for ( i = 0; i < n2 ; i++) {
      

       if (i != (n2 - 1)) {
           distance = squareRoot((cab2[i].x - cab2[i+1].x) * (cab2[i].x - cab2[i+1].x) + (cab2[i].y - cab2[i].y) *(cab2[i].y - cab2[i + 1].y));
           totald2[i] = distance / (i + 1);
        }

       else {
           distance = squareRoot((cab2[i].x - d.x) * (cab2[i].x - d.x) + (cab2[i].y - d.y) * (cab2[i].y - d.y));
           totald2[i] = distance / (i + 1);
       }

   }
  


 for ( i = 0; i < n1 ; i++) {
            costd2[i] +=  totald2[i];
        for ( j = i + 1; j < n1 ; j++) { 
            costd2[i] +=  totald2[j];
        }

        costd2[i] *=  alpha;
    }

 /* Optimal Cost Ends */

   irDist1[0] = 0;
   irDist2[0] = 0;
   
for ( i = 0; i < (n1 - 1); i++) {
         de1 = squareRoot ((cab1[i].x - cab1[i+1].x) * (cab1[i].x - cab1[i+1].x) + (cab1[i].y - cab1[i].y) *(cab1[i].y - cab1[i + 1].y));
           de2 = squareRoot((cab1[i + 1].x - d.x) * (cab1[i + 1].x - d.x) + (cab1[i + 1].y - d.y) * (cab1[i + 1].y - d.y));
           del[i] = squareRoot((cab1[i].x - d.x) * (cab1[i].x - d.x) + (cab1[i].y - d.y) * (cab1[i].y - d.y));
           irDist1[i + 1] = alpha * (de1 + de2 - del[i]); 


   }

   for ( i = 0; i < (n2 - 1); i++) {
      
           de1 = squareRoot((cab2[i].x - cab2[i+1].x) * (cab2[i].x - cab2[i+1].x) + (cab2[i].y - cab2[i].y) *(cab2[i].y - cab2[i + 1].y));
           de2 = squareRoot((cab2[i + 1].x - d.x) * (cab2[i + 1].x - d.x) + (cab2[i + 1].y - d.y) * (cab2[i + 1].y - d.y));
           de2l[i] = squareRoot((cab2[i].x - d.x) * (cab2[i].x - d.x) + (cab2[i].y - d.y) * (cab2[i].y - d.y));
           irDist2[i] = alpha * (de1 + de2 - de2l[i]); 
          
      }

/* IR completes  */

for (i = 0; i < n1; i++) {
    if (i == 0) {
        totalCost1[i] = costd1[i];
    }
    else {
        totalCost1[i] = costd1[i] + ( (i) * irDist1[i]);
    }
}

for (i = 0; i < n2 ; i++) {
    if (i == 0) {
        totalCost2[i] = costd2[i];
    }
    else {
        totalCost2[i] = costd2[i] + ( (i) * irDist2[i]);
    }
}

C1 = 1;

// Sir Constrints 
for ( i=0;i<n1;i++) {
        C1 = (C1 && (del[i] >= costd1[i]));
}

for ( i=0;i<n1;i++) {
    C2 = (C2 && (de2l[i] >= costd2[i])) ;
 }

__CPROVER_assert(!(C1 && C2) , "Cost distribution exists for the current path");  
 
}
Esempio n. 29
0
void testInputOutputCorrelation() {

    QTime t; t.start();

    struct Nugget {
        mpz_class a, b, c, agx;
    };

    QList<Nugget> nuggets;

    mpz_class agx  =  0;
    mpz_class c    =  6;
    mpz_class b    =  1;
    mpz_class a    =  1;
    mpz_class addA = 19;

    nuggets << Nugget{a, b, c, agx};

    int i = 1;
    while (i <= 30) {

        a  += addA;
        b  += 1;
        c  += 2;
        agx += 1;

        addA += 10;

        if (isSquare(a)) {

            const auto& n = nuggets.last();

            qDebug() << int (t.elapsed() / 1000.0) << "s" << i << a << b << c << " AG(x) = " << agx << " sqrt(a)" << squareRoot(a) << "| diff:" << (mpz_class) (a-n.a) << (mpz_class) (b-n.b) << (mpz_class) (c-n.c) << (mpz_class) (agx-n.agx);

            nuggets << Nugget{a, b, c, agx};

            if      (i ==  1) { assert(agx ==   2); }
            else if (i ==  2) { assert(agx ==   5); }
            else if (i ==  3) { assert(agx ==  21); }
            else if (i ==  4) { assert(agx ==  42); }
            else if (i ==  5) { assert(agx == 152); }
            else if (i == 20) { assert(agx == 211345365); }

            i += 1;
        }
    }
}
Esempio n. 30
0
double calculate(int numInputTokens, char **inputString)
{
	int i;
	double result = 0.0;
	char *s;
	struct DynArr *stack;

	//for keeping track of # of operands and operators
	int numOfOperands = 0;
	int numOfOperators = 0;
	int check = 0;

	//set up the stack
	stack = createDynArr(20);

	// start at 1 to skip the name of the calculator calc
	for(i=1;i < numInputTokens;i++) 
	{
		s = inputString[i];

		if(strcmp(s, "+") == 0) {
			numOfOperators++;		//increase for binary operators
			add(stack);
		}
		else if(strcmp(s,"-") == 0) {
			numOfOperators++;
			subtract(stack);
		}
		else if(strcmp(s, "/") == 0) {
			numOfOperators++;
			divide(stack);
		}
		else if(strcmp(s, "x") == 0) {
			numOfOperators++;
			multiply(stack);
		}
		else if(strcmp(s, "^") == 0) {
			numOfOperators = numOfOperators;	//for unary operators don't increase
			power(stack);
		}
		else if(strcmp(s, "^2") == 0) {
			numOfOperators = numOfOperators;
			square(stack);
		}
		else if(strcmp(s, "^3") == 0) {
			numOfOperators = numOfOperators;
			cube(stack);
		}
		else if(strcmp(s, "abs") == 0) {
			numOfOperators = numOfOperators;
			absoluteValue(stack);
		}
		else if(strcmp(s, "sqrt") == 0) {
			numOfOperators = numOfOperators;
			squareRoot(stack);
		}
		else if(strcmp(s, "exp") == 0) {
			numOfOperators = numOfOperators;
			exponential(stack);
		}
		else if(strcmp(s, "ln") == 0) {
			numOfOperators = numOfOperators;
			naturalLog(stack);
		}
		else if(strcmp(s, "log") == 0) {
			numOfOperators = numOfOperators;
			logTen(stack);
		}
		else 
		{
			//check if its a number (or pi or e)
			if(isNumber(s, &result)) {
				numOfOperands++;			//increase count of operands
				pushDynArr(stack, result); //if it is push onto stack
			}
			else {
			printf("You entered bad characters, exiting!\n"); //else print error message
			exit(0);
			}
			
		}
	}	//end for 

	//check for correct balance of operands and operators
	//must be one more operand than operators in sequence
	check = numOfOperands - numOfOperators; //this must be equal to 1 for valid input
	if (check > 1) {
		printf("Illegal Input, too many operands or too few operators, exiting\n");
		exit(0);
	}
	else if (check < 1) {
		printf("Illegal Input, too few operands or too many operators, exiting\n");
		exit(0);
	}

	//if passed check store final result and return
	result = topDynArr(stack);
	return result;
}