Esempio n. 1
0
static stList *getRandomPairwiseAlignments() {
    stList *pairwiseAlignments = stList_construct3(0, (void(*)(void *)) destructPairwiseAlignment);
    int64_t randomAlignmentNumber = st_randomInt(0, 10);
    for (int64_t i = 0; i < randomAlignmentNumber; i++) {
        char *contig1 = stString_print("%" PRIi64 "", i);
        char *contig2 = stString_print("%" PRIi64 "", i * 10);
        int64_t start1 = st_randomInt(100000, 1000000);
        int64_t start2 = st_randomInt(100000, 1000000);
        int64_t strand1 = st_random() > 0.5;
        int64_t strand2 = st_random() > 0.5;
        int64_t end1 = start1;
        int64_t end2 = start2;
        struct List *operationList = constructEmptyList(0, NULL);
        while (st_random() > 0.1) {
            int64_t length = st_randomInt(0, 10);
            int64_t type = st_randomInt(0, 3);
            assert(type < 3);
            listAppend(operationList, constructAlignmentOperation(type, length, 0));
            if (type != PAIRWISE_INDEL_Y) {
                end1 += strand1 ? length : -length;
            }
            if (type != PAIRWISE_INDEL_X) {
                end2 += strand2 ? length : -length;
            }
        }
        stList_append(pairwiseAlignments,
                      constructPairwiseAlignment(contig1, start1, end1, strand1, contig2, start2, end2, strand2, 0.0, operationList));
        free(contig1);
        free(contig2);
    }
    return pairwiseAlignments;
}
Esempio n. 2
0
static char *tree_getNewickTreeStringP(stTree *tree) {
    char *cA, *cA2;
    if(stTree_getChildNumber(tree) > 0) {
        int32_t i;
        cA = stString_copy("(");
        for(i=0; i<stTree_getChildNumber(tree); i++) {
            cA2 = tree_getNewickTreeStringP(stTree_getChild(tree, i));
            char *cA3 = stString_print((i+1 < stTree_getChildNumber(tree) ? "%s%s," : "%s%s"), cA, cA2);
            free(cA);
            free(cA2);
            cA = cA3;
        }
        cA2 = stString_print("%s)", cA);
        free(cA);
        cA = cA2;
    }
    else {
        cA = stString_copy("");
    }
    if(stTree_getLabel(tree) != NULL) {
        cA2 = stString_print("%s%s", cA, stTree_getLabel(tree));
        free(cA);
        cA = cA2;
    }
    if(stTree_getBranchLength(tree) != INFINITY) {
        char *cA2 = stString_print("%s:%g", cA, stTree_getBranchLength(tree));
        free(cA);
        cA = cA2;
    }
    return cA;
}
static char *segmentWriteFn(Segment *segment) {
    stTree *phylogeneticTree = stHash_search(segmentWriteFn_flowerToPhylogeneticTreeHash, block_getFlower(segment_getBlock(segment)));
    assert(phylogeneticTree != NULL);
    char *segmentString = getMaximumLikelihoodString(phylogeneticTree, segment_getBlock(segment));
    //We append a zero to a segment string if it is part of block containing only a reference segment, else we append a 1.
    //We use these boolean values to determine if a sequence contains only these trivial strings, and is therefore trivial.
    char *appendedSegmentString = stString_print("%s%c ", segmentString, block_getInstanceNumber(segment_getBlock(segment)) == 1 ? '0' : '1');
    free(segmentString);
    return appendedSegmentString;
}
Esempio n. 4
0
static stTree *eventTree_getStTree_R(Event *event) {
    stTree *ret = stTree_construct();
    stTree_setLabel(ret, stString_print("%" PRIi64, event_getName(event)));
    stTree_setBranchLength(ret, event_getBranchLength(event));
    for(int64_t i = 0; i < event_getChildNumber(event); i++) {
        Event *child = event_getChild(event, i);
        stTree *childStTree = eventTree_getStTree_R(child);
        stTree_setParent(childStTree, ret);
    }
    return ret;
}
static stList *chooseAdjacencyPairing_externalProgram(stList *edges, int64_t nodeNumber, const char *programName) {
    /*
     * We create temp files to hold stuff.
     */
    if(nodeNumber <= 1) {
        assert(stList_length(edges) == 0);
        return stList_construct();
    }

    char *tempInputFile = getTempFile(), *tempOutputFile = getTempFile();

    /*
     * We write the graph to a temp file.
     */
    FILE *fileHandle = fopen(tempInputFile, "w");
    if(strcmp(programName, "blossom5") == 0) { //Must be all connected as
        //generates perfect matchings.
        writeCliqueGraph(fileHandle, edges, nodeNumber, 1);
    }
    else {
        writeGraph(fileHandle, edges, nodeNumber);
    }
    fclose(fileHandle);

    /*
     * We run the external program.
     */
    char *command = stString_print("%s -e %s -w %s >& /dev/null", programName, tempInputFile, tempOutputFile);
    int64_t i = st_system(command);
    if(i != 0) {
        st_errAbort("Something went wrong with the command: %s", command);
        //For some reason this causes a seg fault
        //stThrowNew(MATCHING_EXCEPTION, "Something went wrong with the command: %s", command);
    }
    free(command);

    /*
     * We get back the matching.
     */
    fileHandle = fopen(tempOutputFile, "r");
    stList *matching = readMatching(fileHandle, edges);
    fclose(fileHandle);
    st_logDebug("The adjacency matching for %" PRIi64 " nodes with %" PRIi64 " initial edges contains %" PRIi64 " edges\n", nodeNumber, stList_length(edges), stList_length(matching));

    /*
     * Get rid of the temp files..
     */
    st_system("rm -rf %s %s", tempInputFile, tempOutputFile);
    free(tempInputFile);
    free(tempOutputFile);

    return matching;
}
Esempio n. 6
0
char *block_makeNewickStringP(Segment *segment, bool includeInternalNames, bool includeUnaryEvents) {
	if(!includeUnaryEvents && segment_getChildNumber(segment) == 1) {
		return block_makeNewickStringP(segment_getChild(segment, 0), includeInternalNames, includeUnaryEvents);
	}
	if(segment_getChildNumber(segment) > 0) {
		char *left = stString_print("(");
		int64_t i;
		bool comma = 0;
		for(i=0; i<segment_getChildNumber(segment); i++) {
			Segment *childSegment = segment_getChild(segment, i);
			char *cA = block_makeNewickStringP(childSegment, includeInternalNames, includeUnaryEvents);
			char *cA2 = stString_print(comma ? "%s,%s" : "%s%s", left, cA);
			free(cA);
			left = cA2;
			comma = 1;
		}
		char *final = includeInternalNames ?
				stString_print("%s)%s", left, cactusMisc_nameToStringStatic(segment_getName(segment))) :
				stString_print("%s)", left);
		free(left);
		return final;
	}
static MetaSequence *addMetaSequence(Flower *flower, Cap *cap, int64_t index, char *string, bool trivialString) {
    /*
     * Adds a meta sequence representing a top level thread to the cactus disk.
     * The sequence is all 'N's at this stage.
     */
    Event *referenceEvent = cap_getEvent(cap);
    assert(referenceEvent != NULL);
    char *sequenceName = stString_print("%srefChr%" PRIi64 "", event_getHeader(referenceEvent), index);
    //char *sequenceName = stString_print("refChr%" PRIi64 "", index);
    MetaSequence *metaSequence = metaSequence_construct3(1, strlen(string), string, sequenceName,
            event_getName(referenceEvent), trivialString, flower_getCactusDisk(flower));
    free(sequenceName);
    return metaSequence;
}
static void testGibbsSamplingWithSimulatedAnnealing(CuTest *testCase,
        double(*temperatureFn)(double), bool pureGreedy, int64_t maxNumberOfChainsBeforeSwitchingToFast) {
    for (int64_t i = 0; i < 100; i++) {
        setup();
        double totalScore;
        time_t startTime = time(NULL);
        bool fast = maxNumberOfChainsBeforeSwitchingToFast > nodeNumber;
        stList *reference = makeReferenceGreedily(stubs, chains, zMatrix,
                nodeNumber, &totalScore, fast);
        checkIsValidReference(testCase, reference, totalScore);
        time_t totalTime = time(NULL) - startTime;
        char *cA = stString_print("Pre-annealing greedy (fast:%" PRIi64 "), %" PRIi64 " nodes, it took %" PRIi64 " seconds, score: %f\n", fast, nodeNumber, totalTime, totalScore);
        st_logInfo(cA);
        logReference(reference, nodeNumber, zMatrix, totalScore, cA);
        free(cA);
        startTime = time(NULL);
        int64_t permutations = st_randomInt(0, 100);
        if(pureGreedy) {
            greedyImprovement(reference, chains, zMatrix, permutations);
        }
        else {
            gibbsSamplingWithSimulatedAnnealing(reference, chains, zMatrix,
                    permutations, temperatureFn);
        }
        double totalScoreAfterAnnealing = calculateZScoreOfReference(reference, nodeNumber, zMatrix);
        checkIsValidReference(testCase, reference, totalScoreAfterAnnealing);
        totalTime = time(NULL) - startTime;
        cA = stString_print("Post-annealing permutations:%" PRIi64 ", %" PRIi64 " nodes, it took %" PRIi64 " seconds, score: %f\n", permutations, nodeNumber, totalTime, totalScore);
        st_logInfo(cA);
        logReference(reference, nodeNumber, zMatrix, totalScoreAfterAnnealing,
                cA);
        if(pureGreedy) {
            CuAssertTrue(testCase, totalScoreAfterAnnealing + 0.001 >= totalScore);
        }
        teardown();
    }
}
static void testMakeReferenceGreedily(CuTest *testCase) {
    for (int64_t i = 0; i < 100; i++) {
        setup();
        double totalScore;
        time_t startTime = time(NULL);
        bool fast = 1; //st_random() > 0.5;
        stList *reference = makeReferenceGreedily(stubs, chains, zMatrix,
                nodeNumber, &totalScore, fast);
        checkIsValidReference(testCase, reference, totalScore);
        time_t totalTime = time(NULL) - startTime;
        char *cA = stString_print("Greedy (fast:%" PRIi64 "), %" PRIi64 " nodes, it took %" PRIi64 " seconds, score: %f\n", fast, nodeNumber, totalTime, totalScore);
        st_logInfo(cA);
        logReference(reference, nodeNumber, zMatrix, totalScore, cA);
        free(cA);
        teardown();
    }
}
Esempio n. 10
0
static void cactusDisk_loadFromBinaryRepresentation(void **binaryString, CactusDisk *cactusDisk, stKVDatabaseConf *conf) {
    cactusDisk->sequencesReadFileHandle = NULL;
    cactusDisk->sequencesWriteFileHandle = NULL; //I think these lines are not needed.
    cactusDisk->sequencesFileName = NULL;
    cactusDisk->absSequencesFileName = NULL;
    assert(binaryRepresentation_peekNextElementType(*binaryString) == CODE_CACTUS_DISK);
    binaryRepresentation_popNextElementType(binaryString);
    cactusDisk->storeSequencesInAFile = binaryRepresentation_getBool(binaryString);
    if (cactusDisk->storeSequencesInAFile) {
        cactusDisk->sequencesFileName = binaryRepresentation_getString(binaryString);
        if (stKVDatabaseConf_getDir(conf) == NULL) {
            stThrowNew(CACTUS_DISK_EXCEPTION_ID,
                    "The database conf does not contain a directory in which the sequence file is to be found!\n");
        }
        cactusDisk->absSequencesFileName = stString_print("%s/%s", stKVDatabaseConf_getDir(conf),
                cactusDisk->sequencesFileName);
    }
    assert(binaryRepresentation_peekNextElementType(*binaryString) == CODE_CACTUS_DISK);
    binaryRepresentation_popNextElementType(binaryString);
}
Esempio n. 11
0
static CactusDisk *cactusDisk_constructPrivate(stKVDatabaseConf *conf, bool create, const char *sequencesFileName) {
    //sequencesFileName = NULL; //Disable the ability to store the sequences on disk.
    CactusDisk *cactusDisk = st_calloc(1, sizeof(CactusDisk));

    //construct lists of in memory objects
    cactusDisk->metaSequences = stSortedSet_construct3(cactusDisk_constructMetaSequencesP, NULL);
    cactusDisk->flowers = stSortedSet_construct3(cactusDisk_constructFlowersP, NULL);
    cactusDisk->flowerNamesMarkedForDeletion = stSortedSet_construct3((int (*)(const void *, const void *)) strcmp,
            free);
    cactusDisk->updateRequests = stList_construct3(0, (void (*)(void *)) stKVDatabaseBulkRequest_destruct);

    //Now open the database
    cactusDisk->database = stKVDatabase_construct(conf, create);
    cactusDisk->cache = stCache_construct();
    cactusDisk->stringCache = stCache_construct();

    //initialise the unique ids.
    int64_t seed = (clock() << 24) | (time(NULL) << 16) | (getpid() & 65535); //Likely to be unique
    st_logDebug("The cactus disk is seeding the random number generator with the value %" PRIi64 "\n", seed);
    st_randomSeed(seed);
    cactusDisk->uniqueNumber = 0;
    cactusDisk->maxUniqueNumber = 0;

    //Now load any stuff..
    if (containsRecord(cactusDisk, CACTUS_DISK_PARAMETER_KEY)) {
        if (create) {
            stThrowNew(CACTUS_DISK_EXCEPTION_ID, "Tried to create a cactus disk, but the cactus disk already exists");
        }
        if (sequencesFileName != NULL) {
            stThrowNew(CACTUS_DISK_EXCEPTION_ID,
                    "A sequences file name is specified, but the cactus disk is not being created");
        }
        void *record = getRecord(cactusDisk, CACTUS_DISK_PARAMETER_KEY, "cactus_disk parameters");
        void *record2 = record;
        cactusDisk_loadFromBinaryRepresentation(&record, cactusDisk, conf);
        free(record2);
    } else {
        assert(create);
        if (sequencesFileName == NULL) {
            cactusDisk->storeSequencesInAFile = 0;
            cactusDisk->sequencesFileName = NULL;
            cactusDisk->sequencesReadFileHandle = NULL;
            cactusDisk->sequencesWriteFileHandle = NULL;
            cactusDisk->absSequencesFileName = NULL;
        } else {
            if (stKVDatabaseConf_getDir(conf) == NULL) {
                stThrowNew(CACTUS_DISK_EXCEPTION_ID,
                        "The database conf does not contain a directory in which the sequence file is to be found!\n");
            }
            cactusDisk->storeSequencesInAFile = 1;
            cactusDisk->sequencesFileName = stString_copy(sequencesFileName);
            cactusDisk->absSequencesFileName = stString_print("%s/%s", stKVDatabaseConf_getDir(conf),
                    cactusDisk->sequencesFileName);
            //Make sure the file exists
            cactusDisk->sequencesReadFileHandle = fopen(cactusDisk->absSequencesFileName, "w");
            assert(cactusDisk->sequencesReadFileHandle != NULL);
            fclose(cactusDisk->sequencesReadFileHandle); //Flush it first time.
            cactusDisk->sequencesReadFileHandle = NULL;
            cactusDisk->sequencesWriteFileHandle = NULL;
        }
    }

    return cactusDisk;
}
Esempio n. 12
0
char *stTree_getNewickTreeString(stTree *tree) {
    char *cA = tree_getNewickTreeStringP(tree), *cA2;
    cA2 = stString_print("%s;", cA);
    free(cA);
    return cA2;
}
Esempio n. 13
0
int main(int argc, char *argv[]) {
    /*
     * Script for adding alignments to cactus tree.
     */
    int64_t startTime;
    stKVDatabaseConf *kvDatabaseConf;
    CactusDisk *cactusDisk;
    int key, k;

    bool (*filterFn)(stPinchSegment *, stPinchSegment *) = NULL;
    stSet *outgroupThreads = NULL;

    /*
     * Arguments/options
     */
    char * logLevelString = NULL;
    char * alignmentsFile = NULL;
    char * constraintsFile = NULL;
    char * cactusDiskDatabaseString = NULL;
    char * lastzArguments = "";
    int64_t minimumSequenceLengthForBlast = 1;

    //Parameters for annealing/melting rounds
    int64_t *annealingRounds = NULL;
    int64_t annealingRoundsLength = 0;
    int64_t *meltingRounds = NULL;
    int64_t meltingRoundsLength = 0;

    //Parameters for melting
    float maximumAdjacencyComponentSizeRatio = 10;
    int64_t blockTrim = 0;
    int64_t alignmentTrimLength = 0;
    int64_t *alignmentTrims = NULL;
    int64_t chainLengthForBigFlower = 1000000;
    int64_t longChain = 2;
    int64_t minLengthForChromosome = 1000000;
    float proportionOfUnalignedBasesForNewChromosome = 0.8;
    bool breakChainsAtReverseTandems = 1;
    int64_t maximumMedianSequenceLengthBetweenLinkedEnds = INT64_MAX;
    bool realign = 0;
    char *realignArguments = "";
    bool removeRecoverableChains = false;
    bool (*recoverableChainsFilter)(stCactusEdgeEnd *, Flower *) = NULL;
    int64_t maxRecoverableChainsIterations = 1;
    int64_t maxRecoverableChainLength = INT64_MAX;

    //Parameters for removing ancient homologies
    bool doPhylogeny = false;
    int64_t phylogenyNumTrees = 1;
    enum stCaf_RootingMethod phylogenyRootingMethod = BEST_RECON;
    enum stCaf_ScoringMethod phylogenyScoringMethod = COMBINED_LIKELIHOOD;
    double breakpointScalingFactor = 1.0;
    bool phylogenySkipSingleCopyBlocks = 0;
    int64_t phylogenyMaxBaseDistance = 1000;
    int64_t phylogenyMaxBlockDistance = 100;
    bool phylogenyKeepSingleDegreeBlocks = 0;
    stList *phylogenyTreeBuildingMethods = stList_construct();
    enum stCaf_TreeBuildingMethod defaultMethod = GUIDED_NEIGHBOR_JOINING;
    stList_append(phylogenyTreeBuildingMethods, &defaultMethod);
    double phylogenyCostPerDupPerBase = 0.2;
    double phylogenyCostPerLossPerBase = 0.2;
    const char *debugFileName = NULL;
    const char *referenceEventHeader = NULL;
    double phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce = 1.0;
    int64_t numTreeBuildingThreads = 2;
    int64_t minimumBlockDegreeToCheckSupport = 10;
    double minimumBlockHomologySupport = 0.7;
    double nucleotideScalingFactor = 1.0;
    HomologyUnitType phylogenyHomologyUnitType = BLOCK;
    enum stCaf_DistanceCorrectionMethod phylogenyDistanceCorrectionMethod = JUKES_CANTOR;
    bool sortAlignments = false;

    ///////////////////////////////////////////////////////////////////////////
    // (0) Parse the inputs handed by genomeCactus.py / setup stuff.
    ///////////////////////////////////////////////////////////////////////////

    while (1) {
        static struct option long_options[] = { { "logLevel", required_argument, 0, 'a' }, { "alignments", required_argument, 0, 'b' }, {
                "cactusDisk", required_argument, 0, 'c' }, { "lastzArguments", required_argument, 0, 'd' },
                { "help", no_argument, 0, 'h' }, { "annealingRounds", required_argument, 0, 'i' }, { "trim", required_argument, 0, 'k' }, {
                        "trimChange", required_argument, 0, 'l', }, { "minimumTreeCoverage", required_argument, 0, 'm' }, { "blockTrim",
                        required_argument, 0, 'n' }, { "deannealingRounds", required_argument, 0, 'o' }, { "minimumDegree",
                        required_argument, 0, 'p' }, { "minimumIngroupDegree", required_argument, 0, 'q' }, {
                        "minimumOutgroupDegree", required_argument, 0, 'r' }, { "alignmentFilter", required_argument, 0, 't' }, {
                        "minimumSequenceLengthForBlast", required_argument, 0, 'v' }, { "maxAdjacencyComponentSizeRatio",
                        required_argument, 0, 'w' }, { "constraints", required_argument, 0, 'x' }, { "minLengthForChromosome",
                        required_argument, 0, 'y' }, { "proportionOfUnalignedBasesForNewChromosome", required_argument, 0, 'z' },
                        { "maximumMedianSequenceLengthBetweenLinkedEnds", required_argument, 0, 'A' },
                        { "realign", no_argument, 0, 'B' }, { "realignArguments", required_argument, 0, 'C' },
                        { "phylogenyNumTrees", required_argument, 0, 'D' },
                        { "phylogenyRootingMethod", required_argument, 0, 'E' },
                        { "phylogenyScoringMethod", required_argument, 0, 'F' },
                        { "phylogenyBreakpointScalingFactor", required_argument, 0, 'G' },
                        { "phylogenySkipSingleCopyBlocks", no_argument, 0, 'H' },
                        { "phylogenyMaxBaseDistance", required_argument, 0, 'I' },
                        { "phylogenyMaxBlockDistance", required_argument, 0, 'J' },
                        { "phylogenyDebugFile", required_argument, 0, 'K' },
                        { "phylogenyKeepSingleDegreeBlocks", no_argument, 0, 'L' },
                        { "phylogenyTreeBuildingMethod", required_argument, 0, 'M' },
                        { "phylogenyCostPerDupPerBase", required_argument, 0, 'N' },
                        { "phylogenyCostPerLossPerBase", required_argument, 0, 'O' },
                        { "referenceEventHeader", required_argument, 0, 'P' },
                        { "phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce", required_argument, 0, 'Q' },
                        { "numTreeBuildingThreads", required_argument, 0, 'R' },
                        { "phylogeny", no_argument, 0, 'S' },
                        { "minimumBlockHomologySupport", required_argument, 0, 'T' },
                        { "phylogenyNucleotideScalingFactor", required_argument, 0, 'U' },
                        { "minimumBlockDegreeToCheckSupport", required_argument, 0, 'V' },
                        { "removeRecoverableChains", required_argument, 0, 'W' },
                        { "minimumNumberOfSpecies", required_argument, 0, 'X' },
                        { "phylogenyHomologyUnitType", required_argument, 0, 'Y' },
                        { "phylogenyDistanceCorrectionMethod", required_argument, 0, 'Z' },
                        { "maxRecoverableChainsIterations", required_argument, 0, '1' },
                        { "maxRecoverableChainLength", required_argument, 0, '2' },
                        { 0, 0, 0, 0 } };

        int option_index = 0;

        key = getopt_long(argc, argv, "a:b:c:hi:k:m:n:o:p:q:r:stv:w:x:y:z:A:BC:D:E:", long_options, &option_index);

        if (key == -1) {
            break;
        }

        switch (key) {
            case 'a':
                logLevelString = stString_copy(optarg);
                st_setLogLevelFromString(logLevelString);
                break;
            case 'b':
                alignmentsFile = stString_copy(optarg);
                break;
            case 'c':
                cactusDiskDatabaseString = stString_copy(optarg);
                break;
            case 'd':
                lastzArguments = stString_copy(optarg);
                break;
            case 'h':
                usage();
                return 0;
            case 'i':
                annealingRounds = getInts(optarg, &annealingRoundsLength);
                break;
            case 'o':
                meltingRounds = getInts(optarg, &meltingRoundsLength);
                break;
            case 'k':
                alignmentTrims = getInts(optarg, &alignmentTrimLength);
                break;
            case 'm':
                k = sscanf(optarg, "%f", &minimumTreeCoverage);
                assert(k == 1);
                break;
            case 'n':
                k = sscanf(optarg, "%" PRIi64 "", &blockTrim);
                assert(k == 1);
                break;
            case 'p':
                k = sscanf(optarg, "%" PRIi64 "", &minimumDegree);
                assert(k == 1);
                break;
            case 'q':
                k = sscanf(optarg, "%" PRIi64 "", &minimumIngroupDegree);
                assert(k == 1);
                break;
            case 'r':
                k = sscanf(optarg, "%" PRIi64 "", &minimumOutgroupDegree);
                assert(k == 1);
                break;
            case 't':
                if (strcmp(optarg, "singleCopyOutgroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_filterByOutgroup;
                } else if (strcmp(optarg, "relaxedSingleCopyOutgroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_relaxedFilterByOutgroup;
                } else if (strcmp(optarg, "singleCopy") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_filterByRepeatSpecies;
                } else if (strcmp(optarg, "relaxedSingleCopy") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_relaxedFilterByRepeatSpecies;
                } else if (strcmp(optarg, "singleCopyChr") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_singleCopyChr;
                } else if (strcmp(optarg, "singleCopyIngroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_singleCopyIngroup;
                } else if (strcmp(optarg, "relaxedSingleCopyIngroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_relaxedSingleCopyIngroup;
                } else if (strcmp(optarg, "none") == 0) {
                    sortAlignments = false;
                    filterFn = NULL;
                } else {
                    st_errAbort("Could not recognize alignmentFilter option %s", optarg);
                }
                break;
            case 'v':
                k = sscanf(optarg, "%" PRIi64 "", &minimumSequenceLengthForBlast);
                assert(k == 1);
                break;
            case 'w':
                k = sscanf(optarg, "%f", &maximumAdjacencyComponentSizeRatio);
                assert(k == 1);
                break;
            case 'x':
                constraintsFile = stString_copy(optarg);
                break;
            case 'y':
                k = sscanf(optarg, "%" PRIi64 "", &minLengthForChromosome);
                assert(k == 1);
                break;
            case 'z':
                k = sscanf(optarg, "%f", &proportionOfUnalignedBasesForNewChromosome);
                assert(k == 1);
                break;
            case 'A':
                k = sscanf(optarg, "%" PRIi64 "", &maximumMedianSequenceLengthBetweenLinkedEnds);
                assert(k == 1);
                break;
            case 'B':
                realign = 1;
                break;
            case 'C':
                realignArguments = stString_copy(optarg);
                break;
            case 'D':
                k = sscanf(optarg, "%" PRIi64, &phylogenyNumTrees);
                assert(k == 1);
                break;
            case 'E':
                if (!strcmp(optarg, "outgroupBranch")) {
                    phylogenyRootingMethod = OUTGROUP_BRANCH;
                } else if (!strcmp(optarg, "longestBranch")) {
                    phylogenyRootingMethod = LONGEST_BRANCH;
                } else if (!strcmp(optarg, "bestRecon")) {
                    phylogenyRootingMethod = BEST_RECON;
                } else {
                    st_errAbort("Invalid tree rooting method: %s", optarg);
                }
                break;
            case 'F':
                if (!strcmp(optarg, "reconCost")) {
                    phylogenyScoringMethod = RECON_COST;
                } else if (!strcmp(optarg, "nucLikelihood")) {
                    phylogenyScoringMethod = NUCLEOTIDE_LIKELIHOOD;
                } else if (!strcmp(optarg, "reconLikelihood")) {
                    phylogenyScoringMethod = RECON_LIKELIHOOD;
                } else if (!strcmp(optarg, "combinedLikelihood")) {
                    phylogenyScoringMethod = COMBINED_LIKELIHOOD;
                } else {
                    st_errAbort("Invalid tree scoring method: %s", optarg);
                }
                break;
            case 'G':
                k = sscanf(optarg, "%lf", &breakpointScalingFactor);
                assert(k == 1);
                break;
            case 'H':
                phylogenySkipSingleCopyBlocks = true;
                break;
            case 'I':
                k = sscanf(optarg, "%" PRIi64, &phylogenyMaxBaseDistance);
                assert(k == 1);
                break;
            case 'J':
                k = sscanf(optarg, "%" PRIi64, &phylogenyMaxBlockDistance);
                assert(k == 1);
                break;
            case 'K':
                debugFileName = stString_copy(optarg);
                break;
            case 'L':
                phylogenyKeepSingleDegreeBlocks = true;
                break;
            case 'M':
                // clear the default setting of the list
                stList_destruct(phylogenyTreeBuildingMethods);
                phylogenyTreeBuildingMethods = stList_construct();
                stList *methodStrings = stString_splitByString(optarg, ",");

                for (int64_t i = 0; i < stList_length(methodStrings); i++) {
                    char *methodString = stList_get(methodStrings, i);
                    enum stCaf_TreeBuildingMethod *method = st_malloc(sizeof(enum stCaf_TreeBuildingMethod));
                    if (strcmp(methodString, "neighborJoining") == 0) {
                        *method = NEIGHBOR_JOINING;
                    } else if (strcmp(methodString, "guidedNeighborJoining") == 0) {
                        *method = GUIDED_NEIGHBOR_JOINING;
                    } else if (strcmp(methodString, "splitDecomposition") == 0) {
                        *method = SPLIT_DECOMPOSITION;
                    } else if (strcmp(methodString, "strictSplitDecomposition") == 0) {
                        *method = STRICT_SPLIT_DECOMPOSITION;
                    } else if (strcmp(methodString, "removeBadChains") == 0) {
                        *method = REMOVE_BAD_CHAINS;
                    } else {
                        st_errAbort("Unknown tree building method: %s", methodString);
                    }
                    stList_append(phylogenyTreeBuildingMethods, method);
                }
                stList_destruct(methodStrings);
                break;
            case 'N':
                k = sscanf(optarg, "%lf", &phylogenyCostPerDupPerBase);
                assert(k == 1);
                break;
            case 'O':
                k = sscanf(optarg, "%lf", &phylogenyCostPerLossPerBase);
                assert(k == 1);
                break;
            case 'P':
                referenceEventHeader = stString_copy(optarg);
                break;
            case 'Q':
                k = sscanf(optarg, "%lf", &phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce);
                assert(k == 1);
                break;
            case 'R':
                k = sscanf(optarg, "%" PRIi64, &numTreeBuildingThreads);
                assert(k == 1);
                break;
            case 'S':
                doPhylogeny = true;
                break;
            case 'T':
                k = sscanf(optarg, "%lf", &minimumBlockHomologySupport);
                assert(k == 1);
                assert(minimumBlockHomologySupport <= 1.0);
                assert(minimumBlockHomologySupport >= 0.0);
                break;
            case 'U':
                k = sscanf(optarg, "%lf", &nucleotideScalingFactor);
                assert(k == 1);
                break;
            case 'V':
                k = sscanf(optarg, "%" PRIi64, &minimumBlockDegreeToCheckSupport);
                assert(k == 1);
                break;
            case 'W':
                if (strcmp(optarg, "1") == 0) {
                    removeRecoverableChains = true;
                    recoverableChainsFilter = NULL;
                } else if (strcmp(optarg, "unequalNumberOfIngroupCopies") == 0) {
                    removeRecoverableChains = true;
                    recoverableChainsFilter = stCaf_chainHasUnequalNumberOfIngroupCopies;
                } else if (strcmp(optarg, "unequalNumberOfIngroupCopiesOrNoOutgroup") == 0) {
                    removeRecoverableChains = true;
                    recoverableChainsFilter = stCaf_chainHasUnequalNumberOfIngroupCopiesOrNoOutgroup;
                } else if (strcmp(optarg, "0") == 0) {
                    removeRecoverableChains = false;
                } else {
                    st_errAbort("Could not parse removeRecoverableChains argument");
                }
                break;
            case 'X':
                k = sscanf(optarg, "%" PRIi64, &minimumNumberOfSpecies);
                if (k != 1) {
                    st_errAbort("Error parsing the minimumNumberOfSpecies argument");
                }
                break;
            case 'Y':
                if (strcmp(optarg, "chain") == 0) {
                    phylogenyHomologyUnitType = CHAIN;
                } else if (strcmp(optarg, "block") == 0) {
                    phylogenyHomologyUnitType = BLOCK;
                } else {
                    st_errAbort("Could not parse the phylogenyHomologyUnitType argument");
                }
                break;
            case 'Z':
                if (strcmp(optarg, "jukesCantor") == 0) {
                    phylogenyDistanceCorrectionMethod = JUKES_CANTOR;
                } else if (strcmp(optarg, "none") == 0 ) {
                    phylogenyDistanceCorrectionMethod = NONE;
                } else {
                    st_errAbort("Could not parse the phylogenyDistanceCorrectionMethod argument");
                }
                break;
            case '1':
                k = sscanf(optarg, "%" PRIi64, &maxRecoverableChainsIterations);
                if (k != 1) {
                    st_errAbort("Error parsing the maxRecoverableChainsIterations argument");
                }
                break;
            case '2':
                k = sscanf(optarg, "%" PRIi64, &maxRecoverableChainLength);
                if (k != 1) {
                    st_errAbort("Error parsing the maxRecoverableChainLength argument");
                }
                break;
            default:
                usage();
                return 1;
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    // (0) Check the inputs.
    ///////////////////////////////////////////////////////////////////////////

    assert(cactusDiskDatabaseString != NULL);
    assert(minimumTreeCoverage >= 0.0);
    assert(minimumTreeCoverage <= 1.0);
    assert(blockTrim >= 0);
    assert(annealingRoundsLength >= 0);
    for (int64_t i = 0; i < annealingRoundsLength; i++) {
        assert(annealingRounds[i] >= 0);
    }
    assert(meltingRoundsLength >= 0);
    for (int64_t i = 1; i < meltingRoundsLength; i++) {
        assert(meltingRounds[i - 1] < meltingRounds[i]);
        assert(meltingRounds[i - 1] >= 1);
    }
    assert(alignmentTrimLength >= 0);
    for (int64_t i = 0; i < alignmentTrimLength; i++) {
        assert(alignmentTrims[i] >= 0);
    }
    assert(minimumOutgroupDegree >= 0);
    assert(minimumIngroupDegree >= 0);

    //////////////////////////////////////////////
    //Set up logging
    //////////////////////////////////////////////

    st_setLogLevelFromString(logLevelString);

    //////////////////////////////////////////////
    //Log (some of) the inputs
    //////////////////////////////////////////////

    st_logInfo("Flower disk name : %s\n", cactusDiskDatabaseString);

    //////////////////////////////////////////////
    //Load the database
    //////////////////////////////////////////////

    kvDatabaseConf = stKVDatabaseConf_constructFromString(cactusDiskDatabaseString);
    cactusDisk = cactusDisk_construct(kvDatabaseConf, 0);
    st_logInfo("Set up the flower disk\n");

    ///////////////////////////////////////////////////////////////////////////
    // Sort the constraints
    ///////////////////////////////////////////////////////////////////////////

    stPinchIterator *pinchIteratorForConstraints = NULL;
    if (constraintsFile != NULL) {
        pinchIteratorForConstraints = stPinchIterator_constructFromFile(constraintsFile);
        st_logInfo("Created an iterator for the alignment constaints from file: %s\n", constraintsFile);
    }

    ///////////////////////////////////////////////////////////////////////////
    // Do the alignment
    ///////////////////////////////////////////////////////////////////////////

    startTime = time(NULL);

    stList *flowers = flowerWriter_parseFlowersFromStdin(cactusDisk);
    if (alignmentsFile == NULL) {
        cactusDisk_preCacheStrings(cactusDisk, flowers);
    }
    char *tempFile1 = NULL;
    for (int64_t i = 0; i < stList_length(flowers); i++) {
        flower = stList_get(flowers, i);
        if (!flower_builtBlocks(flower)) { // Do nothing if the flower already has defined blocks
            st_logDebug("Processing flower: %lli\n", flower_getName(flower));

            stCaf_setFlowerForAlignmentFiltering(flower);

            //Set up the graph and add the initial alignments
            stPinchThreadSet *threadSet = stCaf_setup(flower);

            //Build the set of outgroup threads
            outgroupThreads = stCaf_getOutgroupThreads(flower, threadSet);

            //Setup the alignments
            stPinchIterator *pinchIterator;
            stList *alignmentsList = NULL;
            if (alignmentsFile != NULL) {
                assert(i == 0);
                assert(stList_length(flowers) == 1);
                if (sortAlignments) {
                    tempFile1 = getTempFile();
                    stCaf_sortCigarsFileByScoreInDescendingOrder(alignmentsFile, tempFile1);
                    pinchIterator = stPinchIterator_constructFromFile(tempFile1);
                } else {
                    pinchIterator = stPinchIterator_constructFromFile(alignmentsFile);
                }
            } else {
                if (tempFile1 == NULL) {
                    tempFile1 = getTempFile();
                }
                alignmentsList = stCaf_selfAlignFlower(flower, minimumSequenceLengthForBlast, lastzArguments, realign, realignArguments, tempFile1);
                if (sortAlignments) {
                    stCaf_sortCigarsByScoreInDescendingOrder(alignmentsList);
                }
                st_logDebug("Ran lastz and have %" PRIi64 " alignments\n", stList_length(alignmentsList));
                pinchIterator = stPinchIterator_constructFromList(alignmentsList);
            }

            for (int64_t annealingRound = 0; annealingRound < annealingRoundsLength; annealingRound++) {
                int64_t minimumChainLength = annealingRounds[annealingRound];
                int64_t alignmentTrim = annealingRound < alignmentTrimLength ? alignmentTrims[annealingRound] : 0;
                st_logDebug("Starting annealing round with a minimum chain length of %" PRIi64 " and an alignment trim of %" PRIi64 "\n", minimumChainLength, alignmentTrim);
                stPinchIterator_setTrim(pinchIterator, alignmentTrim);

                //Add back in the constraints
                if (pinchIteratorForConstraints != NULL) {
                    stCaf_anneal(threadSet, pinchIteratorForConstraints, filterFn);
                }

                //Do the annealing
                if (annealingRound == 0) {
                    stCaf_anneal(threadSet, pinchIterator, filterFn);
                } else {
                    stCaf_annealBetweenAdjacencyComponents(threadSet, pinchIterator, filterFn);
                }

                // Dump the block degree and length distribution to a file
                if (debugFileName != NULL) {
                    dumpBlockInfo(threadSet, stString_print("%s-blockStats-preMelting", debugFileName));
                }

                printf("Sequence graph statistics after annealing:\n");
                printThreadSetStatistics(threadSet, flower, stdout);

                // Check for poorly-supported blocks--those that have
                // been transitively aligned together but with very
                // few homologies supporting the transitive
                // alignment. These "megablocks" can snarl up the
                // graph so that a lot of extra gets thrown away in
                // the first melting step.
                stPinchThreadSetBlockIt blockIt = stPinchThreadSet_getBlockIt(threadSet);
                stPinchBlock *block;
                while ((block = stPinchThreadSetBlockIt_getNext(&blockIt)) != NULL) {
                    if (stPinchBlock_getDegree(block) > minimumBlockDegreeToCheckSupport) {
                        uint64_t supportingHomologies = stPinchBlock_getNumSupportingHomologies(block);
                        uint64_t possibleSupportingHomologies = numPossibleSupportingHomologies(block, flower);
                        double support = ((double) supportingHomologies) / possibleSupportingHomologies;
                        if (support < minimumBlockHomologySupport) {
                            fprintf(stdout, "Destroyed a megablock with degree %" PRIi64
                                    " and %" PRIi64 " supporting homologies out of a maximum "
                                    "of %" PRIi64 " (%lf%%).\n", stPinchBlock_getDegree(block),
                                    supportingHomologies, possibleSupportingHomologies, support);
                            stPinchBlock_destruct(block);
                        }
                    }
                }

                //Do the melting rounds
                for (int64_t meltingRound = 0; meltingRound < meltingRoundsLength; meltingRound++) {
                    int64_t minimumChainLengthForMeltingRound = meltingRounds[meltingRound];
                    st_logDebug("Starting melting round with a minimum chain length of %" PRIi64 " \n", minimumChainLengthForMeltingRound);
                    if (minimumChainLengthForMeltingRound >= minimumChainLength) {
                        break;
                    }
                    stCaf_melt(flower, threadSet, NULL, 0, minimumChainLengthForMeltingRound, 0, INT64_MAX);
                } st_logDebug("Last melting round of cycle with a minimum chain length of %" PRIi64 " \n", minimumChainLength);
                stCaf_melt(flower, threadSet, NULL, 0, minimumChainLength, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds);
                //This does the filtering of blocks that do not have the required species/tree-coverage/degree.
                stCaf_melt(flower, threadSet, blockFilterFn, blockTrim, 0, 0, INT64_MAX);
            }

            if (removeRecoverableChains) {
                stCaf_meltRecoverableChains(flower, threadSet, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds, recoverableChainsFilter, maxRecoverableChainsIterations, maxRecoverableChainLength);
            }
            if (debugFileName != NULL) {
                dumpBlockInfo(threadSet, stString_print("%s-blockStats-postMelting", debugFileName));
            }

            printf("Sequence graph statistics after melting:\n");
            printThreadSetStatistics(threadSet, flower, stdout);

            // Build a tree for each block, then use each tree to
            // partition the homologies between the ingroups sequences
            // into those that occur before the speciation with the
            // outgroup and those which occur late.

            if (stSet_size(outgroupThreads) > 0 && doPhylogeny) {
                st_logDebug("Starting to build trees and partition ingroup homologies\n");
                stHash *threadStrings = stCaf_getThreadStrings(flower, threadSet);
                st_logDebug("Got sets of thread strings and set of threads that are outgroups\n");
                stCaf_PhylogenyParameters params;
                params.distanceCorrectionMethod = phylogenyDistanceCorrectionMethod;
                params.treeBuildingMethods = phylogenyTreeBuildingMethods;
                params.rootingMethod = phylogenyRootingMethod;
                params.scoringMethod = phylogenyScoringMethod;
                params.breakpointScalingFactor = breakpointScalingFactor;
                params.nucleotideScalingFactor = nucleotideScalingFactor;
                params.skipSingleCopyBlocks = phylogenySkipSingleCopyBlocks;
                params.keepSingleDegreeBlocks = phylogenyKeepSingleDegreeBlocks;
                params.costPerDupPerBase = phylogenyCostPerDupPerBase;
                params.costPerLossPerBase = phylogenyCostPerLossPerBase;
                params.maxBaseDistance = phylogenyMaxBaseDistance;
                params.maxBlockDistance = phylogenyMaxBlockDistance;
                params.numTrees = phylogenyNumTrees;
                params.ignoreUnalignedBases = 1;
                params.onlyIncludeCompleteFeatureBlocks = 0;
                params.doSplitsWithSupportHigherThanThisAllAtOnce = phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce;
                params.numTreeBuildingThreads = numTreeBuildingThreads;

                assert(params.numTreeBuildingThreads >= 1);

                stCaf_buildTreesToRemoveAncientHomologies(
                    threadSet, phylogenyHomologyUnitType, threadStrings, outgroupThreads, flower, &params,
                    debugFileName == NULL ? NULL : stString_print("%s-phylogeny", debugFileName), referenceEventHeader);
                stHash_destruct(threadStrings);
                st_logDebug("Finished building trees\n");

                if (removeRecoverableChains) {
                    // We melt recoverable chains after splitting, as
                    // well as before, to alleviate coverage loss
                    // caused by bad splits.
                    stCaf_meltRecoverableChains(flower, threadSet, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds, recoverableChainsFilter, maxRecoverableChainsIterations, maxRecoverableChainLength);
                }

                // Enforce the block constraints on minimum degree,
                // etc. after splitting.
                stCaf_melt(flower, threadSet, blockFilterFn, 0, 0, 0, INT64_MAX);
            }

            //Sort out case when we allow blocks of degree 1
            if (minimumDegree < 2) {
                st_logDebug("Creating degree 1 blocks\n");
                stCaf_makeDegreeOneBlocks(threadSet);
                stCaf_melt(flower, threadSet, blockFilterFn, blockTrim, 0, 0, INT64_MAX);
            } else if (maximumAdjacencyComponentSizeRatio < INT64_MAX) { //Deal with giant components
                st_logDebug("Breaking up components greedily\n");
                stCaf_breakupComponentsGreedily(threadSet, maximumAdjacencyComponentSizeRatio);
            }

            //Finish up
            stCaf_finish(flower, threadSet, chainLengthForBigFlower, longChain, minLengthForChromosome,
                    proportionOfUnalignedBasesForNewChromosome); //Flower is then destroyed at this point.
            st_logInfo("Ran the cactus core script\n");

            //Cleanup
            stPinchThreadSet_destruct(threadSet);
            stPinchIterator_destruct(pinchIterator);
            stSet_destruct(outgroupThreads);

            if (alignmentsList != NULL) {
                stList_destruct(alignmentsList);
            }
            st_logInfo("Cleaned up from main loop\n");
        } else {
            st_logInfo("We've already built blocks / alignments for this flower\n");
        }
    }
    stList_destruct(flowers);
    if (tempFile1 != NULL) {
        st_system("rm %s", tempFile1);
    }

    if (constraintsFile != NULL) {
        stPinchIterator_destruct(pinchIteratorForConstraints);
    }

    ///////////////////////////////////////////////////////////////////////////
    // Write the flower to disk.
    ///////////////////////////////////////////////////////////////////////////
    st_logDebug("Writing the flowers to disk\n");
    cactusDisk_write(cactusDisk);
    st_logInfo("Updated the flower on disk and %" PRIi64 " seconds have elapsed\n", time(NULL) - startTime);

    ///////////////////////////////////////////////////////////////////////////
    // Clean up.
    ///////////////////////////////////////////////////////////////////////////

    cactusDisk_destruct(cactusDisk);
}
Esempio n. 14
0
int main(int argc, char *argv[]) {
    int64_t j = 0;
    char *npReadFile = NULL;
    char *templateModelFile = stString_print("../models/testModelR9_template.model");
    char *complementModelFile = stString_print("../models/testModelR9_complement_pop2.model");
    double threshold = 0.8;

    int key;
    while (1) {
        static struct option long_options[] = {
                {"help",                    no_argument,        0,  'h'},
                {"templateModel",           required_argument,  0,  'T'},
                {"complementModel",         required_argument,  0,  'C'},
                {"npRead",                  required_argument,  0,  'q'},
                {"threshold",               required_argument,  0,  'D'},
                {0, 0, 0, 0} };

        int option_index = 0;

        key = getopt_long(argc, argv, "h:T:C:q:f:b:D:m:",
                          long_options, &option_index);

        if (key == -1) {
            //usage();
            break;
        }
        switch (key) {
            case 'h':
                usage();
                return 1;
            case 'T':
                templateModelFile = stString_copy(optarg);
                break;
            case 'C':
                complementModelFile = stString_copy(optarg);
                break;
            case 'q':
                npReadFile = stString_copy(optarg);
                break;
            case 'D':
                j = sscanf(optarg, "%lf", &threshold);
                assert (j == 1);
                assert (threshold >= 0);
                break;
            default:
                usage();
                return 1;
        }
    }

    if (!stFile_exists(npReadFile)) {
        st_errAbort("Could not find npRead here: %s\n", npReadFile);
    }
    // read in the .npRead file
    NanoporeRead *npRead = nanopore_loadNanoporeReadFromFile(npReadFile);

    // build state machines (to use the look up table)
    StateMachine *sMt = getStateMachine3(templateModelFile);
    //StateMachine *sMc = getStateMachine3(complementModelFile);

    // make 1D map of events (mean, noise) to kmers
    stList *templateMap = signalUtils_templateOneDAssignmentsFromRead(npRead, sMt, ASSIGNMENT_THRESHOLD);
    //stList *complementMap = signalUtils_complementOneDAssignmentsFromRead(npRead, sMc, ASSIGNMENT_THRESHOLD);

    // convert template to log normal
    // NB only need this if you're estimating the NOISE parameteres
    //nanopore_convert_to_lognormal_params(sMt->alphabetSize, sMt->kmerLength, sMt->EMISSION_MATCH_MATRIX, templateMap);
    // convert complement to log normal
    //nanopore_convert_to_lognormal_params(sMc->alphabetSize, sMc->kmerLength, sMc->EMISSION_MATCH_MATRIX, complementMap);

    // error log report
    st_uglyf("SENTINEL - Before: shift: %f scale: %f var: %f [template]\n",
             npRead->templateParams.shift, npRead->templateParams.scale, npRead->templateParams.var);

    // compute template params
    //nanopore_compute_noise_scale_params(sMt->EMISSION_MATCH_MATRIX, templateMap, &npRead->templateParams);
    // compute complement params
    //nanopore_compute_noise_scale_params(sMc->EMISSION_MATCH_MATRIX, complementMap, &npRead->complementParams);

    // error log report

    signalUtils_estimateNanoporeParams(sMt, npRead, &npRead->templateParams, ASSIGNMENT_THRESHOLD,
                                       signalUtils_templateOneDAssignmentsFromRead, nanopore_dontAdjustEvents);
    //signalUtils_estimateNanoporeParams(sMc, npRead, &npRead->complementParams, ASSIGNMENT_THRESHOLD,
    //                                   signalUtils_complementOneDAssignmentsFromRead, nanopore_dontAdjustEvents);

    st_uglyf("SENTINEL - After: shift: %f scale: %f var: %f [template]\n",
             npRead->templateParams.shift, npRead->templateParams.scale, npRead->templateParams.var);
    //st_uglyf("SENTINEL - After: shift_sd: %f scale_sd: %f var_sd: %f [template]\n",
    //         npRead->complementParams.shift_sd, npRead->complementParams.scale_sd, npRead->complementParams.var_sd);

    stList *templateKmers = lineTokensFromFile(npReadFile, 10);
    //stList *complementKmers = lineTokensFromFile(npReadFile, 12);
    //printEventNoisesAndParams(npRead, templateKmers, complementKmers);
    printEventMeansAndParams(npRead, templateKmers, NULL);

    stList_destruct(templateKmers);
    //stList_destruct(complementKmers);
    stList_destruct(templateMap);
    //stList_destruct(complementMap);
    nanopore_nanoporeReadDestruct(npRead);
    stateMachine_destruct(sMt);
    //stateMachine_destruct(sMc);

    (void) j;  // silence unused variable warning.
    return 0;
}