Esempio n. 1
0
/**
 * Translate a geometry program to create a new variant.
 */
static struct st_gp_variant *
st_translate_geometry_program(struct st_context *st,
                              struct st_geometry_program *stgp,
                              const struct st_gp_variant_key *key)
{
   GLuint inputMapping[VARYING_SLOT_MAX];
   GLuint outputMapping[VARYING_SLOT_MAX];
   struct pipe_context *pipe = st->pipe;
   GLuint attr;

   uint gs_num_inputs = 0;

   ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
   ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];

   ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
   ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
   uint gs_num_outputs = 0;

   GLint i;
   struct ureg_program *ureg;
   struct pipe_shader_state state = {0};
   struct st_gp_variant *gpv;

   gpv = CALLOC_STRUCT(st_gp_variant);
   if (!gpv)
      return NULL;

   ureg = ureg_create(TGSI_PROCESSOR_GEOMETRY);
   if (ureg == NULL) {
      free(gpv);
      return NULL;
   }

   memset(inputMapping, 0, sizeof(inputMapping));
   memset(outputMapping, 0, sizeof(outputMapping));

   /*
    * Convert Mesa program inputs to TGSI input register semantics.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if ((stgp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
         const GLuint slot = gs_num_inputs++;

         inputMapping[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_PRIMITIVE_ID:
            input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_POS:
            input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_PSIZ:
            input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
            input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            input_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   /* initialize output semantics to defaults */
   for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
      gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
      gs_output_semantic_index[i] = 0;
   }

   /*
    * Determine number of outputs, the (default) output register
    * mapping and the semantic information for each output.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
         GLuint slot = gs_num_outputs++;

         outputMapping[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_POS:
            assert(slot == 0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_BFC0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_BFC1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PSIZ:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_LAYER:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PRIMITIVE_ID:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_VIEWPORT:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               gs_output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               gs_output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(slot < ARRAY_SIZE(gs_output_semantic_name));
            assert(attr >= VARYING_SLOT_VAR0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            gs_output_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, stgp->Base.InputType);
   ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, stgp->Base.OutputType);
   ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES,
                 stgp->Base.VerticesOut);
   ureg_property(ureg, TGSI_PROPERTY_GS_INVOCATIONS, stgp->Base.Invocations);

   st_translate_program(st->ctx,
                        TGSI_PROCESSOR_GEOMETRY,
                        ureg,
                        stgp->glsl_to_tgsi,
                        &stgp->Base.Base,
                        /* inputs */
                        gs_num_inputs,
                        inputMapping,
                        input_semantic_name,
                        input_semantic_index,
                        NULL,
                        NULL,
                        /* outputs */
                        gs_num_outputs,
                        outputMapping,
                        gs_output_semantic_name,
                        gs_output_semantic_index,
                        FALSE,
                        FALSE);

   state.tokens = ureg_get_tokens(ureg, NULL);
   ureg_destroy(ureg);

   st_translate_stream_output_info(stgp->glsl_to_tgsi,
                                   outputMapping,
                                   &state.stream_output);

   if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
      _mesa_print_program(&stgp->Base.Base);
      debug_printf("\n");
   }

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(state.tokens, 0);
      debug_printf("\n");
   }

   /* fill in new variant */
   gpv->driver_shader = pipe->create_gs_state(pipe, &state);
   gpv->key = *key;

   ureg_free_tokens(state.tokens);
   return gpv;
}
Esempio n. 2
0
/**
 * Translate a Mesa fragment shader into a TGSI shader using extra info in
 * the key.
 * \return  new fragment program variant
 */
static struct st_fp_variant *
st_translate_fragment_program(struct st_context *st,
                              struct st_fragment_program *stfp,
                              const struct st_fp_variant_key *key)
{
   struct pipe_context *pipe = st->pipe;
   struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
   GLboolean deleteFP = GL_FALSE;

   GLuint outputMapping[FRAG_RESULT_MAX];
   GLuint inputMapping[VARYING_SLOT_MAX];
   GLuint interpMode[PIPE_MAX_SHADER_INPUTS];  /* XXX size? */
   GLuint interpLocation[PIPE_MAX_SHADER_INPUTS];
   GLuint attr;
   GLbitfield64 inputsRead;
   struct ureg_program *ureg;

   GLboolean write_all = GL_FALSE;

   ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
   ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
   uint fs_num_inputs = 0;

   ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
   ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
   uint fs_num_outputs = 0;

   if (!variant)
      return NULL;

   assert(!(key->bitmap && key->drawpixels));

   if (key->bitmap) {
      /* glBitmap drawing */
      struct gl_fragment_program *fp; /* we free this temp program below */

      st_make_bitmap_fragment_program(st, &stfp->Base,
                                      &fp, &variant->bitmap_sampler);

      variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
      stfp = st_fragment_program(fp);
      deleteFP = GL_TRUE;
   }
   else if (key->drawpixels) {
      /* glDrawPixels drawing */
      struct gl_fragment_program *fp; /* we free this temp program below */

      if (key->drawpixels_z || key->drawpixels_stencil) {
         fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
                                                key->drawpixels_stencil);
      }
      else {
         /* RGBA */
         st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
         variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
         deleteFP = GL_TRUE;
      }
      stfp = st_fragment_program(fp);
   }

   if (!stfp->glsl_to_tgsi)
      _mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);

   /*
    * Convert Mesa program inputs to TGSI input register semantics.
    */
   inputsRead = stfp->Base.Base.InputsRead;
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
         const GLuint slot = fs_num_inputs++;

         inputMapping[attr] = slot;
         if (stfp->Base.IsCentroid & BITFIELD64_BIT(attr))
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTROID;
         else if (stfp->Base.IsSample & BITFIELD64_BIT(attr))
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;
         else
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_CENTER;

         if (key->persample_shading)
            interpLocation[slot] = TGSI_INTERPOLATE_LOC_SAMPLE;

         switch (attr) {
         case VARYING_SLOT_POS:
            input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
            break;
         case VARYING_SLOT_COL0:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 0;
            interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
                                                   TRUE);
            break;
         case VARYING_SLOT_COL1:
            input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            input_semantic_index[slot] = 1;
            interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
                                                   TRUE);
            break;
         case VARYING_SLOT_FOGC:
            input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
            break;
         case VARYING_SLOT_FACE:
            input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_PRIMITIVE_ID:
            input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_LAYER:
            input_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_VIEWPORT:
            input_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 0;
            interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            input_semantic_index[slot] = 1;
            interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
            break;
            /* In most cases, there is nothing special about these
             * inputs, so adopt a convention to use the generic
             * semantic name and the mesa VARYING_SLOT_ number as the
             * index.
             *
             * All that is required is that the vertex shader labels
             * its own outputs similarly, and that the vertex shader
             * generates at least every output required by the
             * fragment shader plus fixed-function hardware (such as
             * BFC).
             *
             * However, some drivers may need us to identify the PNTC and TEXi
             * varyings if, for example, their capability to replace them with
             * sprite coordinates is limited.
             */
         case VARYING_SLOT_PNTC:
            if (st->needs_texcoord_semantic) {
               input_semantic_name[slot] = TGSI_SEMANTIC_PCOORD;
               input_semantic_index[slot] = 0;
               interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
               break;
            }
            /* fall through */
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               interpMode[slot] =
                  st_translate_interp(stfp->Base.InterpQualifier[attr], FALSE);
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            /* Semantic indices should be zero-based because drivers may choose
             * to assign a fixed slot determined by that index.
             * This is useful because ARB_separate_shader_objects uses location
             * qualifiers for linkage, and if the semantic index corresponds to
             * these locations, linkage passes in the driver become unecessary.
             *
             * If needs_texcoord_semantic is true, no semantic indices will be
             * consumed for the TEXi varyings, and we can base the locations of
             * the user varyings on VAR0.  Otherwise, we use TEX0 as base index.
             */
            assert(attr >= VARYING_SLOT_TEX0);
            input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            input_semantic_index[slot] = st_get_generic_varying_index(st, attr);
            if (attr == VARYING_SLOT_PNTC)
               interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
            else
               interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
                                                      FALSE);
            break;
         }
      }
      else {
         inputMapping[attr] = -1;
      }
   }

   /*
    * Semantics and mapping for outputs
    */
   {
      uint numColors = 0;
      GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;

      /* if z is written, emit that first */
      if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
         fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
         fs_output_semantic_index[fs_num_outputs] = 0;
         outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
         fs_num_outputs++;
         outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
      }

      if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
         fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
         fs_output_semantic_index[fs_num_outputs] = 0;
         outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
         fs_num_outputs++;
         outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
      }

      if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)) {
         fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_SAMPLEMASK;
         fs_output_semantic_index[fs_num_outputs] = 0;
         outputMapping[FRAG_RESULT_SAMPLE_MASK] = fs_num_outputs;
         fs_num_outputs++;
         outputsWritten &= ~(1 << FRAG_RESULT_SAMPLE_MASK);
      }

      /* handle remaining outputs (color) */
      for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
         if (outputsWritten & BITFIELD64_BIT(attr)) {
            switch (attr) {
            case FRAG_RESULT_DEPTH:
            case FRAG_RESULT_STENCIL:
            case FRAG_RESULT_SAMPLE_MASK:
               /* handled above */
               assert(0);
               break;
            case FRAG_RESULT_COLOR:
               write_all = GL_TRUE; /* fallthrough */
            default:
               assert(attr == FRAG_RESULT_COLOR ||
                      (FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
               fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
               fs_output_semantic_index[fs_num_outputs] = numColors;
               outputMapping[attr] = fs_num_outputs;
               numColors++;
               break;
            }

            fs_num_outputs++;
         }
      }
   }

   ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
   if (ureg == NULL) {
      free(variant);
      return NULL;
   }

   if (ST_DEBUG & DEBUG_MESA) {
      _mesa_print_program(&stfp->Base.Base);
      _mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
      debug_printf("\n");
   }
   if (write_all == GL_TRUE)
      ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, 1);

   if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
      switch (stfp->Base.FragDepthLayout) {
      case FRAG_DEPTH_LAYOUT_ANY:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_ANY);
         break;
      case FRAG_DEPTH_LAYOUT_GREATER:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_GREATER);
         break;
      case FRAG_DEPTH_LAYOUT_LESS:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_LESS);
         break;
      case FRAG_DEPTH_LAYOUT_UNCHANGED:
         ureg_property(ureg, TGSI_PROPERTY_FS_DEPTH_LAYOUT,
                       TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
         break;
      default:
         assert(0);
      }
   }

   if (stfp->glsl_to_tgsi)
      st_translate_program(st->ctx,
                           TGSI_PROCESSOR_FRAGMENT,
                           ureg,
                           stfp->glsl_to_tgsi,
                           &stfp->Base.Base,
                           /* inputs */
                           fs_num_inputs,
                           inputMapping,
                           input_semantic_name,
                           input_semantic_index,
                           interpMode,
                           interpLocation,
                           /* outputs */
                           fs_num_outputs,
                           outputMapping,
                           fs_output_semantic_name,
                           fs_output_semantic_index, FALSE,
                           key->clamp_color );
   else
      st_translate_mesa_program(st->ctx,
                                TGSI_PROCESSOR_FRAGMENT,
                                ureg,
                                &stfp->Base.Base,
                                /* inputs */
                                fs_num_inputs,
                                inputMapping,
                                input_semantic_name,
                                input_semantic_index,
                                interpMode,
                                /* outputs */
                                fs_num_outputs,
                                outputMapping,
                                fs_output_semantic_name,
                                fs_output_semantic_index, FALSE,
                                key->clamp_color);

   variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
   ureg_destroy( ureg );

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/);
      debug_printf("\n");
   }

   /* fill in variant */
   variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
   variant->key = *key;

   if (deleteFP) {
      /* Free the temporary program made above */
      struct gl_fragment_program *fp = &stfp->Base;
      _mesa_reference_fragprog(st->ctx, &fp, NULL);
   }

   return variant;
}
Esempio n. 3
0
static void update_raster_state( struct st_context *st )
{
   struct gl_context *ctx = st->ctx;
   struct pipe_rasterizer_state *raster = &st->state.rasterizer;
   const struct gl_vertex_program *vertProg = ctx->VertexProgram._Current;
   const struct gl_fragment_program *fragProg = ctx->FragmentProgram._Current;
   uint i;

   memset(raster, 0, sizeof(*raster));

   /* _NEW_POLYGON, _NEW_BUFFERS
    */
   {
      raster->front_ccw = (ctx->Polygon.FrontFace == GL_CCW);

      /* _NEW_TRANSFORM */
      if (ctx->Transform.ClipOrigin == GL_UPPER_LEFT) {
         raster->front_ccw ^= 1;
      }

      /*
       * Gallium's surfaces are Y=0=TOP orientation.  OpenGL is the
       * opposite.  Window system surfaces are Y=0=TOP.  Mesa's FBOs
       * must match OpenGL conventions so FBOs use Y=0=BOTTOM.  In that
       * case, we must invert Y and flip the notion of front vs. back.
       */
      if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) {
         /* Drawing to an FBO.  The viewport will be inverted. */
         raster->front_ccw ^= 1;
      }
   }

   /* _NEW_LIGHT
    */
   raster->flatshade = ctx->Light.ShadeModel == GL_FLAT;
      
   raster->flatshade_first = ctx->Light.ProvokingVertex ==
                             GL_FIRST_VERTEX_CONVENTION_EXT;

   /* _NEW_LIGHT | _NEW_PROGRAM */
   raster->light_twoside = ctx->VertexProgram._TwoSideEnabled;

   /*_NEW_LIGHT | _NEW_BUFFERS */
   raster->clamp_vertex_color = !st->clamp_vert_color_in_shader &&
                                ctx->Light._ClampVertexColor;

   /* _NEW_POLYGON
    */
   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 raster->cull_face = PIPE_FACE_FRONT;
         break;
      case GL_BACK:
	 raster->cull_face = PIPE_FACE_BACK;
         break;
      case GL_FRONT_AND_BACK:
	 raster->cull_face = PIPE_FACE_FRONT_AND_BACK;
         break;
      }
   }
   else {
      raster->cull_face = PIPE_FACE_NONE;
   }

   /* _NEW_POLYGON
    */
   {
      if (ST_DEBUG & DEBUG_WIREFRAME) {
         raster->fill_front = PIPE_POLYGON_MODE_LINE;
         raster->fill_back = PIPE_POLYGON_MODE_LINE;
      }
      else {
         raster->fill_front = translate_fill( ctx->Polygon.FrontMode );
         raster->fill_back = translate_fill( ctx->Polygon.BackMode );
      }

      /* Simplify when culling is active:
       */
      if (raster->cull_face & PIPE_FACE_FRONT) {
	 raster->fill_front = raster->fill_back;
      }
      
      if (raster->cull_face & PIPE_FACE_BACK) {
	 raster->fill_back = raster->fill_front;
      }
   }

   /* _NEW_POLYGON 
    */
   if (ctx->Polygon.OffsetPoint ||
       ctx->Polygon.OffsetLine ||
       ctx->Polygon.OffsetFill) {
      raster->offset_point = ctx->Polygon.OffsetPoint;
      raster->offset_line = ctx->Polygon.OffsetLine;
      raster->offset_tri = ctx->Polygon.OffsetFill;
      raster->offset_units = ctx->Polygon.OffsetUnits;
      raster->offset_scale = ctx->Polygon.OffsetFactor;
      raster->offset_clamp = ctx->Polygon.OffsetClamp;
   }

   raster->poly_smooth = ctx->Polygon.SmoothFlag;
   raster->poly_stipple_enable = ctx->Polygon.StippleFlag;

   /* _NEW_POINT
    */
   raster->point_size = ctx->Point.Size;
   raster->point_smooth = !ctx->Point.PointSprite && ctx->Point.SmoothFlag;

   /* _NEW_POINT | _NEW_PROGRAM
    */
   if (ctx->Point.PointSprite) {
      /* origin */
      if ((ctx->Point.SpriteOrigin == GL_UPPER_LEFT) ^
          (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM))
         raster->sprite_coord_mode = PIPE_SPRITE_COORD_UPPER_LEFT;
      else 
         raster->sprite_coord_mode = PIPE_SPRITE_COORD_LOWER_LEFT;

      /* Coord replacement flags.  If bit 'k' is set that means
       * that we need to replace GENERIC[k] attrib with an automatically
       * computed texture coord.
       */
      for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
         if (ctx->Point.CoordReplace[i]) {
            raster->sprite_coord_enable |= 1 << i;
         }
      }
      if (!st->needs_texcoord_semantic &&
          fragProg->Base.InputsRead & VARYING_BIT_PNTC) {
         raster->sprite_coord_enable |=
            1 << st_get_generic_varying_index(st, VARYING_SLOT_PNTC);
      }

      raster->point_quad_rasterization = 1;
   }

   /* ST_NEW_VERTEX_PROGRAM
    */
   if (vertProg) {
      if (vertProg->Base.Id == 0) {
         if (vertProg->Base.OutputsWritten & BITFIELD64_BIT(VARYING_SLOT_PSIZ)) {
            /* generated program which emits point size */
            raster->point_size_per_vertex = TRUE;
         }
      }
      else if (ctx->VertexProgram.PointSizeEnabled) {
         /* user-defined program and GL_VERTEX_PROGRAM_POINT_SIZE set */
         raster->point_size_per_vertex = ctx->VertexProgram.PointSizeEnabled;
      }
   }
   if (!raster->point_size_per_vertex) {
      /* clamp size now */
      raster->point_size = CLAMP(ctx->Point.Size,
                                 ctx->Point.MinSize,
                                 ctx->Point.MaxSize);
   }

   /* _NEW_LINE
    */
   raster->line_smooth = ctx->Line.SmoothFlag;
   if (ctx->Line.SmoothFlag) {
      raster->line_width = CLAMP(ctx->Line.Width,
                                 ctx->Const.MinLineWidthAA,
                                 ctx->Const.MaxLineWidthAA);
   }
   else {
      raster->line_width = CLAMP(ctx->Line.Width,
                                 ctx->Const.MinLineWidth,
                                 ctx->Const.MaxLineWidth);
   }

   raster->line_stipple_enable = ctx->Line.StippleFlag;
   raster->line_stipple_pattern = ctx->Line.StipplePattern;
   /* GL stipple factor is in [1,256], remap to [0, 255] here */
   raster->line_stipple_factor = ctx->Line.StippleFactor - 1;

   /* _NEW_MULTISAMPLE */
   raster->multisample = ctx->Multisample._Enabled;

   /* _NEW_MULTISAMPLE | _NEW_BUFFERS */
   raster->force_persample_interp =
         !st->force_persample_in_shader &&
         ctx->Multisample._Enabled &&
         ctx->Multisample.SampleShading &&
         ctx->Multisample.MinSampleShadingValue *
         ctx->DrawBuffer->Visual.samples > 1;

   /* _NEW_SCISSOR */
   raster->scissor = ctx->Scissor.EnableFlags;

   /* _NEW_FRAG_CLAMP */
   raster->clamp_fragment_color = !st->clamp_frag_color_in_shader &&
                                  ctx->Color._ClampFragmentColor;

   raster->half_pixel_center = 1;
   if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP)
      raster->bottom_edge_rule = 1;
   /* _NEW_TRANSFORM */
   if (ctx->Transform.ClipOrigin == GL_UPPER_LEFT)
      raster->bottom_edge_rule ^= 1;

   /* ST_NEW_RASTERIZER */
   raster->rasterizer_discard = ctx->RasterDiscard;

   if (st->edgeflag_culls_prims) {
      /* All edge flags are FALSE. Cull the affected faces. */
      if (raster->fill_front != PIPE_POLYGON_MODE_FILL)
         raster->cull_face |= PIPE_FACE_FRONT;
      if (raster->fill_back != PIPE_POLYGON_MODE_FILL)
         raster->cull_face |= PIPE_FACE_BACK;
   }

   /* _NEW_TRANSFORM */
   raster->depth_clip = !ctx->Transform.DepthClamp;
   raster->clip_plane_enable = ctx->Transform.ClipPlanesEnabled;
   raster->clip_halfz = (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE);

   cso_set_rasterizer(st->cso_context, raster);
}
Esempio n. 4
0
/**
 * Translate a Mesa vertex shader into a TGSI shader.
 * \param outputMapping  to map vertex program output registers (VARYING_SLOT_x)
 *       to TGSI output slots
 * \param tokensOut  destination for TGSI tokens
 * \return  pointer to cached pipe_shader object.
 */
void
st_prepare_vertex_program(struct gl_context *ctx,
                            struct st_vertex_program *stvp)
{
   struct st_context *st = st_context(ctx);
   GLuint attr;

   stvp->num_inputs = 0;
   stvp->num_outputs = 0;

   if (stvp->Base.IsPositionInvariant)
      _mesa_insert_mvp_code(ctx, &stvp->Base);

   /*
    * Determine number of inputs, the mappings between VERT_ATTRIB_x
    * and TGSI generic input indexes, plus input attrib semantic info.
    */
   for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
      if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
         stvp->input_to_index[attr] = stvp->num_inputs;
         stvp->index_to_input[stvp->num_inputs] = attr;
         stvp->num_inputs++;
         if ((stvp->Base.Base.DoubleInputsRead & BITFIELD64_BIT(attr)) != 0) {
            /* add placeholder for second part of a double attribute */
            stvp->index_to_input[stvp->num_inputs] = ST_DOUBLE_ATTRIB_PLACEHOLDER;
            stvp->num_inputs++;
         }
      }
   }
   /* bit of a hack, presetup potentially unused edgeflag input */
   stvp->input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
   stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;

   /* Compute mapping of vertex program outputs to slots.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
         stvp->result_to_output[attr] = ~0;
      }
      else {
         unsigned slot = stvp->num_outputs++;

         stvp->result_to_output[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_POS:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            stvp->output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_BFC0:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_BFC1:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            stvp->output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PSIZ:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            stvp->output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_EDGE:
            assert(0);
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_LAYER:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
            stvp->output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_VIEWPORT:
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
            stvp->output_semantic_index[slot] = 0;
            break;

         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               stvp->output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               stvp->output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(attr < VARYING_SLOT_MAX);
            stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            stvp->output_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
            break;
         }
      }
   }
   /* similar hack to above, presetup potentially unused edgeflag output */
   stvp->result_to_output[VARYING_SLOT_EDGE] = stvp->num_outputs;
   stvp->output_semantic_name[stvp->num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
   stvp->output_semantic_index[stvp->num_outputs] = 0;
}
Esempio n. 5
0
/**
 * Translate a geometry program to create a new variant.
 */
static struct st_gp_variant *
st_translate_geometry_program(struct st_context *st,
                              struct st_geometry_program *stgp,
                              const struct st_gp_variant_key *key)
{
   GLuint inputMapping[VARYING_SLOT_MAX];
   GLuint outputMapping[VARYING_SLOT_MAX];
   struct pipe_context *pipe = st->pipe;
   GLuint attr;
   GLbitfield64 inputsRead;
   GLuint vslot = 0;

   uint gs_num_inputs = 0;
   uint gs_builtin_inputs = 0;
   uint gs_array_offset = 0;

   ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
   ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
   uint gs_num_outputs = 0;

   GLint i;
   GLuint maxSlot = 0;
   struct ureg_program *ureg;

   struct st_gp_variant *gpv;

   gpv = CALLOC_STRUCT(st_gp_variant);
   if (!gpv)
      return NULL;

   if (!stgp->glsl_to_tgsi) {
      _mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
   }

   ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
   if (ureg == NULL) {
      free(gpv);
      return NULL;
   }

   /* which vertex output goes to the first geometry input */
   vslot = 0;

   memset(inputMapping, 0, sizeof(inputMapping));
   memset(outputMapping, 0, sizeof(outputMapping));

   /*
    * Convert Mesa program inputs to TGSI input register semantics.
    */
   inputsRead = stgp->Base.Base.InputsRead;
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
         const GLuint slot = gs_num_inputs;

         gs_num_inputs++;

         inputMapping[attr] = slot;

         stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
         stgp->input_to_index[attr] = vslot;
         stgp->index_to_input[vslot] = attr;
         ++vslot;

         if (attr != VARYING_SLOT_PRIMITIVE_ID) {
            gs_array_offset += 2;
         } else
            ++gs_builtin_inputs;

#if 0
         debug_printf("input map at %d = %d\n",
                      slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
#endif

         switch (attr) {
         case VARYING_SLOT_PRIMITIVE_ID:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            stgp->input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_POS:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            stgp->input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            stgp->input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            stgp->input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            stgp->input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            stgp->input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            stgp->input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            stgp->input_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_PSIZ:
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            stgp->input_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               stgp->input_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               stgp->input_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(attr >= VARYING_SLOT_VAR0 && attr < VARYING_SLOT_MAX);
            stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            stgp->input_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   /* initialize output semantics to defaults */
   for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
      gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
      gs_output_semantic_index[i] = 0;
   }

   /*
    * Determine number of outputs, the (default) output register
    * mapping and the semantic information for each output.
    */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
         GLuint slot;

         slot = gs_num_outputs;
         gs_num_outputs++;
         outputMapping[attr] = slot;

         switch (attr) {
         case VARYING_SLOT_POS:
            assert(slot == 0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_COL1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_BFC0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_BFC1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_FOGC:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PSIZ:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_VERTEX:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST0:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_CLIP_DIST1:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
            gs_output_semantic_index[slot] = 1;
            break;
         case VARYING_SLOT_LAYER:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_LAYER;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_PRIMITIVE_ID:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_VIEWPORT:
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_VIEWPORT_INDEX;
            gs_output_semantic_index[slot] = 0;
            break;
         case VARYING_SLOT_TEX0:
         case VARYING_SLOT_TEX1:
         case VARYING_SLOT_TEX2:
         case VARYING_SLOT_TEX3:
         case VARYING_SLOT_TEX4:
         case VARYING_SLOT_TEX5:
         case VARYING_SLOT_TEX6:
         case VARYING_SLOT_TEX7:
            if (st->needs_texcoord_semantic) {
               gs_output_semantic_name[slot] = TGSI_SEMANTIC_TEXCOORD;
               gs_output_semantic_index[slot] = attr - VARYING_SLOT_TEX0;
               break;
            }
            /* fall through */
         case VARYING_SLOT_VAR0:
         default:
            assert(slot < Elements(gs_output_semantic_name));
            assert(attr >= VARYING_SLOT_VAR0);
            gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
            gs_output_semantic_index[slot] =
               st_get_generic_varying_index(st, attr);
         break;
         }
      }
   }

   /* find max output slot referenced to compute gs_num_outputs */
   for (attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
         maxSlot = outputMapping[attr];
   }
   gs_num_outputs = maxSlot + 1;

#if 0 /* debug */
   {
      GLuint i;
      printf("outputMapping? %d\n", outputMapping ? 1 : 0);
      if (outputMapping) {
         printf("attr -> slot\n");
         for (i = 0; i < 16;  i++) {
            printf(" %2d       %3d\n", i, outputMapping[i]);
         }
      }
      printf("slot    sem_name  sem_index\n");
      for (i = 0; i < gs_num_outputs; i++) {
         printf(" %2d         %d         %d\n",
                i,
                gs_output_semantic_name[i],
                gs_output_semantic_index[i]);
      }
   }
#endif

   /* free old shader state, if any */
   if (stgp->tgsi.tokens) {
      st_free_tokens(stgp->tgsi.tokens);
      stgp->tgsi.tokens = NULL;
   }

   ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
   ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
   ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);
   ureg_property_gs_invocations(ureg, stgp->Base.Invocations);

   if (stgp->glsl_to_tgsi)
      st_translate_program(st->ctx,
                           TGSI_PROCESSOR_GEOMETRY,
                           ureg,
                           stgp->glsl_to_tgsi,
                           &stgp->Base.Base,
                           /* inputs */
                           gs_num_inputs,
                           inputMapping,
                           stgp->input_semantic_name,
                           stgp->input_semantic_index,
                           NULL,
                           NULL,
                           /* outputs */
                           gs_num_outputs,
                           outputMapping,
                           gs_output_semantic_name,
                           gs_output_semantic_index,
                           FALSE,
                           FALSE);
   else
      st_translate_mesa_program(st->ctx,
                                TGSI_PROCESSOR_GEOMETRY,
                                ureg,
                                &stgp->Base.Base,
                                /* inputs */
                                gs_num_inputs,
                                inputMapping,
                                stgp->input_semantic_name,
                                stgp->input_semantic_index,
                                NULL,
                                /* outputs */
                                gs_num_outputs,
                                outputMapping,
                                gs_output_semantic_name,
                                gs_output_semantic_index,
                                FALSE,
                                FALSE);

   stgp->num_inputs = gs_num_inputs;
   stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
   ureg_destroy( ureg );

   if (stgp->glsl_to_tgsi) {
      st_translate_stream_output_info(stgp->glsl_to_tgsi,
                                      outputMapping,
                                      &stgp->tgsi.stream_output);
   }

   if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
      _mesa_print_program(&stgp->Base.Base);
      debug_printf("\n");
   }

   if (ST_DEBUG & DEBUG_TGSI) {
      tgsi_dump(stgp->tgsi.tokens, 0);
      debug_printf("\n");
   }

   /* fill in new variant */
   gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
   gpv->key = *key;
   return gpv;
}