Esempio n. 1
0
int main(int argc, char **argv)
{
	struct pg_error *error = NULL;
	int ret = -1;
	int verbose = 0;
	int nb_vhost = 0;
	
	ret = pg_start(argc, argv, &error);
	g_assert(ret != -1);
	CHECK_ERROR(error);
	argc -= ret;
	argv += ret;
	while (argc > 1) {
		if (g_str_equal(argv[1], "-verbose")) {
			verbose = 1;
		} else if (g_str_equal(argv[1], "-vhost")) {
			if (argc < 2)
				goto exit;
			nb_vhost = atoi(argv[2]);
			if (!nb_vhost)
				goto exit;
			--argc;
			++argv;
		}
		--argc;
		++argv;
	}

	/* accounting program name */
	ret = start_loop(verbose, nb_vhost);
exit:
	pg_stop();
	return ret;
}
Esempio n. 2
0
File: main.cpp Progetto: SanHot/snet
int main(int argc, const char * argv[]) {
    std::cout << "Hello, Jointcom!\n";

    nlohmann::json config = {{"server", "127.0.0.1"}, {"port", 8080}, {"thread", 1}};
    if(readConfig(NET_CONFIG_FILE, config)) {
        LOG_STDOUT( NET_CONFIG_FILE " Error!");
        return -1;
    }
    if(readConfig(DB_CONFIG_FILE, g_si_config)) {
        LOG_STDOUT( DB_CONFIG_FILE " Error!");
        return -1;
    }
    if(readConfig(EXEC_CONFIG_FILE, g_exec_config)) {
        LOG_STDOUT( EXEC_CONFIG_FILE " Error!");
        return -1;
    }

    auto a_loop = new IOLoop();
    auto a_svr = std::make_shared<HttpServer>(a_loop);
    a_svr->setHttpCallback(callback);
    std::string svr = config["server"];
    a_svr->start(svr.c_str(), config["port"], config["thread"]);

#if defined(SIGPIPE) && !defined(_WIN32)
    signal(SIGPIPE, SIG_IGN);
#endif

    a_loop->start_loop();
    return 0;
}
Esempio n. 3
0
int
main(int argc, char **argv)
{
#ifdef EVENT__HAVE_SETRLIMIT
	/* Set the fd limit to a low value so that any fd leak is caught without
	making many requests. */
	struct rlimit rl;
	rl.rlim_cur = rl.rlim_max = 20;
	if (setrlimit(RLIMIT_NOFILE, &rl) == -1) {
		my_perror("setrlimit");
		exit(3);
	}
#endif

#ifdef _WIN32
	WSADATA WSAData;
	WSAStartup(0x101, &WSAData);
#endif

	/* Set up an address, used by both client & server. */
	memset(&saddr, 0, sizeof(saddr));
	saddr.sin_family = AF_INET;
	saddr.sin_addr.s_addr = htonl(0x7f000001);
	saddr.sin_port = 0; /* Tell the implementation to pick a port. */

	start_loop();

	return 0;
}
void	start_work_with_map(t_list *list)
{
	t_player	pl;

	pl.x_pos = 0.0;
	pl.y_pos = 0.0;
	pl.x_dir = -1.0;
	pl.y_dir = 0.0;
	pl.x_plane = 0.0;
	pl.y_plane = 0.66;
	// pl.new_time = clock();
	pl.old_time = 0;

	find_player_position_and_create_mass(list, &pl);
	// printf("x= %f y= %f\n", pl.x_pos, pl.y_pos);
	if (pl.x_pos == 0 && pl.y_pos == 0)
		printf("%s\n", "ERROR: no start position for player");
	else
	{
		create_window(&pl);
		// printf("asdfasdfasd\n");
		pl.new_time = clock();
		start_loop(&pl);
		// mlx_loop(win->mlx);
		// printf("END!!!\n");
	}
	mlx_loop(pl.mlx);

	del_mass(&pl);




}
Esempio n. 5
0
//executes 1 command line
void execute_command(char * command_line){
    
    if (command_line[0]=='#') return; //=comments
    
    if (write_to_thread_buffer){
        if (strncmp(command_line, "thread_stop", 11)==0){
            if (mode==MODE_TCP){
                write_to_thread_buffer=0;
                if (debug) printf("Thread stop.\n");
                if (thread_write_index>0) start_thread=1; //remember to start the thread when client closes the TCP/IP connection
            }        
        }else{
            if (debug) printf("Write to thread buffer: %s\n", command_line);
            while (*command_line!=0){
                write_thread_buffer(*command_line); //for TCP/IP we write to the thread buffer
                command_line++;
            }
            write_thread_buffer(';');
        }
    }else{
 
        char * arg = strchr(command_line, ' ');
        char * command =  strtok(command_line, " \r\n");    
        
        if (arg!=NULL) arg++;
        
        if (strcmp(command, "render")==0){
            render(arg);
        }else if (strcmp(command, "rotate")==0){
            rotate(arg);
        }else if (strcmp(command, "delay")==0){
            if (arg!=NULL)	usleep((atoi(arg)+1)*1000);
        }else if (strcmp(command, "brightness")==0){
            brightness(arg);
        }else if (strcmp(command, "rainbow")==0){
            rainbow(arg);
        }else if (strcmp(command, "fill")==0){	
            fill(arg);
        }else if (strcmp(command, "do")==0){
            start_loop(arg);
        }else if (strcmp(command, "loop")==0){
            end_loop(arg);
        }else if (strcmp(command, "thread_start")==0){ //start a new thread that processes code
            if (thread_running==0 && mode==MODE_TCP) init_thread(arg);
        }else if (strcmp(command, "setup")==0){
            setup_ledstring(arg);
        }else if (strcmp(command, "settings")==0){
            print_settings();
        }else if (strcmp(command, "debug")==0){
            if (debug) debug=0;
            else debug=1;
        }else if (strcmp(command, "exit")==0){
            printf("Exiting.\n");
            exit_program=1;
        }else{
            printf("Unknown cmd: %s\n", command_line);
        }
    }
}
Esempio n. 6
0
void HideHelp() {
	done_show_help();
	in_help = 0;

	SetMenu(0, 0);

	back_from_help();
	start_loop();
}
Esempio n. 7
0
int main(int argc, char **argv)
{
	if (argc < 2) {
		fprintf(stderr, "Usage: %s hostname\n", argv[0]);
		return EXIT_FAILURE;
	}

	bool start_upgrade_server = true;
	if (argc >= 3) {
		if (strcmp(argv[2], "--no-upgrade") == 0) {
			start_upgrade_server = false;
		}
	}

	/* start server for upgrading */
	pthread_t serverthread;
	if (start_upgrade_server == true) {
		pthread_create(&serverthread, NULL, server_thread, NULL);
	} else {
		printf("no upgrade server\n");
	}

	char *hostname = argv[1];
	char *port = PORT;

	/* connect to the database */
	setup_db();

	/* connect to the server and start the main loop */
	int socket = connectToServer(hostname, port);

	/* set default language */
	language_code = (char *) malloc(3);
	language_code[0] = 's';
	language_code[1] = 'v';
	language_code[2] = '\0';
	
	start_loop(socket);

	/* cleanup starts here */
	close(socket);

	mlog("client.log", "cancelling serverthread");
	if (start_upgrade_server == true) {
		pthread_cancel(serverthread);
		pthread_join(serverthread, NULL);
		mlog("client.log", "closing upgrade_socket");
		close(upgrade_socket);
	}


	mlog("client.log", "closing db");
	close_db();
	free(language_code);

	return EXIT_SUCCESS;
}
Esempio n. 8
0
void init_sles_gain_focus(struct android_app* state) {
	create_sl_engine();
	init_all_voices();
	start_loop();
	int i;
	for(i=0;i<sizeof_textures_elements;i++) {
		struct texture_file* tf = textures+i;
		setup_texture(tf, 0.0f);
	}
}
Esempio n. 9
0
int PluginClient::plugin_start_loop(int64_t start, 
	int64_t end, 
	int64_t buffer_size, 
	int total_buffers)
{
	this->source_start = start;
	this->total_len = end - start;
	this->start = start;
	this->end = end;
	this->in_buffer_size = this->out_buffer_size = buffer_size;
	this->total_in_buffers = this->total_out_buffers = total_buffers;
	start_loop();
	return 0;
}
Esempio n. 10
0
int main (int argc, char *argv [])
{
    char *sock = (argc > 1)? argv [1]: "";
    if (streq(sock,""))
    {
        zclock_log("cannot start broker for %s", sock);
        return -1;
    }
    char *job = (argc > 2)? argv [2]: "";
    if (streq(job,"")) 
    {
		zclock_log("cannot start broker job %s", job);
		return -1;
	}
    
    if (s_connect(sock)<0) {
        zclock_log("cannot connect to %s", sock);
        return -1;
    }
    else {
        zclock_log("broker connected to %s", sock);
    }
    
    
    struct sigaction sa;
    sigemptyset(&sa.sa_mask);
    sa.sa_flags=0;
    sa.sa_handler = s_signal_handler;
    sigaction(SIGHUP, &sa, 0);
    sigaction(SIGINT, &sa, 0);
    sigaction(SIGQUIT, &sa, 0);
    sigaction(SIGABRT, &sa, 0);
    sigaction(SIGTERM, &sa, 0);
	if (streq(job,"loop")) 
	{
		char *arg = (argc > 3)? argv [3]: "1";
		int count = atoi(arg);
		start_loop(count);
	}
	if (streq(job,"sleep"))
	{
		char *arg = (argc > 3)? argv [3]: "1000";
		start_echo(arg);
	}
    exit(0);
}
Esempio n. 11
0
int main(int argc, char **argv)
{
	struct pg_error *error = NULL;
	int ret;
	int verbose = 0;
	
	ret = pg_start(argc, argv, &error);
	g_assert(ret != -1);
	CHECK_ERROR(error);
	argc -= ret;
	argv += ret;
	verbose = (argc > 1 && g_str_equal(argv[1], "-verbose"));
	/* accounting program name */
	ret = start_loop(verbose);
	pg_stop();
	return ret;
}
Esempio n. 12
0
void HelpEditHook(int Key) {
	pdebug("HelpEditHook()\n");

	char Type;

	Type = 0;
	if (Key < 256) {
		Type = 1;
	} else switch(Key) {
		case KEY_LEFT:
		case KEY_RIGHT:
		case KEY_UP:
		case KEY_DOWN:
		case KEY_HOME:
		case KEY_END:
		case KEY_PPAGE:
		case KEY_NPAGE:
		case KEY_IC:
		case '\t':
		case KEY_BACKSPACE:
		case KEY_ENTER:
		case KEY_F(9): /* XXX */
			Type = 1;
			break;
	}
	if (Type == 1 && !IsNonModal) {
		if (in_help) {
			end_loop_help(Key);
		} else {
			end_loop(Key);
		}

		if (HelpWindow) {
			/* in_help value may be different here ? */
			if (in_help) {
				start_loop_help();
			} else {
				start_loop();
			}
		}
	} else {
		ProcessSpecialKey(Key);
	}
}
Esempio n. 13
0
void ShowHelp() {
  if (HelpPanel) {
    beep();
    return;
  }

  MkHelpWin();
  HOldDMode = DisplayMode;
  DisplayMode |= HELPSHOWN+OTHERWINDOW;

  SetMenu(FormsMenu, 1);

  HOldEditHook = EditHook;
  EditHook = HelpEditHook;
  RedrawKeys();

  touchwin(InfoWindow);

  forms_active = 1;
  init_forms();
  if (LineBuf) {
    char *UpperBuf = strdup(LineBuf);
    char *UpperPtr = UpperBuf;

    while (*UpperPtr) { *UpperPtr = toupper(*UpperPtr); UpperPtr++; }

    if (goto_node(UpperBuf) < 0 && goto_node("OMEXCH") < 0) {
      AddEStr("Forms file not found!\n", 0, 0);
      HideForms();
      return;
    }

    free(UpperBuf);
  } else {
    if (goto_node("OMEXCH") < 0) {
      AddEStr("Forms file not found!\n", 0, 0);
      HideForms();
      return;
    }
  }
  start_loop();
}
Esempio n. 14
0
void clov_apply( char *name)
{
    /*
     * This marks the argument registers as defined by ABI as off limits
     * to us until they are freed by "getarg()";
     */
    int dum = defargcount(1);

    int retno;
    int branchsite;

    /*-------------------------------------------------------------------------------
     * registers used
     *-------------------------------------------------------------------------------
     */

    reg_array_1d(Chi ,Cregs,6); // 2 spionr      - 6 regs
    reg_array_1d(Psi ,Cregs,6); // 2 spinors     - 6 regs
    reg_array_1d(Clo ,Cregs,15); 
        
    offset_2d(PSIIMM,FourSpinType,6,2*nsimd());
    offset_2d(CLOIMM,CloverType,21,2*nsimd());

    /*
     * Integer registers
     */
    alreg(Clo_p,Iregs);    /*Pointer to the current cpt of gauge field    */
    alreg(Chi_p,Iregs);    /*Pointer to the input four spinor             */
    alreg(Psi_p,Iregs);    /*Pointer to current cpt output PSI field      */
    alreg(length,Iregs);   /*number of sites*/
    //alreg(tab,Iregs);      /*Pointer to current entry in offset table*/

    alreg(args,Iregs);

    /*Useful integer immediate constants, in units of Fsize*/
    def_off(ZERO_IMM,Byte,0);
    def_off(SPINOR, FourSpinType, 12*nsimd());
    def_off(CLOVER, CloverType, 42*nsimd());
    
    int Isize      = def_offset(PROC->I_size,Byte,"Isize");
    
    /*--------------------------------------------------------------------
     * Start of the "pseudo assembler proper.
     *--------------------------------------------------------------------
     */
    make_inst(DIRECTIVE,Enter_Routine,name);

    grab_stack(0);
    save_regs();

    /*     * Define our arguments     */
    getarg(args);  /*Pointer to arg list*/

    queue_iload(Chi_p, ZERO_IMM,args);
    queue_load_addr(args,Isize,args);
    queue_iload(Psi_p, ZERO_IMM,args);
    queue_load_addr(args,Isize,args);
    queue_iload(Clo_p,   ZERO_IMM,args);
    queue_load_addr(args,Isize,args);
    queue_iload(length,ZERO_IMM,args);

    for (int i =0; i<6; i++ )
    {
        need_constant(i*2*SizeofDatum(FourSpinType)*nsimd());
    }
    for (int i =0; i<21; i++ )
    {
        need_constant(i*2*SizeofDatum(CloverType)*nsimd());
    }
  
    retno = get_target_label(); /*Branch to exit if length <1*/
    check_iterations(length,retno);

    /*     * Site loop              */
    branchsite = start_loop(length);


    for(int pp=0; pp<6; pp++)
    {
        complex_load(Psi[pp],PSIIMM[pp][0],Psi_p,FourSpinType);
    } 
    for(int qq=0; qq<6; qq++)
    {
        complex_load(Clo[qq],CLOIMM[qq][0],Clo_p,CloverType);
    }

    for(int rr=0; rr<6; rr++)
    {
        complex_mul     (Chi[rr], Clo[rr],  Psi[rr]);
    }

    for(int ss=0; ss<15; ss++)
    {
        complex_load(Clo[ss],CLOIMM[ss+6][0],Clo_p,CloverType);
    }    

    complex_conjmadd(Chi[0], Clo[0],  Psi[1]);
    complex_conjmadd(Chi[0], Clo[1],  Psi[2]);
    complex_conjmadd(Chi[0], Clo[3],  Psi[3]);
    complex_conjmadd(Chi[0], Clo[6],  Psi[4]);
    complex_conjmadd(Chi[0], Clo[10], Psi[5]);

    complex_madd    (Chi[1], Clo[0],  Psi[0]);
    complex_conjmadd(Chi[1], Clo[2],  Psi[2]);
    complex_conjmadd(Chi[1], Clo[4],  Psi[3]);
    complex_conjmadd(Chi[1], Clo[7],  Psi[4]);
    complex_conjmadd(Chi[1], Clo[11], Psi[5]);

    complex_madd    (Chi[2], Clo[1],  Psi[0]);
    complex_madd    (Chi[2], Clo[2],  Psi[1]);
    complex_conjmadd(Chi[2], Clo[5], Psi[3]);
    complex_conjmadd(Chi[2], Clo[8], Psi[4]);
    complex_conjmadd(Chi[2], Clo[12], Psi[5]);

    complex_madd    (Chi[3], Clo[3],  Psi[0]);
    complex_madd    (Chi[3], Clo[4], Psi[1]);
    complex_madd    (Chi[3], Clo[5], Psi[2]);
    complex_conjmadd(Chi[3], Clo[9], Psi[4]);
    complex_conjmadd(Chi[3], Clo[13], Psi[5]);

    complex_madd    (Chi[4], Clo[6], Psi[0]);
    complex_madd    (Chi[4], Clo[7], Psi[1]);
    complex_madd    (Chi[4], Clo[8], Psi[2]);
    complex_madd    (Chi[4], Clo[9], Psi[3]);
    complex_conjmadd(Chi[4], Clo[14], Psi[5]);

    complex_madd    (Chi[5], Clo[10], Psi[0]);
    complex_madd    (Chi[5], Clo[11], Psi[1]);
    complex_madd    (Chi[5], Clo[12], Psi[2]);
    complex_madd    (Chi[5], Clo[13], Psi[3]);
    complex_madd    (Chi[5], Clo[14], Psi[4]);
  

    for(int sp=0; sp<6; sp++)
    {
         complex_store(Chi[sp],PSIIMM[sp][0],Chi_p,FourSpinType);
    }
    
    queue_iadd_imm(Psi_p,Psi_p,SPINOR);
    queue_iadd_imm(Chi_p,Chi_p,SPINOR);
    queue_iadd_imm(Clo_p,Clo_p,CLOVER);

    /* TERMINATION point of the loop*/
    stop_loop(branchsite,length);


    make_inst(DIRECTIVE,Target,retno);

    /*	     EPILOGUE               */

    restore_regs();
    free_stack();
    make_inst(DIRECTIVE,Exit_Routine,name);

    return;
}
Esempio n. 15
0
void qcdoc_su3_recon( char *name)
{
    /****  This section defines all the registers and offsets I need ****/

    /*
     * This marks the argument registers as defined by ABI as off limits
     * to us until they are freed by "getarg()";
     */
    int dum = defargcount(4);

    /*Handle for the loop entry point*/
    int branchsite;
    int branchmu;
    int retno ;

    /*------------------------------------------------------------------
     * Floating point registers
     *------------------------------------------------------------------
     */

    // Reconstruct 8 registers for 4 spinor
    //  reg_array_2d(PSI,Fregs,4,2);
    reg_array_3d(PSI,Fregs,3,4,2);
    offset_3d(PSI_IMM,FourSpinType,4,3,2);    /*Offsets within 4 spinor*/

    // Reconstruct 2 spinor registers
#define  NEO 2
    reg_array_3d(Atmp,Fregs,1,2,2); /*CHIplus  regs */
    reg_array_3d(Btmp,Fregs,1,2,2); /*CHIminus regs */
    int A[NEO][2][2] = {
        Atmp[0][0][0],    Atmp[0][0][1],
        Atmp[0][1][0],    Atmp[0][1][1],
        -1,-1,-1,-1
    };
    int B[NEO][2][2] = {
        Btmp[0][0][0],    Btmp[0][0][1],
        Btmp[0][1][0],    Btmp[0][1][1],
        -1,-1,-1,-1
    };

    /*Regs for SU3 two spinor multiply ... overlap with the reconstruct*/
    /*                                                      registers  */
    int CHIR[3][2][2] = {
        A[0][0][0],A[0][0][1],
        A[0][1][0],A[0][1][1],
        B[0][0][0],B[0][0][1],
        B[0][1][0],B[0][1][1],
        PSI[0][0][0],PSI[0][0][1],
        PSI[0][1][0],PSI[0][1][1]
    };
    offset_3d(CHI_IMM,TwoSpinType,3,2,2);

    /*Registers for the gauge link (2 rows)*/
    int UA[3][2] = {
        {PSI[0][2][0],PSI[0][2][1]},
        {PSI[2][1][0],PSI[2][1][1]},
        {PSI[1][0][0],PSI[1][0][1]}
    };
    int UB[3][2] = {
        {PSI[1][1][0],PSI[1][1][1]},
        {PSI[2][0][0],PSI[2][0][1]},
        {PSI[1][2][0],PSI[1][2][1]},
    };
    offset_3d(GIMM    , GaugeType, 3, 3 ,2 );

    // Other 8 registers used for reduction variables in SU3.
    // Could use these in reconstruct??
    int E[2] = { PSI[2][2][0],PSI[2][2][1]};

    /*
     * FCD used for drain of Chi
     * Overlap with PSI[*][3][*]
     */
    int F[2] = {PSI[0][3][0],PSI[0][3][1]};
    int C[2] = {PSI[1][3][0],PSI[1][3][1]};
    int D[2] = {PSI[2][3][0],PSI[2][3][1]};

    /*
     * Integer registers
     */
    alreg(psi,Iregs);
    alreg(Umu,Iregs);
    alreg(Ufetch,Iregs);

    alreg(Chiin,Iregs);
    alreg(Chiout,Iregs);

    alreg(Chifetch,Iregs);

    reg_array_1d(Chiplus,Iregs,4);/*Pointers to the 8 2-spinors for recombination*/
    reg_array_1d(Chiminus,Iregs,4);

    alreg(mu,Iregs);
    alreg(Chidrain,Iregs);
    alreg(pref,Iregs);

    alreg(mem,Iregs);
    alreg(length,Iregs);

    int Isize = PROC->I_size;
    int Fsize = PROC->FP_size;

    def_off( ZERO_IMM, Byte,0);
    def_off( PSI_ATOM, FourSpinType, 24);
    def_off( CHI_ATOM, TwoSpinType, 12);
    def_off( PAD_CHI_ATOM, TwoSpinType, 16);
    def_off( MAT_IMM, GaugeType, 18);

    int Ndim   = def_offset(4,Byte,"Ndim");
    int Ndimm1 = def_offset(3,Byte,"Ndimm1");
    int hbias,bias;

    /*Offsets handles to stack*/
    int hbitbucket = def_offset(16*Isize,Byte,"hbitbucket");
    int Tsize;
    if ( TwoSpinType == Double ) Tsize = PROC->FP_size;
    else Tsize = PROC->FSP_size;
    int hstk0   = def_offset(16*Isize+12*Tsize  ,Byte,"hstk0");
    int hstk1   = def_offset(16*Isize+2*12*Tsize,Byte,"hstk1");
    int hstk2   = def_offset(16*Isize+3*12*Tsize,Byte,"hstk2");
    int hstk3   = def_offset(16*Isize+4*12*Tsize,Byte,"hstk3");

    int hIsize  = def_offset(Isize,Byte,"Isize");

    int i,co,j,k,nxt,ri,sp,nxtco,eop,eo_a,eo_b;

    /***********************************************************************/

    /*
    * PROLOGUE
    	  */

    make_inst(DIRECTIVE,Enter_Routine,name);

    /*Allocate stack save any callee save registers we need etc...*/
    int stack_buf_size;
    stack_buf_size = 16*Isize +
                     12*Fsize * 5 ;

    hbias = grab_stack(stack_buf_size);
    bias = get_offset(hbias);
    save_regs();
    queue_iadd_imm(mem,PROC->StackPointer,hbias); /*Pointer to buf on stack*/

    /*Define our arguments - all pointers ala fortran*/
    getarg(psi);
    getarg(Umu);
    getarg(Chiin);
    getarg(length);
    /*{... Process arguments ...*/

    queue_iload(length,ZERO_IMM,length);      /*Load in sx counter*/

    retno = get_target_label(); /*Branch to exit if yzt <1*/
    check_iterations(length,retno);

    need_cache_line(0);
    need_cache_line(1);
    need_cache_line(2);
    need_cache_line(3);
    need_cache_line(4);

    pragma(DCBT_SPACE,5);
    pragma(DCBT_POST,1);

#define LOAD_U(comin,comax)\
  /*Load two link rows*/\
  for( i = comin;i<=comax;i++ ){\
    for( ri=0;ri<2;ri++){  \
      queue_fload(UA[i][ri],GIMM[i][0][ri],Umu,GaugeType);\
      queue_fload(UB[i][ri],GIMM[i][1][ri],Umu,GaugeType);\
    } \
  }

#define PRELOAD_U  LOAD_U(0,1)
#define POSTLOAD_U  LOAD_U(2,2)

    PRELOAD_U

#define LOAD_CHI(comin,comax) \
    /*Load Chi column*/\
    for( i = comin;i<=comax;i++ ){\
      for( ri=0;ri<2;ri++){\
        queue_fload(CHIR[i][0][ri],CHI_IMM[i][0][ri],Chiin,TwoSpinType);\
      } \
      for( ri=0;ri<2;ri++){\
        queue_fload(CHIR[i][1][ri],CHI_IMM[i][1][ri],Chiin,TwoSpinType);\
      } \
    }

#define PRELOAD_CHI  LOAD_CHI(0,1)
#define POSTLOAD_CHI  LOAD_CHI(2,2)

#define POSTLOAD \
    POSTLOAD_CHI \
    POSTLOAD_U

    do_prefetch(Chiin,0);
    do_prefetch(Chiin,1);
    if ( SizeofDatum(TwoSpinType) == 8 ) do_prefetch(Chiin,2);

    PRELOAD_CHI

    /*
     * Start site loop
     */

    queue_iadd_imm(Chidrain,mem,hbitbucket);

    branchsite = start_loop(length);

    queue_iadd_imm(Chiout,mem,hstk0);

    /*
     * Loop over mu in asm
     */
    queue_iload_imm(mu,Ndimm1);

#define CHIDRAIN \
      queue_fstore(F[0],CHI_IMM[1][1][0],Chidrain,TwoSpinType);\
      queue_fstore(F[1],CHI_IMM[1][1][1],Chidrain,TwoSpinType);\
      queue_fstore(C[0],CHI_IMM[2][0][0],Chidrain,TwoSpinType);\
      queue_fstore(C[1],CHI_IMM[2][0][1],Chidrain,TwoSpinType);\
      queue_fstore(D[0],CHI_IMM[2][1][0],Chidrain,TwoSpinType);\
      queue_fstore(D[1],CHI_IMM[2][1][1],Chidrain,TwoSpinType);


#define PREFETCH_CHI \
  queue_iadd_imm(Chifetch,Chiin,PAD_CHI_ATOM);\
  do_prefetch(Chifetch,0);\
  do_prefetch(Chifetch,1);\
  if ( SizeofDatum(TwoSpinType) == 8 ) do_prefetch(Chifetch,2);

#define PREFETCH_CHIF \
  queue_iadd_imm(Chifetch,Chifetch,PAD_CHI_ATOM);\
  do_prefetch(Chifetch,0);\
  do_prefetch(Chifetch,1);\
  if ( SizeofDatum(TwoSpinType) == 8 ) do_prefetch(Chifetch,2);



    for ( int unroll=0; unroll<2; unroll++ ) {

        if ( unroll==0 ) {
            branchmu = start_loop(mu);
            pragma(DCBT_SPACE,5);
            pragma(STORE_LIM,1);
            pragma(LOAD_LIM,2);
        } else {
            pragma(STORE_LIM,2);
            pragma(DCBT_SPACE,5);
            pragma(DCBT_POST,1);
            pragma(DCBT_PRE,0);
            pragma(LOAD_LIM,2);
        }

        CHIDRAIN
        POSTLOAD

        if ( unroll == 0 ) {
            PREFETCH_CHI
            queue_iadd_imm(Ufetch,Umu,MAT_IMM);
            do_prefetch(Ufetch,0);
            do_prefetch(Ufetch,1);
            do_prefetch(Ufetch,2);
            if ( GaugeType == Double ) {
                do_prefetch(Ufetch,3);
                do_prefetch(Ufetch,4);
            }
        } else {
            pragma(DCBT_SPACE,3);
            PREFETCH_CHI
            PREFETCH_CHIF
            PREFETCH_CHIF
            PREFETCH_CHIF
        }




        j=0;
        queue_three_cmuls(C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                          D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1],
                          E[0],E[1],UB[j][0],UB[j][1],CHIR[j][0][0],CHIR[j][0][1]);
        j=1;
        queue_three_cmadds(C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           E[0],E[1],UB[j][0],UB[j][1],CHIR[j][0][0],CHIR[j][0][1]);
        j=2;

        queue_three_cmadds(C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           E[0],E[1],UB[j][0],UB[j][1],CHIR[j][0][0],CHIR[j][0][1]);

        /*Store the first three results*/
        queue_fstore(C[0],CHI_IMM[0][0][0],Chiout,TwoSpinType);
        queue_fstore(C[1],CHI_IMM[0][0][1],Chiout,TwoSpinType);
        queue_fstore(D[0],CHI_IMM[0][1][0],Chiout,TwoSpinType);
        queue_fstore(D[1],CHI_IMM[0][1][1],Chiout,TwoSpinType);
        queue_fstore(E[0],CHI_IMM[1][0][0],Chiout,TwoSpinType);
        queue_fstore(E[1],CHI_IMM[1][0][1],Chiout,TwoSpinType);

        /*Load the third row*/
        for(j=0; j<3; j++) {
            for(ri=0; ri<2; ri++) {
                queue_fload(UA[j][ri],GIMM[j][2][ri],Umu,GaugeType);
            }
        }
        /*Gauge layout is linear, mu faster than site*/
        queue_iadd_imm(Umu,Umu,MAT_IMM);


        /*Now the second set of three cdots*/

        j=0;
        queue_three_cmuls(F[0],F[1],UB[j][0],UB[j][1],CHIR[j][1][0],CHIR[j][1][1],
                          C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                          D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1]);
        j=1;
        queue_three_cmadds(F[0],F[1],UB[j][0],UB[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1]);
        j=2;
        queue_three_cmadds(F[0],F[1],UB[j][0],UB[j][1],CHIR[j][1][0],CHIR[j][1][1],
                           C[0],C[1],UA[j][0],UA[j][1],CHIR[j][0][0],CHIR[j][0][1],
                           D[0],D[1],UA[j][0],UA[j][1],CHIR[j][1][0],CHIR[j][1][1]);

        /**************END SU3 CODE *************/

        queue_iadd_imm(Chiin,Chiin,PAD_CHI_ATOM);
        queue_iadd_imm(Chidrain,Chiout,ZERO_IMM);
        queue_iadd_imm(Chiout,Chiout,CHI_ATOM);

        if ( unroll == 0 ) {

            PRELOAD_U
            PRELOAD_CHI

        }

        /*********************************************************/
        /****************** END OF SU3 MULTIPLY ******************/
        /*********************************************************/

        if ( unroll== 0 ) {
            stop_loop(branchmu,mu); /* End loop over mu*/
            make_inst(DIRECTIVE,Target,get_target_label() ); /*delineate the sections*/
        }
    }


    /*********************************************************/
    /****************** START OF RECONSTRUCT *****************/
    /*********************************************************/

    //Address calculation...
    // Chiminus -> Stack  and  ChiPlus -> Chiin

    pragma(STORE_INORDER,1);
    queue_iadd_imm(Chiminus[0],mem,hstk0);

    /*For register use reasons loop over colour outermost*/

#define LOAD_CHI_MU0(eo,co) \
    for( sp = 0; sp<2;sp++ ){\
      for( ri = 0; ri<2;ri++ ){\
	queue_fload(A[eo][sp][ri],CHI_IMM[co][sp][ri],Chiminus[0],TwoSpinType);\
	if ( co == 0 ) {\
	  queue_fload(B[eo][sp][ri],CHI_IMM[co][sp][ri],Chiin,TwoSpinType);\
	  queue_iadd_imm(Chiplus[0],Chiin,ZERO_IMM);\
	} else {\
	  queue_fload(B[eo][sp][ri],CHI_IMM[co][sp][ri],Chiplus [0],TwoSpinType);\
	}\
      }}


    pragma(LOAD_LIM,2);
    LOAD_CHI_MU0(0,0)
    pragma(DCBT_POST,1);

    CHIDRAIN

    int neo_a = NEO;
    int neo_b = NEO;
    eo_a = 0;
    eo_b = 0;

    for ( co = 0; co <3 ; co ++ ) {

        pragma(LOAD_LIM,1);
        if ( co == 0 ) {
            // Use the third colour for unrolling the loads
            A[1][0][0] = PSI[2][0][0];
            A[1][0][1] = PSI[2][0][1];
            A[1][1][0] = PSI[2][1][0];
            A[1][1][1] = PSI[2][1][1];
            B[1][0][0] = PSI[2][2][0];
            B[1][0][1] = PSI[2][2][1];
            B[1][1][0] = PSI[2][3][0];
            B[1][1][1] = PSI[2][3][1];
            queue_iadd_imm(Chiminus[1],mem,hstk1); // This is invariant of loop
            // Take out
            queue_iadd_imm(Chiplus[1],Chiin     ,PAD_CHI_ATOM);
        }

        /***************************************************************
        * MU = 0 reconstruct                                           *
        ****************************************************************/



        if ( co == 2 ) {
            // Flip to not unrolled due to register pressure
            neo_b = 1;
            neo_a = 2;

            A[1][0][0] = PSI[0][0][0];
            A[1][0][1] = PSI[0][0][1];
            A[1][1][0] = PSI[1][0][0];
            A[1][1][1] = PSI[1][0][1];

            pragma(DCBT_POST,0);
            pragma(DCBT_SPACE,1);
            queue_iadd_imm(Ufetch,Umu,ZERO_IMM);
            //      do_prefetch(Ufetch,0);
            do_prefetch(Ufetch,1);
            do_prefetch(Ufetch,2);
            if ( GaugeType == Double ) {
                do_prefetch(Ufetch,3);
                do_prefetch(Ufetch,4);
            }
        }
        /* psi_0 =  Chiplus[0] + Chiminus[0] */
        /* psi_1 =  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],B[eo_b][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],B[eo_b][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],B[eo_b][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],B[eo_b][1][1],A[eo_a][1][1]);

        // Dagger = 0:
        /* psi_2 =-iChiplus[1] +iChiminus[1] */
        /* psi_3 =-iChiplus[0] +iChiminus[0] */
        // Dagger = 1:
        /* psi_2 = iChiplus[1] -iChiminus[1] */
        /* psi_3 = iChiplus[0] -iChiminus[0] */
        if ( dagger == 0 ) {
            queue_fsub(PSI[co][2][0],B[eo_b][1][1],A[eo_a][1][1]);
            queue_fsub(PSI[co][2][1],A[eo_a][1][0],B[eo_b][1][0]);
            queue_fsub(PSI[co][3][0],B[eo_b][0][1],A[eo_a][0][1]);
            queue_fsub(PSI[co][3][1],A[eo_a][0][0],B[eo_b][0][0]);
        } else {
            queue_fsub(PSI[co][2][0],A[eo_a][1][1],B[eo_b][1][1]);
            queue_fsub(PSI[co][2][1],B[eo_b][1][0],A[eo_a][1][0]);
            queue_fsub(PSI[co][3][0],A[eo_a][0][1],B[eo_b][0][1]);
            queue_fsub(PSI[co][3][1],B[eo_b][0][0],A[eo_a][0][0]);
        }

        /***************************************************************
        * MU = 1 reconstruct                                           *
        ****************************************************************/

        eo_a = (eo_a+1)%neo_a;
        eo_b = (eo_b+1)%neo_b;
        for( sp = 0; sp<2; sp++ ) {
            for( ri = 0; ri<2; ri++ ) {

                queue_fload(A[eo_a][sp][ri],CHI_IMM[co][sp][ri],Chiminus[1],TwoSpinType);
                queue_fload(B[eo_b][sp][ri],CHI_IMM[co][sp][ri],Chiplus [1],TwoSpinType);

            }
        }

        if ( co == 0 ) {
            queue_iadd_imm(Chiminus[2],mem,hstk2);
            queue_iadd_imm(Chiminus[3],mem,hstk3);
            queue_iadd_imm(Chiplus[2],Chiplus[1],PAD_CHI_ATOM);
            queue_iadd_imm(Chiplus[3],Chiplus[2],PAD_CHI_ATOM);
        }

        /* psi_0 +=  Chiplus[0] + Chiminus[0] */
        /* psi_1 +=  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],PSI[co][0][0],B[eo_b][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],B[eo_b][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],B[eo_b][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],B[eo_b][1][1]);

        queue_fadd(PSI[co][0][0],PSI[co][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],A[eo_a][1][1]);

        //Dagger == 0
        /* psi_2 +=  Chiplus[1] - Chiminus[1] */
        /* psi_3 += -Chiplus[0] + Chiminus[0] */
        //Dagger == 1
        /* psi_2 -=  Chiplus[1] - Chiminus[1] */
        /* psi_3 -= -Chiplus[0] + Chiminus[0] */
        if ( dagger == 0 ) {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],B[eo_b][1][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],B[eo_b][1][1]);
            queue_fsub(PSI[co][2][0],PSI[co][2][0],A[eo_a][1][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],A[eo_a][1][1]);

            queue_fsub(PSI[co][3][0],PSI[co][3][0],B[eo_b][0][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],B[eo_b][0][1]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],A[eo_a][0][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],A[eo_a][0][1]);
        } else {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],B[eo_b][1][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],B[eo_b][1][1]);
            queue_fadd(PSI[co][2][0],PSI[co][2][0],A[eo_a][1][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],A[eo_a][1][1]);

            queue_fadd(PSI[co][3][0],PSI[co][3][0],B[eo_b][0][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],B[eo_b][0][1]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],A[eo_a][0][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],A[eo_a][0][1]);
        }

        /***************************************************************
        * MU = 2 reconstruct                                           *
        ****************************************************************/
        eo_a = (eo_a+1)%neo_a;
        eo_b = (eo_b+1)%neo_b;
        for( sp = 0; sp<2; sp++ ) {
            for( ri = 0; ri<2; ri++ ) {

                queue_fload(A[eo_a][sp][ri],CHI_IMM[co][sp][ri],Chiminus[2],TwoSpinType);
                queue_fload(B[eo_b][sp][ri],CHI_IMM[co][sp][ri],Chiplus [2],TwoSpinType);

            }
        }

        /* psi_0 +=  Chiplus[0] + Chiminus[0] */
        /* psi_1 +=  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],PSI[co][0][0],B[eo_b][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],B[eo_b][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],B[eo_b][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],B[eo_b][1][1]);

        queue_fadd(PSI[co][0][0],PSI[co][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],A[eo_a][1][1]);

        //Dagger == 0
        /* psi_2 +=-iChiplus[0] +iChiminus[0] */
        /* psi_3 += iChiplus[1] -iChiminus[1] */
        //Dagger == 1

        /* psi_2 -=-iChiplus[0] +iChiminus[0] */
        /* psi_3 -= iChiplus[1] -iChiminus[1] */
        if ( dagger == 0 ) {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][1]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][0]);
            queue_fsub(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][1]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][0]);

            queue_fsub(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][1]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][0]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][1]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][0]);
        } else {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][1]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][0]);
            queue_fadd(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][1]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][0]);

            queue_fadd(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][1]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][0]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][1]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][0]);
        }


        /***************************************************************
        * MU = 3 reconstruct                                           *
        ****************************************************************/
        pragma(LOAD_LIM,2);

        eo_a = (eo_a+1)%neo_a;
        eo_b = (eo_b+1)%neo_b;
        for( sp = 0; sp<2; sp++ ) {
            for( ri = 0; ri<2; ri++ ) {
                queue_fload(A[eo_a][sp][ri],CHI_IMM[co][sp][ri],Chiminus[3],TwoSpinType);
                queue_fload(B[eo_b][sp][ri],CHI_IMM[co][sp][ri],Chiplus [3],TwoSpinType );
            }
        }

        /* psi_0 +=  Chiplus[0] + Chiminus[0] */
        /* psi_1 +=  Chiplus[1] + Chiminus[1] */

        queue_fadd(PSI[co][0][0],PSI[co][0][0],B[eo_b][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],B[eo_b][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],B[eo_b][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],B[eo_b][1][1]);


        //Dagger == 0
        /* psi_2 +=  Chiplus[0] - Chiminus[0] */
        /* psi_3 +=  Chiplus[1] - Chiminus[1] */
        //Dagger == 1
        /* psi_2 -=  Chiplus[0] - Chiminus[0] */
        /* psi_3 -=  Chiplus[1] - Chiminus[1] */
        if ( dagger == 0 ) {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][1]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][1]);
        } else {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],B[eo_b][0][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],B[eo_b][0][1]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],B[eo_b][1][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],B[eo_b][1][1]);
        }

        queue_fadd(PSI[co][0][0],PSI[co][0][0],A[eo_a][0][0]);
        queue_fadd(PSI[co][0][1],PSI[co][0][1],A[eo_a][0][1]);
        queue_fadd(PSI[co][1][0],PSI[co][1][0],A[eo_a][1][0]);
        queue_fadd(PSI[co][1][1],PSI[co][1][1],A[eo_a][1][1]);

        if ( dagger == 0 ) {
            queue_fsub(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][0]);
            queue_fsub(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][1]);
            queue_fsub(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][0]);
            queue_fsub(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][1]);
        } else {
            queue_fadd(PSI[co][2][0],PSI[co][2][0],A[eo_a][0][0]);
            queue_fadd(PSI[co][2][1],PSI[co][2][1],A[eo_a][0][1]);
            queue_fadd(PSI[co][3][0],PSI[co][3][0],A[eo_a][1][0]);
            queue_fadd(PSI[co][3][1],PSI[co][3][1],A[eo_a][1][1]);
        }
        /*
         * Store the spinors. If this is problematic
         * in terms of PEC WriteBuf misses, I could
         * store to the stack and copy out later.
         */

        if ( co != 2 ) {
            LOAD_CHI_MU0(0,co+1)
            eo_a=0;
            eo_b=0;
        }

        queue_fstore(PSI[co][0][0],PSI_IMM[0][co][0],psi,FourSpinType);
        queue_fstore(PSI[co][0][1],PSI_IMM[0][co][1],psi,FourSpinType);

    }

    /*
     * Store out in linear order now
     */
    pragma(STORE_LIM,2);
    pragma(DCBT_SPACE,8);

    for ( co=0; co<3; co ++ ) {
        queue_fstore(PSI[co][1][0],PSI_IMM[1][co][0],psi,FourSpinType);
        queue_fstore(PSI[co][1][1],PSI_IMM[1][co][1],psi,FourSpinType);
    }
    for ( co=0; co<3; co ++ ) {
        queue_fstore(PSI[co][2][0],PSI_IMM[2][co][0],psi,FourSpinType);
        queue_fstore(PSI[co][2][1],PSI_IMM[2][co][1],psi,FourSpinType);
    }
    if ( TwoSpinType == FourSpinType ) {
        queue_iadd_imm(Chidrain,psi,CHI_ATOM);
    } else {
        queue_iadd_imm(Chidrain,mem,hbitbucket);
        for ( co=0; co<3; co ++ ) {
            queue_fstore(PSI[co][3][0],PSI_IMM[3][co][0],psi,FourSpinType);
            queue_fstore(PSI[co][3][1],PSI_IMM[3][co][1],psi,FourSpinType);
        }
    }

    queue_iadd_imm(psi,psi,PSI_ATOM);
    /*
     * Put in an artificial dependency here
     * to try to stop the preloads getting above the last load of
     * reconstruct.
     */
    queue_iadd_imm(Chiplus[3],Chiplus[3],ZERO_IMM);
    queue_iadd_imm(Chiin     ,Chiplus[3],PAD_CHI_ATOM);
    pragma(DCBT_SPACE,0);
    do_prefetch(Chiin,0);
    do_prefetch(Chiin,1);
    if ( SizeofDatum(TwoSpinType) == 8 )do_prefetch(Chiin,2);
    PRELOAD_U
    PRELOAD_CHI

    /* TERMINATION point of the loop*/
    stop_loop(branchsite,length);

    CHIDRAIN

    make_inst(DIRECTIVE,Target,retno);

    /*
    *
       * EPILOGUE
       *
       */

    restore_regs();
    free_stack();
    make_inst(DIRECTIVE,Exit_Routine,name);

    return;

}
Esempio n. 16
0
void android_main(struct android_app* state) {
	LOGD("android_main", "android_main() called");

    engine e;
    app_dummy();
    memset(&e, 0, sizeof(engine));
    state->userData = &e;
    state->onAppCmd = engine_handle_cmd;
    state->onInputEvent = engine_handle_input;
    e.app = state;

	int i = 0;
	int animating = FALSE;

	while (1) {
		int ident, events;
		struct android_poll_source* source;

		while ((ident = ALooper_pollAll(0, NULL, &events, (void**) &source)) >= 0) {

			LOGD("call_order", "while ((ident=ALooper_pollAll...");
			LOGD("ALooper_pollAll", "ALooper_pollAll");
			if (source != NULL) {
				source->process(state, source);
			}
			if (state->destroyRequested != 0) {
				return;
			}
		}

		if (e.animating) {

			if(wake_from_paused)	{
				init_sles_gain_focus(state);
				wake_from_paused = FALSE;
			}

			calc_frame_delta_time();
			update_elapsed_time();
//			calc_frame_rate();
//		    LOGD("android_main", "frame_delta %d", frame_delta);
			draw_frame();

			if(!sles_init_called && elapsed_time > (1*SEC_IN_US)) {
				create_init_sles_thread(state);
				sles_init_called = TRUE;
			    LOGD("android_main", "sles_init_called = TRUE");
			}

			if(!splash_fading_in && elapsed_time > (1*SEC_IN_US	)) {
				splash_fading_in = TRUE;
				screens[0].is_showing = TRUE;
				LOGD("android_main", "splash_fading_in = TRUE");
			}
			if(!splash_bg_fading_in && elapsed_time > (3*SEC_IN_US)) { //3
				splash_bg_fading_in = TRUE;
				screens[1].is_showing = TRUE;
				LOGD("android_main", "splash_bg_fading_in = TRUE");
			}

			if(sles_init_finished && splash_bg_fading_in && screens[1].alpha == 1.0) {
				sles_init_finished = FALSE;
				assign_time(&splash_fadeout_time);
				LOGD("android_main", "sles_init_finished");
			}

			if(!splash_bg_fading_out && compare_times(splash_fadeout_time, (1*SEC_IN_US))) {
				splash_bg_fading_out = TRUE;
				screens[1].fading_in = FALSE;
				screens[1].fading_out = TRUE;
				LOGD("android_main", "splash_bg_fading_out = TRUE");
			}

			if(!splash_fading_out && compare_times(splash_fadeout_time, (4*SEC_IN_US))) {
				splash_fading_out = TRUE;
				screens[0].fading_in = FALSE;
				screens[0].fading_out = TRUE;
				LOGD("android_main", "splash_fading_out = TRUE");
			}

			if(!show_gameplay && compare_times(splash_fadeout_time, (6*SEC_IN_US))) {
				show_gameplay = TRUE;
				assign_time(&touch_enable_time);
				start_loop();
				init_control_loop();
				LOGD("android_main", "show_gameplay = TRUE");
			}

			if(!touch_enabled && compare_times(touch_enable_time, (2*SEC_IN_US))) {
				touch_enabled = TRUE;
				LOGD("android_main", "touch_enabled = TRUE");
			}

			if (show_gameplay && buttons_activated) {
				if (compare_times(buttons_activated_time, INTERACTIVE_TTL)) {
					if (!all_buttons_busy_fading) {
						buttons[2].fading_out = TRUE;
					}
				}
			}

		}
	}
}
Esempio n. 17
0
void dwf_deriv( char *name)
{
  /*
   * This marks the argument registers as defined by ABI as off limits
   * to us until they are freed by "getarg()";
   */
  int dum = defargcount(1);
  int retno;

  /*
   * S=phi^dag (MdagM)^-1 phi
   * 
   * dS = phi^dag (MdagM)^-1 [ dMdag M + Mdag dM ] (MdagM)^-1 phi
   *
   * Let X = (MdagM)^-1 phi
   *     Y = M X = M^-dag phi
   *
   * Want terms:    Ydag dM X
   *                Xdag dMdag Y 
   * 
   * Take Xdag 1-gamma Y
   *
   * Still a bit confused about the 1+g 1-g terms; but this may be simply a factor of two as we add +h.c.
   * Will continue to follow Chroma's routine
   */
  reg_array_2d(Y,Cregs,4,3);  // 4 spinor - 24 regs 
  reg_array_2d(X,Cregs,4,3);  // 4 spinor - 12 regs 
  reg_array_1d(F,Cregs,3);    // Force
  alreg(Z,Cregs);             // Zero
  alreg(creg,Cregs);             // Zero

  offset_3d(CHIIMM,FourSpinType,2,3,2*nsimd());
  offset_3d(PSIIMM,FourSpinType,4,3,2*nsimd());
  offset_3d(GIMM  ,GaugeType, 3, 3 ,2*nsimd() );

  def_off( GAUGE_SITE_IMM, FourSpinType,4*18*nsimd());
  def_off( MAT_IMM  , GaugeType,18*nsimd());
  def_off( PSI_IMM  , FourSpinType,24*nsimd());
  def_off( CHI_IMM  , FourSpinType,12*nsimd());
  def_off( CONST_ZERO_OFFSET,Double,2*2*nsimd());

  /*
   * Integer registers
   */
  alreg(F_p,Iregs);  /*Pointer to the current cpt of force field    */
  alreg(F_p_s,Iregs);
  alreg(Y_mu,Iregs);  
  alreg(Y_p,Iregs);  
  alreg(X_p,Iregs);  

  alreg(length,Iregs);   /*number of sites*/
  alreg(tab,Iregs);      /*Pointer to current entry in offset table*/
  alreg(Complex_i,Iregs);/*Point to (0,1)x Nsimd*/
  alreg(Ls,Iregs);        
  alreg(s,Iregs);        

  alreg(recbuf_base,Iregs);
  alreg(args,Iregs);        
  alreg(s_offset,Iregs);        
  /*Useful integer immediate constants, in units of Fsize*/
  def_off( ZERO_IMM,Byte,0);
  def_off( minusone,Byte,-1);
  def_off( one,Byte,1);

  // Mask bits for predicating directions
  def_off( mask_0,Byte,1);
  def_off( mask_1,Byte,2);
  def_off( mask_2,Byte,4);
  def_off( mask_3,Byte,8);
  def_off( mask_4,Byte,16);
  def_off( mask_5,Byte,32);
  def_off( mask_6,Byte,64);
  def_off( mask_7,Byte,128);
  int mask_imm[8] = { 
    mask_0,
    mask_1,
    mask_2,
    mask_3,
    mask_4,
    mask_5,
    mask_6,
    mask_7
  };
  alreg(mask ,Iregs);

  offset_1d(TAB_IMM,TableType,17);

  // Integer sizes
  int Isize      = def_offset(PROC->I_size,Byte,"Isize");
  int ISsize     = def_offset(PROC->IS_size,Byte,"ISsize");
  int i,j,co,sp;

  /*********************************************************************/

  make_inst(DIRECTIVE,Enter_Routine,name);
  grab_stack(0);
  save_regs();

  /*********************************************
   * our arguments 
   *********************************************
   */
  getarg(args); /*Pointer to arg list*/

  queue_iload(X_p, ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //0
  queue_iload(Y_p, ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //1
  queue_iload(F_p,   ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //2
  queue_iload(length,ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //3
  queue_iload(Ls,    ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //4
  queue_iload(tab,   ZERO_IMM,args);   queue_load_addr(args,Isize,args);   //5
  queue_iload(Complex_i,ZERO_IMM,args);queue_load_addr(args,Isize,args);   //6
                                       queue_load_addr(args,Isize,args);   //7  
  queue_iload(recbuf_base,ZERO_IMM,args);queue_load_addr(args,Isize,args); //8  

  /**************************************************
   * Load common constants into Iregs
   **************************************************
   */
  for (int i =0; i<12; i++ ) { 
    need_constant(i*2*SizeofDatum(FourSpinType)*nsimd());
  }
  for (int i =0; i<9; i++ ) { 
    need_constant(i*2*SizeofDatum(GaugeType)*nsimd());
  }
  complex_constants_prepare(creg,Complex_i);
  complex_load(Z,CONST_ZERO_OFFSET,Complex_i,Double);

  // Site loop 
  retno = get_target_label(); 
  check_iterations(length,retno); 
  int branchsite = start_loop(length);
  
  // S loop
  queue_iload_short(mask,TAB_IMM[10],tab);
  queue_iadd_imm (s,Ls,ZERO_IMM);
  queue_iload_imm(s_offset,ZERO_IMM);        
  int branchls   = start_loop(s); 
  queue_iadd_imm(F_p_s,F_p,ZERO_IMM);
  //  debugI(s);

  // Loop over directions
  for ( int mu=0;mu<4;mu++ ) {

    int dir = mu*2+1;  // Always in forward dir

     // Complex branch structure for interior/exterior neighbours
     int lab_proj_mu     = get_target_label(); 
     int lab_continue    = get_target_label(); 
     queue_iand_imm  (Y_mu,mask,mask_imm[dir]); // non-zero if exterior
     check_iterations(Y_mu,lab_proj_mu);

     // Exterior points are already projected. Just load.
       queue_iload_short(Y_mu,TAB_IMM[dir],tab);  
       queue_iadd       (Y_mu,Y_mu,recbuf_base);  
       //       debugI(Y_mu);
       //debugI(recbuf_base);
       queue_iadd       (Y_mu,Y_mu,s_offset); 
       for(int sp=0;sp<2;sp++){
	 for(int co=0;co<3;co++){
	   complex_load(Y[sp][co],PSIIMM[sp][co][0],Y_mu,FourSpinType);
	 }
       }

  jump(lab_continue);
  make_inst(DIRECTIVE,Target,lab_proj_mu); 

      // Interior points are not already projected.
      // * Spin project 4 spinor                                        

     queue_iload_short(Y_mu,TAB_IMM[dir],tab);  
     //     debugI(tab);
     //     debugI(Y_mu);
     queue_iadd       (Y_mu,Y_mu,Y_p);    
     queue_iadd       (Y_mu,Y_mu,s_offset); // offset for this "s"
     queue_iadd       (Y_mu,Y_mu,s_offset); // offset for this "s"

     for(int sp=0;sp<4;sp++){
       for(int co=0;co<3;co++){
	 complex_load(X[sp][co],PSIIMM[sp][co][0],Y_mu,FourSpinType);
	 //	 debugC(X[sp][co]);
       }
     }

    int pm = 1;       // pm=0 == 1+gamma, pm=1 => 1-gamma
    if ( dagger ) pm = 0;

     if ( mu == 0 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_ApiB(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_ApiB(Y[1][co],X[1][co],X[2][co]);
	 } else {
	   for(co=0;co<3;co++) complex_AmiB(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_AmiB(Y[1][co],X[1][co],X[2][co]);
	 }
       } else if ( mu == 1 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_sub(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_add(Y[1][co],X[1][co],X[2][co]);
	 } else {
	   for(co=0;co<3;co++) complex_add(Y[0][co],X[0][co],X[3][co]);
	   for(co=0;co<3;co++) complex_sub(Y[1][co],X[1][co],X[2][co]);
	 }
       } else if ( mu == 2 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_ApiB(Y[0][co],X[0][co],X[2][co]);
	   for(co=0;co<3;co++) complex_AmiB(Y[1][co],X[1][co],X[3][co]);
	 } else {
	   for(co=0;co<3;co++) complex_AmiB(Y[0][co],X[0][co],X[2][co]);
	   for(co=0;co<3;co++) complex_ApiB(Y[1][co],X[1][co],X[3][co]);
	 }
       } else if ( mu == 3 ) {
	 if ( pm ==0 ) {
	   for(co=0;co<3;co++) complex_add(Y[0][co],X[0][co],X[2][co]);
	   for(co=0;co<3;co++) complex_add(Y[1][co],X[1][co],X[3][co]);
	 } else {
	   for(co=0;co<3;co++) complex_sub(Y[0][co],X[0][co],X[2][co]); 
	   for(co=0;co<3;co++) complex_sub(Y[1][co],X[1][co],X[3][co]);
	 }
     }

  make_inst(DIRECTIVE,Target,lab_continue);

       ///////////////////////////////////////////////////////////////
       // Y contains spin projection of forward neighbour in mu direction
       // Repromote to Y to 4 spinor
       ///////////////////////////////////////////////////////////////
       for(int co_y=0;co_y<3;co_y++){
	 
	 if ( (mu==0) && (pm==0) )  complex_AmiB(Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==0) && (pm==1) )  complex_ApiB(Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==1) && (pm==0) )  complex_add (Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==1) && (pm==1) )  complex_sub (Y[2][co_y],Z,Y[1][co_y]);
	 if ( (mu==2) && (pm==0) )  complex_AmiB(Y[2][co_y],Z,Y[0][co_y]);
	 if ( (mu==2) && (pm==1) )  complex_ApiB(Y[2][co_y],Z,Y[0][co_y]);
	 if ( (mu==3) && (pm==0) )  complex_add (Y[2][co_y],Z,Y[0][co_y]);
	 if ( (mu==3) && (pm==1) )  complex_sub (Y[2][co_y],Z,Y[0][co_y]);

	 if ( (mu==0) && (pm==0) ) complex_AmiB(Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==0) && (pm==1) ) complex_ApiB(Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==1) && (pm==0) ) complex_sub (Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==1) && (pm==1) ) complex_add (Y[3][co_y],Z,Y[0][co_y]);
	 if ( (mu==2) && (pm==0) ) complex_ApiB(Y[3][co_y],Z,Y[1][co_y]);
	 if ( (mu==2) && (pm==1) ) complex_AmiB(Y[3][co_y],Z,Y[1][co_y]);
	 if ( (mu==3) && (pm==0) ) complex_add (Y[3][co_y],Z,Y[1][co_y]);
	 if ( (mu==3) && (pm==1) ) complex_sub (Y[3][co_y],Z,Y[1][co_y]);

       }

       ///////////////////////////////////////////////////////////////
       // Load X
       ///////////////////////////////////////////////////////////////
       for(int co_x=0;co_x<3;co_x++){
	 for(int sp=0;sp<4;sp++) {
	   complex_load(X[sp][co_x],PSIIMM[sp][co_x][0],X_p,FourSpinType);
	 }
       }

       ///////////////////////////////////////////////////////////////
       // Spin trace tensor product
       ///////////////////////////////////////////////////////////////
       for(int co_x=0;co_x<3;co_x++){
	 // Spin trace outer product
	 for ( int co_y=0;co_y<3;co_y++) complex_load (F[co_y],GIMM[co_y][co_x][0],F_p_s);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[0][co_x],Y[0][co_y]);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[1][co_x],Y[1][co_y]);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[2][co_x],Y[2][co_y]);  
	 for ( int co_y=0;co_y<3;co_y++) complex_conjmadd(F[co_y],X[3][co_x],Y[3][co_y]);  
	 
	 for ( int co_y=0;co_y<3;co_y++) complex_store(F[co_y],GIMM[co_y][co_x][0],F_p_s);  
	 
       }

     queue_load_addr(F_p_s,MAT_IMM,F_p_s); 

  }
  queue_iadd_imm(X_p,X_p,PSI_IMM);
  queue_iadd_imm(s_offset,s_offset,CHI_IMM);
  stop_loop(branchls,s); 
  queue_iadd_imm(F_p,F_p_s,ZERO_IMM);
  queue_load_addr(tab,TAB_IMM[16],tab);
  stop_loop(branchsite,length);
  make_inst(DIRECTIVE,Target,retno);

                  /*
		   *
		   * EPILOGUE
		   *
		   */

  restore_regs();
  free_stack();
  make_inst(DIRECTIVE,Exit_Routine,name);

  return;
}
/******************************************************************************
 * Example to show vid1 in YUV format,OSD0 in RGB565 format
 *  and OSD1 is attribute format.
 ******************************************************************************/
static int vpbe_UE_1(void)
{
	int ret = 0;
	v4l2_std_id cur_std;

	DBGENTER;

	/* Setup Capture */
	if (initialize_capture(&cur_std) < 0) {
		printf("Failed to intialize capture\n");
		return ret;
	}

	/* Setup Display */
	if (cur_std & V4L2_STD_NTSC) {
		if (change_sysfs_attrib(ATTRIB_OUTPUT, DISPLAY_INTERFACE_COMPOSITE))
			return FAILURE;
		if (change_sysfs_attrib(ATTRIB_MODE, DISPLAY_MODE_NTSC))
			return FAILURE;
		file_size = WIDTH_NTSC * HEIGHT_NTSC * 2;
	}
	else if (cur_std & V4L2_STD_PAL) {
		if (change_sysfs_attrib(ATTRIB_OUTPUT, DISPLAY_INTERFACE_COMPOSITE))
			return FAILURE;
		if (change_sysfs_attrib(ATTRIB_MODE, DISPLAY_MODE_PAL))
			return FAILURE;
		file_size = WIDTH_PAL * HEIGHT_PAL * 2;
	}
	else if (cur_std & V4L2_STD_720P_60) {
		if (change_sysfs_attrib(ATTRIB_OUTPUT, DISPLAY_INTERFACE_COMPONENT))
			return FAILURE;
		if (change_sysfs_attrib(ATTRIB_MODE, DISPLAY_MODE_720P))
			return FAILURE;
		file_size = WIDTH_720P * HEIGHT_720P * 2;
	}
	else if (cur_std & V4L2_STD_1080I_60) {
		if (change_sysfs_attrib(ATTRIB_OUTPUT, DISPLAY_INTERFACE_COMPONENT))
			return FAILURE;
		if (change_sysfs_attrib(ATTRIB_MODE, DISPLAY_MODE_1080I))
			return FAILURE;
		file_size = WIDTH_1080I * HEIGHT_1080I * 2;
	} else {
		printf("Cannot display this standard\n");
		return FAILURE;
	}

	/* Setup VID1 output */
	if ((init_vid1_device(cur_std)) < 0) {
		printf("\nFailed to init vid1 window ");
		return FAILURE;
	}
	
	ret = start_loop();
	if (ret)
		printf("\tError: Video loopback had some errors\n");
	printf("Video loopback completed successfully\n");

	/*
	 * Once the streaming is done  stop the display
	 * hardware
	 */
	printf(" Test STREAM_OFF - \n");
	ret = stop_display(fd_vid1);
	if (ret < 0) {
		printf("\tError: Could not stop display\n");
		return ret;
	}

	/* Release display channel */
	printf(" Test buffer unmapping & closing of device - \n");
	release_display(&fd_vid1);

	ret = stop_capture(fdCapture);
	if (ret < 0)
		printf("Error in VIDIOC_STREAMOFF:capture\n");

	release_capture(&fdCapture);
	close(fd_osd0);
	printf("DONE ALL\n\n\n");

	DBGEXIT;
	return ret;
}
Esempio n. 19
0
void HelpGotoIndex() {
	goto_node("OMEXCH");
	start_loop();
}
/******************************************************************************
 * Example to show vid1 in YUV format, OSD0 in RGB565 format and
 * OSD1 is attribute format.
 ******************************************************************************/
static int vpbe_UE_1(void)
{
	rgb565_enable = 1;
	rgb565_enable_osd1 = 0;
	v4l2_std_id cur_std;
	int ret = -1;

	/* Setup Capture */
	if (initialize_capture(&cur_std) < 0) {
		printf("Failed to intialize capture\n");
		return ret;
	}

	DBGENTER;

	if (cur_std & V4L2_STD_NTSC) {
		test_data.vid1_width = WIDTH_NTSC;
		test_data.vid1_height = HEIGHT_NTSC;
	} else if (cur_std & V4L2_STD_PAL) {
		test_data.vid1_width = WIDTH_PAL;
		test_data.vid1_height = HEIGHT_PAL;
	} else if (cur_std & V4L2_STD_720P_60) {
		test_data.vid1_width = 1280;
		test_data.vid1_height = 720;
	} else if (cur_std & V4L2_STD_1080I_60) {
		test_data.vid1_width = 1920;
		test_data.vid1_height = 1080;
	} else {
		printf("Invalid standard\n");
		return ret;		
	}	

	test_data.vid1_bpp = 16;
	test_data.vid1_vmode = FB_VMODE_INTERLACED;
	test_data.vid1_xpos = 0;
	test_data.vid1_ypos = 0;
	test_data.vid1_hzoom = 0;
	test_data.vid1_vzoom = 0;

	test_data.osd0_width = 150;
	test_data.osd0_height = 150;
	test_data.osd0_bpp = 16;
	test_data.osd0_hzoom = 0;
	test_data.osd0_vzoom = 0;
	test_data.osd0_xpos = 10;
	test_data.osd0_ypos = 10;

	if (display_out) {
		/* Setup Display */
		if (cur_std & V4L2_STD_NTSC) {
			if (change_sysfs_attrib(ATTRIB_OUTPUT,
						DISPLAY_INTERFACE_COMPOSITE))
				return FAILURE;
			if (change_sysfs_attrib(ATTRIB_MODE, DISPLAY_MODE_NTSC))
				return FAILURE;
		}
		else if (cur_std & V4L2_STD_PAL) {
			if (change_sysfs_attrib(ATTRIB_OUTPUT,
						DISPLAY_INTERFACE_COMPOSITE))
				return FAILURE;
			if (change_sysfs_attrib(ATTRIB_MODE, DISPLAY_MODE_PAL))
				return FAILURE;
		}
		else if (cur_std & V4L2_STD_720P_60) {
			if (change_sysfs_attrib(ATTRIB_OUTPUT,
						DISPLAY_INTERFACE_COMPONENT))
				return FAILURE;
			if (change_sysfs_attrib(ATTRIB_MODE, DISPLAY_MODE_720P))
				return FAILURE;
		}
		else if (cur_std & V4L2_STD_1080I_60) {
			if (change_sysfs_attrib(ATTRIB_OUTPUT,
						DISPLAY_INTERFACE_COMPONENT))
				return FAILURE;
			if (change_sysfs_attrib(ATTRIB_MODE,
						DISPLAY_MODE_1080I))
				return FAILURE;
		} else {
			printf("Cannot display this standard\n");
			return FAILURE;
		}

		if ((init_vid1_device(fd_vid1, &vid1_varInfo)) < 0) {
			printf("\nFailed to init vid1 window ");
			return FAILURE;
		}
		if ((init_osd0_device(fd_osd0, &osd0_varInfo)) < 0) {
			printf("\nFailed to init osd0 window ");
			return FAILURE;
		}

		if (mmap_vid1() == FAILURE)
			return FAILURE;

		if (mmap_osd0() == FAILURE)
			return FAILURE;

		disable_all_windows();
	}
	printf("Starting loop..........\n");
	start_loop();

	/* unmap video buffers */
	if (display_out) {
		if (unmap_and_disable(VID1) < 0)
			return FAILURE;
		if (unmap_and_disable(OSD0) < 0)
			return FAILURE;
	}
	DBGEXIT;
	return SUCCESS;
}
Esempio n. 21
0
void HelpGotoParent() {
	goto_parent(node);
	start_loop();
}
Esempio n. 22
0
void qcdoc_merge( char *name)
{
  int dum = defargcount(5);

  /*Integer register usage*/
  alreg(outptr,Iregs);
  alreg(vec1ptr,Iregs);
  alreg(vec2ptr,Iregs);
  alreg(counter,Iregs);

  /*Floating register usage*/
  reg_array_1d(vec1,Cregs,3);
  reg_array_1d(vec2,Cregs,3);
  reg_array_1d(oreg,Cregs,6);
  alreg(permreg,Cregs);

  def_off(ZERO,SpinorType,0);
  def_off (IN_ATOM,SpinorType,6*nsimd()); // 2spins worth, 3 colors x complex 
  def_off (OUT_ATOM,SpinorType,12*nsimd());// 2spins worth, 3 colors x complex x simd  
  def_off(bits16,Byte,0xFFFF);
  def_off(thirtytwo,Byte,32);
  def_off(sixteen,Byte,16);


  offset_2d(CHI_IMM,SpinorType,6,2*nsimd());

  int Isize = PROC->I_size;
  int word_size = def_offset(Isize,Byte,"word_size");

  struct stream *PreOut;
  struct stream *PreVec1;
  struct stream *PreVec2;

  int brchno,retno; /*Branch target handles*/
  int co;

  make_inst(DIRECTIVE,Enter_Routine,name);
  int bias = grab_stack(64);
  save_regs();
  queue_iadd_imm(PROC->StackPointer,PROC->StackPointer,bias);

  getarg(outptr);           /*Get args*/
  getarg(vec1ptr);  
  getarg(vec2ptr);
  getarg(counter);

  alreg(Mask,Iregs);
  alreg(Convert1,Iregs);
  alreg(Convert2,Iregs);
  int memory = PROC->StackPointer;

  for (int i =0; i<6; i++ ) { 
    need_constant(i*2*SizeofDatum(SpinorType)*nsimd());
  }
  need_constant(64);
  complex_simd_init(permreg);

  if ( half_precision ) {
    queue_iload_imm(Mask,ZERO);
    queue_ori(Mask,Mask,bits16);
    queue_lshift(Mask,Mask,thirtytwo);
    queue_ori(Mask,Mask,bits16);
    queue_lshift(Mask,Mask,sixteen);
  }

  /*
   * Insert a label to prevent reordering
   */
  make_inst(DIRECTIVE,Target,get_target_label());

  PreVec1= create_stream(IN_ATOM,vec1ptr ,counter,STREAM_IN ,LINEAR);
  PreVec2= create_stream(IN_ATOM,vec2ptr ,counter,STREAM_IN ,LINEAR);
  PreOut = create_stream(OUT_ATOM,outptr  ,counter,STREAM_OUT ,LINEAR);

  /*Branch to stack restore if length <1*/
  retno = get_target_label();
  check_iterations(counter,retno); 

  /*
   * Start software pipeline
   */

  brchno = start_loop(counter);

  int indco[3]={0,1,2};
  int permute_mu=3;

  for(int ico=0;ico<3;ico++){
    co = indco[ico];
    // Could do entirely in integer unit for half precision to accelerate this
    if ( half_precision ) { 
      complex_load_half(vec1[co],CHI_IMM[co][0],vec1ptr,memory,Convert1,Convert2,Mask);
      complex_load_half(vec2[co],CHI_IMM[co][0],vec2ptr,memory,Convert1,Convert2,Mask);
    } else { 
      complex_load(vec1[co],CHI_IMM[co][0],vec1ptr,SpinorType);
      complex_load(vec2[co],CHI_IMM[co][0],vec2ptr,SpinorType);
    }
  }

  {
    // Merge the vectors
    for(co=0;co<3;co++) complex_simd_merge (0,permute_mu,oreg[co*2]  ,vec1[co],vec2[co]);
    for(co=0;co<3;co++) complex_simd_merge (1,permute_mu,oreg[co*2+1],vec1[co],vec2[co]);
  }
  //  make_inst(DIRECTIVE,LS_BARRIER);
  for(int i=0;i<6;i++){ // 2 SIMD sites, 3 colors, 2 spins 2 complex == 24 floats
    if ( half_precision ) { 
      complex_store_half(oreg[i],CHI_IMM[i][0],outptr,memory,Convert1,Convert2,Mask);
    } else { 
      complex_store(oreg[i],CHI_IMM[i][0],outptr,SpinorType);
    }
  }

  iterate_stream(PreVec1);
  iterate_stream(PreVec2);

  do_prefetch(vec1ptr,0);
  do_prefetch(vec2ptr,0);
  do_prefetch(vec1ptr,1);
  do_prefetch(vec2ptr,1);


  iterate_stream(PreOut);

  stop_loop(brchno,counter);
  
  make_inst(DIRECTIVE,Target,retno);

  queue_isub_imm(PROC->StackPointer,PROC->StackPointer,bias);
  restore_regs();
  free_stack();
  make_inst(DIRECTIVE,Exit_Routine,name);

  return;
}
Esempio n. 23
0
int main(int argc, char **argv)
{
    struct pg_error *error = NULL;
    int ret;
    uint64_t args_flags;
    struct vtep_opts opt = {NULL, NULL, NULL, NULL};
    int32_t ip;
    struct ether_addr eth_addr;
    struct ether_addr inner_addr;
    GList *neighbor_addrs = NULL;

    ret = pg_start(argc, argv, &error);
    g_assert(ret != -1);
    CHECK_ERROR(error);

    if (signal(SIGINT, sig_handler) == SIG_ERR)
        return -errno;

    /* accounting program name */
    argc -= ret;
    argv += ret;
    args_flags = parse_args(argc, argv, &opt);
    if (args_flags & PRINT_USAGE)
        print_usage();

    if (!!(args_flags & FAIL)) {
        dprintf(2, "Invalide arguments, use '-h'\n");
        ret = -EINVAL;
        goto exit;
    }

    if (!pg_scan_ether_addr(&eth_addr, opt.mac) ||
            !is_valid_assigned_ether_addr(&eth_addr)) {
        char buf[40];

        ether_format_addr(buf, 40, &eth_addr);
        dprintf(2, "%s is an invalide ethernet adress\n"
                "sould be an unicast addr and have format XX:XX:XX:XX:XX:XX\n",
                buf);
        ret = -EINVAL;
        goto exit;
    }

    if (!pg_scan_ether_addr(&inner_addr, opt.inner_mac) ||
            !is_valid_assigned_ether_addr(&inner_addr)) {
        char buf[40];

        ether_format_addr(buf, 40, &inner_addr);
        dprintf(2, "%s is an invalide ethernet adress\n"
                "sould be an unicast addr and have format XX:XX:XX:XX:XX:XX\n",
                buf);
        ret = -EINVAL;
        goto exit;
    }

    for (GList *lst = opt.neighbor_macs; lst != NULL;
            lst = lst->next) {
        const char *data = lst->data;
        struct ether_addr *tmp = g_new0(struct ether_addr, 1);

        if (!pg_scan_ether_addr(tmp, data) ||
                !is_valid_assigned_ether_addr(tmp)) {
            char buf[40];

            ether_format_addr(buf, 40, tmp);
            dprintf(2, "%s is an invalide ethernet adress\n"
                    "sould be an unicast addr and have format XX:XX:XX:XX:XX:XX\n",
                    buf);
            ret = -EINVAL;
            goto exit;
        }
        neighbor_addrs = g_list_append(neighbor_addrs, tmp);
    }

    ip = inet_addr(opt.ip);
    if (ip < 0) {
        dprintf(2, "invalide ip\n"
                "should have format: XXX.XXX.XXX.XXX\n");
        return -EINVAL;
    }

    ret = start_loop(ip, &eth_addr, &inner_addr, neighbor_addrs);
exit:
    g_list_free(opt.neighbor_macs);
    g_list_free_full(neighbor_addrs, destroy_ether_addr);
    pg_stop();
    return ret;
}