Esempio n. 1
0
/* Subroutine */ int strsen_(char *job, char *compq, logical *select, integer 
	*n, real *t, integer *ldt, real *q, integer *ldq, real *wr, real *wi, 
	integer *m, real *s, real *sep, real *work, integer *lwork, integer *
	iwork, integer *liwork, integer *info, ftnlen job_len, ftnlen 
	compq_len)
{
    /* System generated locals */
    integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer k, n1, n2, kk, nn, ks;
    static real est;
    static integer kase;
    static logical pair;
    static integer ierr;
    static logical swap;
    static real scale;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    static integer lwmin;
    static logical wantq, wants;
    static real rnorm;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *,
	     real *, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slacon_(
	    integer *, real *, real *, integer *, real *, integer *);
    static logical wantbh;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, ftnlen);
    static integer liwmin;
    extern /* Subroutine */ int strexc_(char *, integer *, real *, integer *, 
	    real *, integer *, integer *, integer *, real *, integer *, 
	    ftnlen);
    static logical wantsp, lquery;
    extern /* Subroutine */ int strsyl_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
	    , real *, integer *, ftnlen, ftnlen);


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  STRSEN reorders the real Schur factorization of a real matrix */
/*  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
/*  the leading diagonal blocks of the upper quasi-triangular matrix T, */
/*  and the leading columns of Q form an orthonormal basis of the */
/*  corresponding right invariant subspace. */

/*  Optionally the routine computes the reciprocal condition numbers of */
/*  the cluster of eigenvalues and/or the invariant subspace. */

/*  T must be in Schur canonical form (as returned by SHSEQR), that is, */
/*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
/*  2-by-2 diagonal block has its diagonal elemnts equal and its */
/*  off-diagonal elements of opposite sign. */

/*  Arguments */
/*  ========= */

/*  JOB     (input) CHARACTER*1 */
/*          Specifies whether condition numbers are required for the */
/*          cluster of eigenvalues (S) or the invariant subspace (SEP): */
/*          = 'N': none; */
/*          = 'E': for eigenvalues only (S); */
/*          = 'V': for invariant subspace only (SEP); */
/*          = 'B': for both eigenvalues and invariant subspace (S and */
/*                 SEP). */

/*  COMPQ   (input) CHARACTER*1 */
/*          = 'V': update the matrix Q of Schur vectors; */
/*          = 'N': do not update Q. */

/*  SELECT  (input) LOGICAL array, dimension (N) */
/*          SELECT specifies the eigenvalues in the selected cluster. To */
/*          select a real eigenvalue w(j), SELECT(j) must be set to */
/*          .TRUE.. To select a complex conjugate pair of eigenvalues */
/*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
/*          either SELECT(j) or SELECT(j+1) or both must be set to */
/*          .TRUE.; a complex conjugate pair of eigenvalues must be */
/*          either both included in the cluster or both excluded. */

/*  N       (input) INTEGER */
/*          The order of the matrix T. N >= 0. */

/*  T       (input/output) REAL array, dimension (LDT,N) */
/*          On entry, the upper quasi-triangular matrix T, in Schur */
/*          canonical form. */
/*          On exit, T is overwritten by the reordered matrix T, again in */
/*          Schur canonical form, with the selected eigenvalues in the */
/*          leading diagonal blocks. */

/*  LDT     (input) INTEGER */
/*          The leading dimension of the array T. LDT >= max(1,N). */

/*  Q       (input/output) REAL array, dimension (LDQ,N) */
/*          On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
/*          On exit, if COMPQ = 'V', Q has been postmultiplied by the */
/*          orthogonal transformation matrix which reorders T; the */
/*          leading M columns of Q form an orthonormal basis for the */
/*          specified invariant subspace. */
/*          If COMPQ = 'N', Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q. */
/*          LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */

/*  WR      (output) REAL array, dimension (N) */
/*  WI      (output) REAL array, dimension (N) */
/*          The real and imaginary parts, respectively, of the reordered */
/*          eigenvalues of T. The eigenvalues are stored in the same */
/*          order as on the diagonal of T, with WR(i) = T(i,i) and, if */
/*          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
/*          WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
/*          sufficiently ill-conditioned, then its value may differ */
/*          significantly from its value before reordering. */

/*  M       (output) INTEGER */
/*          The dimension of the specified invariant subspace. */
/*          0 < = M <= N. */

/*  S       (output) REAL */
/*          If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
/*          condition number for the selected cluster of eigenvalues. */
/*          S cannot underestimate the true reciprocal condition number */
/*          by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
/*          If JOB = 'N' or 'V', S is not referenced. */

/*  SEP     (output) REAL */
/*          If JOB = 'V' or 'B', SEP is the estimated reciprocal */
/*          condition number of the specified invariant subspace. If */
/*          M = 0 or N, SEP = norm(T). */
/*          If JOB = 'N' or 'E', SEP is not referenced. */

/*  WORK    (workspace/output) REAL array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If JOB = 'N', LWORK >= max(1,N); */
/*          if JOB = 'E', LWORK >= M*(N-M); */
/*          if JOB = 'V' or 'B', LWORK >= 2*M*(N-M). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace) INTEGER array, dimension (LIWORK) */
/*          IF JOB = 'N' or 'E', IWORK is not referenced. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If JOB = 'N' or 'E', LIWORK >= 1; */
/*          if JOB = 'V' or 'B', LIWORK >= M*(N-M). */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          = 1: reordering of T failed because some eigenvalues are too */
/*               close to separate (the problem is very ill-conditioned); */
/*               T may have been partially reordered, and WR and WI */
/*               contain the eigenvalues in the same order as in T; S and */
/*               SEP (if requested) are set to zero. */

/*  Further Details */
/*  =============== */

/*  STRSEN first collects the selected eigenvalues by computing an */
/*  orthogonal transformation Z to move them to the top left corner of T. */
/*  In other words, the selected eigenvalues are the eigenvalues of T11 */
/*  in: */

/*                Z'*T*Z = ( T11 T12 ) n1 */
/*                         (  0  T22 ) n2 */
/*                            n1  n2 */

/*  where N = n1+n2 and Z' means the transpose of Z. The first n1 columns */
/*  of Z span the specified invariant subspace of T. */

/*  If T has been obtained from the real Schur factorization of a matrix */
/*  A = Q*T*Q', then the reordered real Schur factorization of A is given */
/*  by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span */
/*  the corresponding invariant subspace of A. */

/*  The reciprocal condition number of the average of the eigenvalues of */
/*  T11 may be returned in S. S lies between 0 (very badly conditioned) */
/*  and 1 (very well conditioned). It is computed as follows. First we */
/*  compute R so that */

/*                         P = ( I  R ) n1 */
/*                             ( 0  0 ) n2 */
/*                               n1 n2 */

/*  is the projector on the invariant subspace associated with T11. */
/*  R is the solution of the Sylvester equation: */

/*                        T11*R - R*T22 = T12. */

/*  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
/*  the two-norm of M. Then S is computed as the lower bound */

/*                      (1 + F-norm(R)**2)**(-1/2) */

/*  on the reciprocal of 2-norm(P), the true reciprocal condition number. */
/*  S cannot underestimate 1 / 2-norm(P) by more than a factor of */
/*  sqrt(N). */

/*  An approximate error bound for the computed average of the */
/*  eigenvalues of T11 is */

/*                         EPS * norm(T) / S */

/*  where EPS is the machine precision. */

/*  The reciprocal condition number of the right invariant subspace */
/*  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
/*  SEP is defined as the separation of T11 and T22: */

/*                     sep( T11, T22 ) = sigma-min( C ) */

/*  where sigma-min(C) is the smallest singular value of the */
/*  n1*n2-by-n1*n2 matrix */

/*     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */

/*  I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
/*  product. We estimate sigma-min(C) by the reciprocal of an estimate of */
/*  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
/*  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2). */

/*  When SEP is small, small changes in T can cause large changes in */
/*  the invariant subspace. An approximate bound on the maximum angular */
/*  error in the computed right invariant subspace is */

/*                      EPS * norm(T) / SEP */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode and test the input parameters */

    /* Parameter adjustments */
    --select;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --wr;
    --wi;
    --work;
    --iwork;

    /* Function Body */
    wantbh = lsame_(job, "B", (ftnlen)1, (ftnlen)1);
    wants = lsame_(job, "E", (ftnlen)1, (ftnlen)1) || wantbh;
    wantsp = lsame_(job, "V", (ftnlen)1, (ftnlen)1) || wantbh;
    wantq = lsame_(compq, "V", (ftnlen)1, (ftnlen)1);

    *info = 0;
    lquery = *lwork == -1;
    if (! lsame_(job, "N", (ftnlen)1, (ftnlen)1) && ! wants && ! wantsp) {
	*info = -1;
    } else if (! lsame_(compq, "N", (ftnlen)1, (ftnlen)1) && ! wantq) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldt < max(1,*n)) {
	*info = -6;
    } else if (*ldq < 1 || wantq && *ldq < *n) {
	*info = -8;
    } else {

/*        Set M to the dimension of the specified invariant subspace, */
/*        and test LWORK and LIWORK. */

	*m = 0;
	pair = FALSE_;
	i__1 = *n;
	for (k = 1; k <= i__1; ++k) {
	    if (pair) {
		pair = FALSE_;
	    } else {
		if (k < *n) {
		    if (t[k + 1 + k * t_dim1] == 0.f) {
			if (select[k]) {
			    ++(*m);
			}
		    } else {
			pair = TRUE_;
			if (select[k] || select[k + 1]) {
			    *m += 2;
			}
		    }
		} else {
		    if (select[*n]) {
			++(*m);
		    }
		}
	    }
/* L10: */
	}

	n1 = *m;
	n2 = *n - *m;
	nn = n1 * n2;

	if (wantsp) {
/* Computing MAX */
	    i__1 = 1, i__2 = nn << 1;
	    lwmin = max(i__1,i__2);
	    liwmin = max(1,nn);
	} else if (lsame_(job, "N", (ftnlen)1, (ftnlen)1)) {
	    lwmin = max(1,*n);
	    liwmin = 1;
	} else if (lsame_(job, "E", (ftnlen)1, (ftnlen)1)) {
	    lwmin = max(1,nn);
	    liwmin = 1;
	}

	if (*lwork < lwmin && ! lquery) {
	    *info = -15;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -17;
	}
    }

    if (*info == 0) {
	work[1] = (real) lwmin;
	iwork[1] = liwmin;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("STRSEN", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible. */

    if (*m == *n || *m == 0) {
	if (wants) {
	    *s = 1.f;
	}
	if (wantsp) {
	    *sep = slange_("1", n, n, &t[t_offset], ldt, &work[1], (ftnlen)1);
	}
	goto L40;
    }

/*     Collect the selected blocks at the top-left corner of T. */

    ks = 0;
    pair = FALSE_;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	if (pair) {
	    pair = FALSE_;
	} else {
	    swap = select[k];
	    if (k < *n) {
		if (t[k + 1 + k * t_dim1] != 0.f) {
		    pair = TRUE_;
		    swap = swap || select[k + 1];
		}
	    }
	    if (swap) {
		++ks;

/*              Swap the K-th block to position KS. */

		ierr = 0;
		kk = k;
		if (k != ks) {
		    strexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    kk, &ks, &work[1], &ierr, (ftnlen)1);
		}
		if (ierr == 1 || ierr == 2) {

/*                 Blocks too close to swap: exit. */

		    *info = 1;
		    if (wants) {
			*s = 0.f;
		    }
		    if (wantsp) {
			*sep = 0.f;
		    }
		    goto L40;
		}
		if (pair) {
		    ++ks;
		}
	    }
	}
/* L20: */
    }

    if (wants) {

/*        Solve Sylvester equation for R: */

/*           T11*R - R*T22 = scale*T12 */

	slacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1, 
		(ftnlen)1);
	strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 
		+ 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr, (ftnlen)1, 
		(ftnlen)1);

/*        Estimate the reciprocal of the condition number of the cluster */
/*        of eigenvalues. */

	rnorm = slange_("F", &n1, &n2, &work[1], &n1, &work[1], (ftnlen)1);
	if (rnorm == 0.f) {
	    *s = 1.f;
	} else {
	    *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
	}
    }

    if (wantsp) {

/*        Estimate sep(T11,T22). */

	est = 0.f;
	kase = 0;
L30:
	slacon_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase);
	if (kase != 0) {
	    if (kase == 1) {

/*              Solve  T11*R - R*T22 = scale*X. */

		strsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
			ierr, (ftnlen)1, (ftnlen)1);
	    } else {

/*              Solve  T11'*R - R*T22' = scale*X. */

		strsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
			ierr, (ftnlen)1, (ftnlen)1);
	    }
	    goto L30;
	}

	*sep = scale / est;
    }

L40:

/*     Store the output eigenvalues in WR and WI. */

    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	wr[k] = t[k + k * t_dim1];
	wi[k] = 0.f;
/* L50: */
    }
    i__1 = *n - 1;
    for (k = 1; k <= i__1; ++k) {
	if (t[k + 1 + k * t_dim1] != 0.f) {
	    wi[k] = sqrt((r__1 = t[k + (k + 1) * t_dim1], dabs(r__1))) * sqrt(
		    (r__2 = t[k + 1 + k * t_dim1], dabs(r__2)));
	    wi[k + 1] = -wi[k];
	}
/* L60: */
    }

    work[1] = (real) lwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of STRSEN */

} /* strsen_ */
Esempio n. 2
0
/* Subroutine */ int serrec_(char *path, integer *nunit)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,a3,\002 routines passed the tests of the e"
	    "rror exits (\002,i3,\002 tests done)\002)";
    static char fmt_9998[] = "(\002 *** \002,a3,\002 routines failed the tes"
	    "ts of the error ex\002,\002its ***\002)";

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    real a[16]	/* was [4][4] */, b[16]	/* was [4][4] */, c__[16]	/* 
	    was [4][4] */;
    integer i__, j, m;
    real s[4], wi[4];
    integer nt;
    real wr[4];
    logical sel[4];
    real sep[4];
    integer info, ifst, ilst;
    real work[4], scale;
    integer iwork[4];
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), strexc_(char *, integer *, real *, integer 
	    *, real *, integer *, integer *, integer *, real *, integer *), strsna_(char *, char *, logical *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, real *, real *, 
	    integer *, integer *, real *, integer *, integer *, integer *), strsen_(char *, char *, logical *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, integer *, 
	    real *, real *, real *, integer *, integer *, integer *, integer *
), strsyl_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, real *, integer *);

    /* Fortran I/O blocks */
    static cilist io___19 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___20 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SERREC tests the error exits for the routines for eigen- condition */
/*  estimation for REAL matrices: */
/*     STRSYL, STREXC, STRSNA and STRSEN. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    infoc_1.ok = TRUE_;
    nt = 0;

/*     Initialize A, B and SEL */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    a[i__ + (j << 2) - 5] = 0.f;
	    b[i__ + (j << 2) - 5] = 0.f;
/* L10: */
	}
/* L20: */
    }
    for (i__ = 1; i__ <= 4; ++i__) {
	a[i__ + (i__ << 2) - 5] = 1.f;
	sel[i__ - 1] = TRUE_;
/* L30: */
    }

/*     Test STRSYL */

    s_copy(srnamc_1.srnamt, "STRSYL", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    strsyl_("X", "N", &c__1, &c__0, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    strsyl_("N", "X", &c__1, &c__0, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    strsyl_("N", "N", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    strsyl_("N", "N", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    strsyl_("N", "N", &c__1, &c__0, &c_n1, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    strsyl_("N", "N", &c__1, &c__2, &c__0, a, &c__1, b, &c__1, c__, &c__2, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 9;
    strsyl_("N", "N", &c__1, &c__0, &c__2, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 11;
    strsyl_("N", "N", &c__1, &c__2, &c__0, a, &c__2, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 8;

/*     Test STREXC */

    s_copy(srnamc_1.srnamt, "STREXC", (ftnlen)32, (ftnlen)6);
    ifst = 1;
    ilst = 1;
    infoc_1.infot = 1;
    strexc_("X", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    strexc_("N", &c__0, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    ilst = 2;
    strexc_("N", &c__2, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 6;
    strexc_("V", &c__2, a, &c__2, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    ifst = 0;
    ilst = 1;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    ifst = 2;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    ifst = 1;
    ilst = 0;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    ilst = 2;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 8;

/*     Test STRSNA */

    s_copy(srnamc_1.srnamt, "STRSNA", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    strsna_("X", "A", sel, &c__0, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__1, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    strsna_("B", "X", sel, &c__0, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__1, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    strsna_("B", "A", sel, &c_n1, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__1, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 6;
    strsna_("V", "A", sel, &c__2, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__2, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    strsna_("B", "A", sel, &c__2, a, &c__2, b, &c__1, c__, &c__2, s, sep, &
	    c__2, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    strsna_("B", "A", sel, &c__2, a, &c__2, b, &c__2, c__, &c__1, s, sep, &
	    c__2, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 13;
    strsna_("B", "A", sel, &c__1, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__0, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 13;
    strsna_("B", "S", sel, &c__2, a, &c__2, b, &c__2, c__, &c__2, s, sep, &
	    c__1, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 16;
    strsna_("B", "A", sel, &c__2, a, &c__2, b, &c__2, c__, &c__2, s, sep, &
	    c__2, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 9;

/*     Test STRSEN */

    sel[0] = FALSE_;
    s_copy(srnamc_1.srnamt, "STRSEN", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    strsen_("X", "N", sel, &c__0, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    strsen_("N", "X", sel, &c__0, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    strsen_("N", "N", sel, &c_n1, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 6;
    strsen_("N", "N", sel, &c__2, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__2, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    strsen_("N", "V", sel, &c__2, a, &c__2, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 15;
    strsen_("N", "V", sel, &c__2, a, &c__2, b, &c__2, wr, wi, &m, s, sep, 
	    work, &c__0, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 15;
    strsen_("E", "V", sel, &c__3, a, &c__3, b, &c__3, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 15;
    strsen_("V", "V", sel, &c__3, a, &c__3, b, &c__3, wr, wi, &m, s, sep, 
	    work, &c__3, iwork, &c__2, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 17;
    strsen_("E", "V", sel, &c__2, a, &c__2, b, &c__2, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__0, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 17;
    strsen_("V", "V", sel, &c__3, a, &c__3, b, &c__3, wr, wi, &m, s, sep, 
	    work, &c__4, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 10;

/*     Print a summary line. */

    if (infoc_1.ok) {
	io___19.ciunit = infoc_1.nout;
	s_wsfe(&io___19);
	do_fio(&c__1, path, (ftnlen)3);
	do_fio(&c__1, (char *)&nt, (ftnlen)sizeof(integer));
	e_wsfe();
    } else {
	io___20.ciunit = infoc_1.nout;
	s_wsfe(&io___20);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
    }

    return 0;

/*     End of SERREC */

} /* serrec_ */
Esempio n. 3
0
/* Subroutine */ int serrec_(char *path, integer *nunit)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,a3,\002 routines passed the tests of the e"
	    "rror exits (\002,i3,\002 tests done)\002)";
    static char fmt_9998[] = "(\002 *** \002,a3,\002 routines failed the tes"
	    "ts of the error ex\002,\002its ***\002)";

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer info, ifst, ilst;
    static real work[4], a[16]	/* was [4][4] */, b[16]	/* was [4][4] */, c__[
	    16]	/* was [4][4] */;
    static integer i__, j, m;
    static real s[4], scale;
    static integer iwork[4];
    static real wi[4];
    static integer nt;
    static real wr[4];
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), strexc_(char *, integer *, real *, integer 
	    *, real *, integer *, integer *, integer *, real *, integer *), strsna_(char *, char *, logical *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, real *, real *, 
	    integer *, integer *, real *, integer *, integer *, integer *), strsen_(char *, char *, logical *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, integer *, 
	    real *, real *, real *, integer *, integer *, integer *, integer *
	    ), strsyl_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
	    , real *, integer *);
    static logical sel[4];
    static real sep[4];

    /* Fortran I/O blocks */
    static cilist io___19 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___20 = { 0, 0, 0, fmt_9998, 0 };



#define a_ref(a_1,a_2) a[(a_2)*4 + a_1 - 5]
#define b_ref(a_1,a_2) b[(a_2)*4 + a_1 - 5]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    SERREC tests the error exits for the routines for eigen- condition   
    estimation for REAL matrices:   
       STRSYL, STREXC, STRSNA and STRSEN.   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    infoc_1.ok = TRUE_;
    nt = 0;

/*     Initialize A, B and SEL */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    a_ref(i__, j) = 0.f;
	    b_ref(i__, j) = 0.f;
/* L10: */
	}
/* L20: */
    }
    for (i__ = 1; i__ <= 4; ++i__) {
	a_ref(i__, i__) = 1.f;
	sel[i__ - 1] = TRUE_;
/* L30: */
    }

/*     Test STRSYL */

    s_copy(srnamc_1.srnamt, "STRSYL", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    strsyl_("X", "N", &c__1, &c__0, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    strsyl_("N", "X", &c__1, &c__0, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    strsyl_("N", "N", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    strsyl_("N", "N", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    strsyl_("N", "N", &c__1, &c__0, &c_n1, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    strsyl_("N", "N", &c__1, &c__2, &c__0, a, &c__1, b, &c__1, c__, &c__2, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 9;
    strsyl_("N", "N", &c__1, &c__0, &c__2, a, &c__1, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 11;
    strsyl_("N", "N", &c__1, &c__2, &c__0, a, &c__2, b, &c__1, c__, &c__1, &
	    scale, &info);
    chkxer_("STRSYL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 8;

/*     Test STREXC */

    s_copy(srnamc_1.srnamt, "STREXC", (ftnlen)6, (ftnlen)6);
    ifst = 1;
    ilst = 1;
    infoc_1.infot = 1;
    strexc_("X", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    strexc_("N", &c__0, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    ilst = 2;
    strexc_("N", &c__2, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 6;
    strexc_("V", &c__2, a, &c__2, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    ifst = 0;
    ilst = 1;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    ifst = 2;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    ifst = 1;
    ilst = 0;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    ilst = 2;
    strexc_("V", &c__1, a, &c__1, b, &c__1, &ifst, &ilst, work, &info);
    chkxer_("STREXC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 8;

/*     Test STRSNA */

    s_copy(srnamc_1.srnamt, "STRSNA", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    strsna_("X", "A", sel, &c__0, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__1, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    strsna_("B", "X", sel, &c__0, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__1, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    strsna_("B", "A", sel, &c_n1, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__1, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 6;
    strsna_("V", "A", sel, &c__2, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__2, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    strsna_("B", "A", sel, &c__2, a, &c__2, b, &c__1, c__, &c__2, s, sep, &
	    c__2, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    strsna_("B", "A", sel, &c__2, a, &c__2, b, &c__2, c__, &c__1, s, sep, &
	    c__2, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 13;
    strsna_("B", "A", sel, &c__1, a, &c__1, b, &c__1, c__, &c__1, s, sep, &
	    c__0, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 13;
    strsna_("B", "S", sel, &c__2, a, &c__2, b, &c__2, c__, &c__2, s, sep, &
	    c__1, &m, work, &c__2, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 16;
    strsna_("B", "A", sel, &c__2, a, &c__2, b, &c__2, c__, &c__2, s, sep, &
	    c__2, &m, work, &c__1, iwork, &info);
    chkxer_("STRSNA", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 9;

/*     Test STRSEN */

    sel[0] = FALSE_;
    s_copy(srnamc_1.srnamt, "STRSEN", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    strsen_("X", "N", sel, &c__0, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    strsen_("N", "X", sel, &c__0, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    strsen_("N", "N", sel, &c_n1, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 6;
    strsen_("N", "N", sel, &c__2, a, &c__1, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__2, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    strsen_("N", "V", sel, &c__2, a, &c__2, b, &c__1, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 15;
    strsen_("N", "V", sel, &c__2, a, &c__2, b, &c__2, wr, wi, &m, s, sep, 
	    work, &c__0, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 15;
    strsen_("E", "V", sel, &c__3, a, &c__3, b, &c__3, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 15;
    strsen_("V", "V", sel, &c__3, a, &c__3, b, &c__3, wr, wi, &m, s, sep, 
	    work, &c__3, iwork, &c__2, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 17;
    strsen_("E", "V", sel, &c__2, a, &c__2, b, &c__2, wr, wi, &m, s, sep, 
	    work, &c__1, iwork, &c__0, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 17;
    strsen_("V", "V", sel, &c__3, a, &c__3, b, &c__3, wr, wi, &m, s, sep, 
	    work, &c__4, iwork, &c__1, &info);
    chkxer_("STRSEN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    nt += 10;

/*     Print a summary line. */

    if (infoc_1.ok) {
	io___19.ciunit = infoc_1.nout;
	s_wsfe(&io___19);
	do_fio(&c__1, path, (ftnlen)3);
	do_fio(&c__1, (char *)&nt, (ftnlen)sizeof(integer));
	e_wsfe();
    } else {
	io___20.ciunit = infoc_1.nout;
	s_wsfe(&io___20);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
    }

    return 0;

/*     End of SERREC */

} /* serrec_ */