void KeyGenerator::set_poly_coeffs_normal(uint64_t *poly) const { int coeff_count = poly_modulus_.coeff_count(); int coeff_bit_count = poly_modulus_.coeff_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); if (noise_standard_deviation_ == 0 || noise_max_deviation_ == 0) { set_zero_poly(coeff_count, coeff_uint64_count, poly); return; } RandomToStandardAdapter engine(random_generator_.get()); ClippedNormalDistribution random(0, noise_standard_deviation_, noise_max_deviation_); for (int i = 0; i < coeff_count - 1; ++i) { int64_t noise = static_cast<int64_t>(random(engine)); if (noise > 0) { set_uint(static_cast<uint64_t>(noise), coeff_uint64_count, poly); } else if (noise < 0) { noise = -noise; set_uint(static_cast<uint64_t>(noise), coeff_uint64_count, poly); sub_uint_uint(coeff_modulus_.pointer(), poly, coeff_uint64_count, poly); } else { set_zero_uint(coeff_uint64_count, poly); } poly += coeff_uint64_count; } set_zero_uint(coeff_uint64_count, poly); }
HkeyGen::HkeyGen(const EncryptionParameters &parms, const BigPoly &secret_key) : poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()), secret_key_(secret_key), orig_plain_modulus_bit_count_(parms.plain_modulus().significant_bit_count()) { // Verify required parameters are non-zero and non-nullptr. if (poly_modulus_.is_zero()) { throw invalid_argument("poly_modulus cannot be zero"); } if (coeff_modulus_.is_zero()) { throw invalid_argument("coeff_modulus cannot be zero"); } if (plain_modulus_.is_zero()) { throw invalid_argument("plain_modulus cannot be zero"); } if (secret_key_.is_zero()) { throw invalid_argument("secret_key cannot be zero"); } // Verify parameters. if (plain_modulus_ >= coeff_modulus_) { throw invalid_argument("plain_modulus must be smaller than coeff_modulus"); } if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_)) { throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus"); } // Resize encryption parameters to consistent size. int coeff_count = poly_modulus_.significant_coeff_count(); int coeff_bit_count = coeff_modulus_.significant_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count) { poly_modulus_.resize(coeff_count, coeff_bit_count); } if (coeff_modulus_.bit_count() != coeff_bit_count) { coeff_modulus_.resize(coeff_bit_count); } if (plain_modulus_.bit_count() != coeff_bit_count) { plain_modulus_.resize(coeff_bit_count); } if (secret_key_.coeff_count() != coeff_count || secret_key_.coeff_bit_count() != coeff_bit_count || secret_key_.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(secret_key_, coeff_modulus_)) { throw invalid_argument("secret_key is not valid for encryption parameters"); } // Set the secret_key_array to have size 1 (first power of secret) secret_key_array_.resize(1, coeff_count, coeff_bit_count); set_poly_poly(secret_key_.pointer(), coeff_count, coeff_uint64_count, secret_key_array_.pointer(0)); MemoryPool &pool = *MemoryPool::default_pool(); // Calculate coeff_modulus / plain_modulus. coeff_div_plain_modulus_.resize(coeff_bit_count); Pointer temp(allocate_uint(coeff_uint64_count, pool)); divide_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, coeff_div_plain_modulus_.pointer(), temp.get(), pool); // Calculate coeff_modulus / plain_modulus / 2. coeff_div_plain_modulus_div_two_.resize(coeff_bit_count); right_shift_uint(coeff_div_plain_modulus_.pointer(), 1, coeff_uint64_count, coeff_div_plain_modulus_div_two_.pointer()); // Calculate coeff_modulus / 2. upper_half_threshold_.resize(coeff_bit_count); half_round_up_uint(coeff_modulus_.pointer(), coeff_uint64_count, upper_half_threshold_.pointer()); // Calculate upper_half_increment. upper_half_increment_.resize(coeff_bit_count); multiply_truncate_uint_uint(plain_modulus_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_increment_.pointer()); sub_uint_uint(coeff_modulus_.pointer(), upper_half_increment_.pointer(), coeff_uint64_count, upper_half_increment_.pointer()); // Initialize moduli. polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count); mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool); }
Evaluator::Evaluator(const EncryptionParameters &parms, const EvaluationKeys &evaluation_keys) : poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()), decomposition_bit_count_(parms.decomposition_bit_count()), evaluation_keys_(evaluation_keys), mode_(parms.mode()) { // Verify required parameters are non-zero and non-nullptr. if (poly_modulus_.is_zero()) { throw invalid_argument("poly_modulus cannot be zero"); } if (coeff_modulus_.is_zero()) { throw invalid_argument("coeff_modulus cannot be zero"); } if (plain_modulus_.is_zero()) { throw invalid_argument("plain_modulus cannot be zero"); } if (decomposition_bit_count_ <= 0) { throw invalid_argument("decomposition_bit_count must be positive"); } if (evaluation_keys_.count() == 0) { throw invalid_argument("evaluation_keys cannot be empty"); } // Verify parameters. if (plain_modulus_ >= coeff_modulus_) { throw invalid_argument("plain_modulus must be smaller than coeff_modulus"); } if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_)) { throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus"); } // Resize encryption parameters to consistent size. int coeff_count = poly_modulus_.significant_coeff_count(); int coeff_bit_count = coeff_modulus_.significant_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count) { poly_modulus_.resize(coeff_count, coeff_bit_count); } if (coeff_modulus_.bit_count() != coeff_bit_count) { coeff_modulus_.resize(coeff_bit_count); } if (plain_modulus_.bit_count() != coeff_bit_count) { plain_modulus_.resize(coeff_bit_count); } if (decomposition_bit_count_ > coeff_bit_count) { decomposition_bit_count_ = coeff_bit_count; } // Determine correct number of evaluation keys. int evaluation_key_count = 0; Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_)); set_uint(1, coeff_uint64_count, evaluation_factor.get()); while (!is_zero_uint(evaluation_factor.get(), coeff_uint64_count) && is_less_than_uint_uint(evaluation_factor.get(), coeff_modulus_.pointer(), coeff_uint64_count)) { left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get()); evaluation_key_count++; } // Verify evaluation keys. if (evaluation_keys_.count() != evaluation_key_count) { throw invalid_argument("evaluation_keys is not valid for encryption parameters"); } for (int i = 0; i < evaluation_keys_.count(); ++i) { BigPoly &evaluation_key = evaluation_keys_[i]; if (evaluation_key.coeff_count() != coeff_count || evaluation_key.coeff_bit_count() != coeff_bit_count || evaluation_key.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(evaluation_key, coeff_modulus_)) { throw invalid_argument("evaluation_keys is not valid for encryption parameters"); } } // Calculate coeff_modulus / plain_modulus. coeff_div_plain_modulus_.resize(coeff_bit_count); Pointer temp(allocate_uint(coeff_uint64_count, pool_)); divide_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, coeff_div_plain_modulus_.pointer(), temp.get(), pool_); // Calculate (plain_modulus + 1) / 2. plain_upper_half_threshold_.resize(coeff_bit_count); half_round_up_uint(plain_modulus_.pointer(), coeff_uint64_count, plain_upper_half_threshold_.pointer()); // Calculate coeff_modulus - plain_modulus. plain_upper_half_increment_.resize(coeff_bit_count); sub_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, plain_upper_half_increment_.pointer()); // Calculate (plain_modulus + 1) / 2 * coeff_div_plain_modulus. upper_half_threshold_.resize(coeff_bit_count); multiply_truncate_uint_uint(plain_upper_half_threshold_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_threshold_.pointer()); // Calculate upper_half_increment. upper_half_increment_.resize(coeff_bit_count); multiply_truncate_uint_uint(plain_modulus_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_increment_.pointer()); sub_uint_uint(coeff_modulus_.pointer(), upper_half_increment_.pointer(), coeff_uint64_count, upper_half_increment_.pointer()); // Widen coeff modulus. int product_coeff_bit_count = coeff_bit_count + coeff_bit_count + get_significant_bit_count(static_cast<uint64_t>(coeff_count)); int plain_modulus_bit_count = plain_modulus_.significant_bit_count(); int wide_bit_count = product_coeff_bit_count + plain_modulus_bit_count; int wide_uint64_count = divide_round_up(wide_bit_count, bits_per_uint64); wide_coeff_modulus_.resize(wide_bit_count); wide_coeff_modulus_ = coeff_modulus_; // Calculate wide_coeff_modulus_ / 2. wide_coeff_modulus_div_two_.resize(wide_bit_count); right_shift_uint(wide_coeff_modulus_.pointer(), 1, wide_uint64_count, wide_coeff_modulus_div_two_.pointer()); // Initialize moduli. polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count); if (mode_ == TEST_MODE) { mod_ = Modulus(plain_modulus_.pointer(), coeff_uint64_count, pool_); } else { mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool_); } }