bool GrTesselatedPathRenderer::onDrawPath(const SkPath& path,
                                          GrPathFill fill,
                                          const GrVec* translate,
                                          GrDrawTarget* target,
                                          GrDrawState::StageMask stageMask,
                                          bool antiAlias) {

    GrDrawTarget::AutoStateRestore asr(target);
    GrDrawState* drawState = target->drawState();
    // face culling doesn't make sense here
    GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace());

    GrMatrix viewM = drawState->getViewMatrix();

    GrScalar tol = GR_Scalar1;
    tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, path.getBounds());
    GrScalar tolSqd = GrMul(tol, tol);

    int subpathCnt;
    int maxPts = GrPathUtils::worstCasePointCount(path, &subpathCnt, tol);

    GrVertexLayout layout = 0;
    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
        if ((1 << s) & stageMask) {
            layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s);
        }
    }

    bool inverted = GrIsFillInverted(fill);
    if (inverted) {
        maxPts += 4;
        subpathCnt++;
    }
    if (maxPts > USHRT_MAX) {
        return false;
    }
    SkAutoSTMalloc<8, GrPoint> baseMem(maxPts);
    GrPoint* base = baseMem;
    GrPoint* vert = base;
    GrPoint* subpathBase = base;

    SkAutoSTMalloc<8, uint16_t> subpathVertCount(subpathCnt);

    GrPoint pts[4];
    SkPath::Iter iter(path, false);

    bool first = true;
    int subpath = 0;

    for (;;) {
        switch (iter.next(pts)) {
            case kMove_PathCmd:
                if (!first) {
                    subpathVertCount[subpath] = vert-subpathBase;
                    subpathBase = vert;
                    ++subpath;
                }
                *vert = pts[0];
                vert++;
                break;
            case kLine_PathCmd:
                *vert = pts[1];
                vert++;
                break;
            case kQuadratic_PathCmd: {
                GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
                                                     tolSqd, &vert,
                                                     GrPathUtils::quadraticPointCount(pts, tol));
                break;
            }
            case kCubic_PathCmd: {
                GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
                                                 tolSqd, &vert,
                                                 GrPathUtils::cubicPointCount(pts, tol));
                break;
            }
            case kClose_PathCmd:
                break;
            case kEnd_PathCmd:
                subpathVertCount[subpath] = vert-subpathBase;
                ++subpath; // this could be only in debug
                goto FINISHED;
        }
        first = false;
    }
FINISHED:
    if (NULL != translate && 0 != translate->fX && 0 != translate->fY) {
        for (int i = 0; i < vert - base; i++) {
            base[i].offset(translate->fX, translate->fY);
        }
    }

    if (inverted) {
        GrRect bounds;
        GrAssert(NULL != drawState->getRenderTarget());
        bounds.setLTRB(0, 0,
                       GrIntToScalar(drawState->getRenderTarget()->width()),
                       GrIntToScalar(drawState->getRenderTarget()->height()));
        GrMatrix vmi;
        if (drawState->getViewInverse(&vmi)) {
            vmi.mapRect(&bounds);
        }
        *vert++ = GrPoint::Make(bounds.fLeft, bounds.fTop);
        *vert++ = GrPoint::Make(bounds.fLeft, bounds.fBottom);
        *vert++ = GrPoint::Make(bounds.fRight, bounds.fBottom);
        *vert++ = GrPoint::Make(bounds.fRight, bounds.fTop);
        subpathVertCount[subpath++] = 4;
    }

    GrAssert(subpath == subpathCnt);
    GrAssert((vert - base) <= maxPts);

    size_t count = vert - base;

    if (count < 3) {
        return true;
    }

    if (subpathCnt == 1 && !inverted && path.isConvex()) {
        if (antiAlias) {
            GrEdgeArray edges;
            GrMatrix inverse, matrix = drawState->getViewMatrix();
            drawState->getViewInverse(&inverse);

            count = computeEdgesAndIntersect(matrix, inverse, base, count, &edges, 0.0f);
            size_t maxEdges = target->getMaxEdges();
            if (count == 0) {
                return true;
            }
            if (count <= maxEdges) {
                // All edges fit; upload all edges and draw all verts as a fan
                target->setVertexSourceToArray(layout, base, count);
                drawState->setEdgeAAData(&edges[0], count);
                target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, count);
            } else {
                // Upload "maxEdges" edges and verts at a time, and draw as
                // separate fans
                for (size_t i = 0; i < count - 2; i += maxEdges - 2) {
                    edges[i] = edges[0];
                    base[i] = base[0];
                    int size = GR_CT_MIN(count - i, maxEdges);
                    target->setVertexSourceToArray(layout, &base[i], size);
                    drawState->setEdgeAAData(&edges[i], size);
                    target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, size);
                }
            }
            drawState->setEdgeAAData(NULL, 0);
        } else {
            target->setVertexSourceToArray(layout, base, count);
            target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, count);
        }
        return true;
    }

    if (antiAlias) {
        // Run the tesselator once to get the boundaries.
        GrBoundaryTess btess(count, fill_type_to_glu_winding_rule(fill));
        btess.addVertices(base, subpathVertCount, subpathCnt);

        GrMatrix inverse, matrix = drawState->getViewMatrix();
        if (!drawState->getViewInverse(&inverse)) {
            return false;
        }

        if (btess.vertices().count() > USHRT_MAX) {
            return false;
        }

        // Inflate the boundary, and run the tesselator again to generate
        // interior polys.
        const GrPointArray& contourPoints = btess.contourPoints();
        const GrIndexArray& contours = btess.contours();
        GrEdgePolygonTess ptess(contourPoints.count(), GLU_TESS_WINDING_NONZERO, matrix);

        size_t i = 0;
        Sk_gluTessBeginPolygon(ptess.tess(), &ptess);
        for (int contour = 0; contour < contours.count(); ++contour) {
            int count = contours[contour];
            GrEdgeArray edges;
            int newCount = computeEdgesAndIntersect(matrix, inverse, &btess.contourPoints()[i], count, &edges, 1.0f);
            Sk_gluTessBeginContour(ptess.tess());
            for (int j = 0; j < newCount; j++) {
                ptess.addVertex(contourPoints[i + j], ptess.vertices().count());
            }
            i += count;
            Sk_gluTessEndContour(ptess.tess());
        }

        Sk_gluTessEndPolygon(ptess.tess());

        if (ptess.vertices().count() > USHRT_MAX) {
            return false;
        }

        // Draw the resulting polys and upload their edge data.
        drawState->enableState(GrDrawState::kEdgeAAConcave_StateBit);
        const GrPointArray& vertices = ptess.vertices();
        const GrIndexArray& indices = ptess.indices();
        const GrDrawState::Edge* edges = ptess.edges();
        GR_DEBUGASSERT(indices.count() % 3 == 0);
        for (int i = 0; i < indices.count(); i += 3) {
            GrPoint tri_verts[3];
            int index0 = indices[i];
            int index1 = indices[i + 1];
            int index2 = indices[i + 2];
            tri_verts[0] = vertices[index0];
            tri_verts[1] = vertices[index1];
            tri_verts[2] = vertices[index2];
            GrDrawState::Edge tri_edges[6];
            int t = 0;
            const GrDrawState::Edge& edge0 = edges[index0 * 2];
            const GrDrawState::Edge& edge1 = edges[index0 * 2 + 1];
            const GrDrawState::Edge& edge2 = edges[index1 * 2];
            const GrDrawState::Edge& edge3 = edges[index1 * 2 + 1];
            const GrDrawState::Edge& edge4 = edges[index2 * 2];
            const GrDrawState::Edge& edge5 = edges[index2 * 2 + 1];
            if (validEdge(edge0) && validEdge(edge1)) {
                tri_edges[t++] = edge0;
                tri_edges[t++] = edge1;
            }
            if (validEdge(edge2) && validEdge(edge3)) {
                tri_edges[t++] = edge2;
                tri_edges[t++] = edge3;
            }
            if (validEdge(edge4) && validEdge(edge5)) {
                tri_edges[t++] = edge4;
                tri_edges[t++] = edge5;
            }
            drawState->setEdgeAAData(&tri_edges[0], t);
            target->setVertexSourceToArray(layout, &tri_verts[0], 3);
            target->drawNonIndexed(kTriangles_PrimitiveType, 0, 3);
        }
        drawState->setEdgeAAData(NULL, 0);
        drawState->disableState(GrDrawState::kEdgeAAConcave_StateBit);
        return true;
    }

    GrPolygonTess ptess(count, fill_type_to_glu_winding_rule(fill));
    ptess.addVertices(base, subpathVertCount, subpathCnt);
    const GrPointArray& vertices = ptess.vertices();
    const GrIndexArray& indices = ptess.indices();
    if (indices.count() > 0) {
        target->setVertexSourceToArray(layout, vertices.begin(), vertices.count());
        target->setIndexSourceToArray(indices.begin(), indices.count());
        target->drawIndexed(kTriangles_PrimitiveType,
                            0,
                            0,
                            vertices.count(),
                            indices.count());
    }
    return true;
}
Esempio n. 2
0
void GrDefaultPathRenderer::onDrawPath(GrDrawTarget* target,
                                       GrDrawTarget::StageBitfield stages,
                                       const GrPath& path,
                                       GrPathFill fill,
                                       const GrPoint* translate,
                                       bool stencilOnly) {

    GrDrawTarget::AutoStateRestore asr(target);
    bool colorWritesWereDisabled = target->isColorWriteDisabled();
    // face culling doesn't make sense here
    GrAssert(GrDrawTarget::kBoth_DrawFace == target->getDrawFace());

    GrMatrix viewM = target->getViewMatrix();
    // In order to tesselate the path we get a bound on how much the matrix can
    // stretch when mapping to screen coordinates.
    GrScalar stretch = viewM.getMaxStretch();
    bool useStretch = stretch > 0;
    GrScalar tol = fCurveTolerance;

    if (!useStretch) {
        // TODO: deal with perspective in some better way.
        tol /= 10;
    } else {
        tol = GrScalarDiv(tol, stretch);
    }
    GrScalar tolSqd = GrMul(tol, tol);

    int subpathCnt;
    int maxPts = GrPathUtils::worstCasePointCount(path, &subpathCnt, tol);

    GrVertexLayout layout = 0;
    for (int s = 0; s < GrDrawTarget::kNumStages; ++s) {
        if ((1 << s) & stages) {
            layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s);
        }
    }

    // add 4 to hold the bounding rect
    GrDrawTarget::AutoReleaseGeometry arg(target, layout, maxPts + 4, 0);

    GrPoint* base = (GrPoint*) arg.vertices();
    GrPoint* vert = base;
    GrPoint* subpathBase = base;

    GrAutoSTMalloc<8, uint16_t> subpathVertCount(subpathCnt);

    // TODO: use primitve restart if available rather than multiple draws
    GrPrimitiveType             type;
    int                         passCount = 0;
    const GrStencilSettings*    passes[3];
    GrDrawTarget::DrawFace      drawFace[3];
    bool                        reverse = false;
    bool                        lastPassIsBounds;

    if (kHairLine_PathFill == fill) {
        type = kLineStrip_PrimitiveType;
        passCount = 1;
        if (stencilOnly) {
            passes[0] = &gDirectToStencil;
        } else {
            passes[0] = NULL;
        }
        lastPassIsBounds = false;
        drawFace[0] = GrDrawTarget::kBoth_DrawFace;
    } else {
        type = kTriangleFan_PrimitiveType;
        if (single_pass_path(*target, path, fill)) {
            passCount = 1;
            if (stencilOnly) {
                passes[0] = &gDirectToStencil;
            } else {
                passes[0] = NULL;
            }
            drawFace[0] = GrDrawTarget::kBoth_DrawFace;
            lastPassIsBounds = false;
        } else {
            switch (fill) {
                case kInverseEvenOdd_PathFill:
                    reverse = true;
                    // fallthrough
                case kEvenOdd_PathFill:
                    passes[0] = &gEOStencilPass;
                    if (stencilOnly) {
                        passCount = 1;
                        lastPassIsBounds = false;
                    } else {
                        passCount = 2;
                        lastPassIsBounds = true;
                        if (reverse) {
                            passes[1] = &gInvEOColorPass;
                        } else {
                            passes[1] = &gEOColorPass;
                        }
                    }
                    drawFace[0] = drawFace[1] = GrDrawTarget::kBoth_DrawFace;
                    break;

                case kInverseWinding_PathFill:
                    reverse = true;
                    // fallthrough
                case kWinding_PathFill:
                    if (fSeparateStencil) {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindStencilSeparateWithWrap;
                        } else {
                            passes[0] = &gWindStencilSeparateNoWrap;
                        }
                        passCount = 2;
                        drawFace[0] = GrDrawTarget::kBoth_DrawFace;
                    } else {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindSingleStencilWithWrapInc;
                            passes[1] = &gWindSingleStencilWithWrapDec;
                        } else {
                            passes[0] = &gWindSingleStencilNoWrapInc;
                            passes[1] = &gWindSingleStencilNoWrapDec;
                        }
                        // which is cw and which is ccw is arbitrary.
                        drawFace[0] = GrDrawTarget::kCW_DrawFace;
                        drawFace[1] = GrDrawTarget::kCCW_DrawFace;
                        passCount = 3;
                    }
                    if (stencilOnly) {
                        lastPassIsBounds = false;
                        --passCount;
                    } else {
                        lastPassIsBounds = true;
                        drawFace[passCount-1] = GrDrawTarget::kBoth_DrawFace;
                        if (reverse) {
                            passes[passCount-1] = &gInvWindColorPass;
                        } else {
                            passes[passCount-1] = &gWindColorPass;
                        }
                    }
                    break;
                default:
                    GrAssert(!"Unknown path fill!");
                    return;
            }
        }
    }

    GrPoint pts[4];

    bool first = true;
    int subpath = 0;

    SkPath::Iter iter(path, false);

    for (;;) {
        GrPathCmd cmd = (GrPathCmd)iter.next(pts);
        switch (cmd) {
            case kMove_PathCmd:
                if (!first) {
                    subpathVertCount[subpath] = vert-subpathBase;
                    subpathBase = vert;
                    ++subpath;
                }
                *vert = pts[0];
                vert++;
                break;
            case kLine_PathCmd:
                *vert = pts[1];
                vert++;
                break;
            case kQuadratic_PathCmd: {
                GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
                                                     tolSqd, &vert,
                                                     GrPathUtils::quadraticPointCount(pts, tol));
                break;
            }
            case kCubic_PathCmd: {
                GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
                                                 tolSqd, &vert,
                                                 GrPathUtils::cubicPointCount(pts, tol));
                break;
            }
            case kClose_PathCmd:
                break;
            case kEnd_PathCmd:
                subpathVertCount[subpath] = vert-subpathBase;
                ++subpath; // this could be only in debug
                goto FINISHED;
        }
        first = false;
    }
FINISHED:
    GrAssert(subpath == subpathCnt);
    GrAssert((vert - base) <= maxPts);

    if (translate) {
        int count = vert - base;
        for (int i = 0; i < count; i++) {
            base[i].offset(translate->fX, translate->fY);
        }
    }

    // if we're stenciling we will follow with a pass that draws
    // a bounding rect to set the color. We're stenciling when
    // passCount > 1.
    const int& boundVertexStart = maxPts;
    GrPoint* boundsVerts = base + boundVertexStart;
    if (lastPassIsBounds) {
        GrRect bounds;
        if (reverse) {
            GrAssert(NULL != target->getRenderTarget());
            // draw over the whole world.
            bounds.setLTRB(0, 0,
                           GrIntToScalar(target->getRenderTarget()->width()),
                           GrIntToScalar(target->getRenderTarget()->height()));
            GrMatrix vmi;
            if (target->getViewInverse(&vmi)) {
                vmi.mapRect(&bounds);
            }
        } else {
            bounds.setBounds((GrPoint*)base, vert - base);
        }
        boundsVerts[0].setRectFan(bounds.fLeft, bounds.fTop, bounds.fRight,
                                  bounds.fBottom);
    }

    for (int p = 0; p < passCount; ++p) {
        target->setDrawFace(drawFace[p]);
        if (NULL != passes[p]) {
            target->setStencil(*passes[p]);
        }

        if (lastPassIsBounds && (p == passCount-1)) {
            if (!colorWritesWereDisabled) {
                target->disableState(GrDrawTarget::kNoColorWrites_StateBit);
            }
            target->drawNonIndexed(kTriangleFan_PrimitiveType,
                                   boundVertexStart, 4);

        } else {
            if (passCount > 1) {
                target->enableState(GrDrawTarget::kNoColorWrites_StateBit);
            }
            int baseVertex = 0;
            for (int sp = 0; sp < subpathCnt; ++sp) {
                target->drawNonIndexed(type,
                                      baseVertex,
                                      subpathVertCount[sp]);
                baseVertex += subpathVertCount[sp];
            }
        }
    }
}