Esempio n. 1
0
void moveTwoStrings(int size, double mat[size][size])
{
    int i,j;
    double tmp;
    int indexMax = 0;
    int indexMin = 0;
    double sum = 0;
    double sumMax = -sumElements(size, mat);
    double sumMin = sumElements(size, mat);

    for(i = 0; i < size; i++) {
        for(j = 0; j < size; j++) {
            sum += mat[i][j];
        }
        if(sum > sumMax) {
            sumMax = sum;
            indexMax = i;
        }
        if(sum < sumMin) {
            sumMin = sum;
            indexMin = i;
        }
    }
    for(j = 0; j < size; j++) {
        tmp = mat[indexMin][j];
        mat[indexMin][j] = mat[indexMax][j];
        mat[indexMax][j] = tmp;
    }
}
Esempio n. 2
0
WHcoord fileManager::meanCoordFromMask() const
{
    if (m_maskMatrix.empty()) {
        std::cerr<< "ERROR @ fileManager::storeFullTract(): Mask hast not been loaded, returning 0 coordinate"<<std::endl;
        return WHcoord();
    }
    size_t sumX( 0 ), sumY( 0 ), sumZ( 0 ), sumElements( 0 );
    for( int i=0 ; i<m_maskMatrix.size() ; ++i )
    {
        for( int j=0 ; j< m_maskMatrix[i].size() ; ++j )
        {
            for( int k=0 ; k<m_maskMatrix[i][j].size() ; ++k )
            {
                if (m_maskMatrix[i][j][k])
                {
                    sumX += i;
                    sumY += j;
                    sumZ += k;
                    ++sumElements;
                }
            }
        }
    }
    size_t meanX( sumX/sumElements );
    size_t meanY( sumY/sumElements );
    size_t meanZ( sumZ/sumElements );
    WHcoord meanCoord(meanX,meanY,meanZ);

    return meanCoord;
} // end "meanCoordFromMask()" -----------------------------------------------------------------
void LinearRegressionAnalyzer::DoAnalyze() {
    BaseAnalyzer::DoAnalyze();

    QList<double> yList = matrix[0];
    QList<QList<double> > xMatrix;
    for (int i=1;i<matrix.size();i++) {
        xMatrix.append(matrix[i]);
    }

    QList<QList<double> > xNMatrix;
    for (int i=0;i<xMatrix.size();i++) {
        QList<double> xNiMatrix;
        double avg = average(xMatrix[i]);
        QList<double> razn;
        for (int j=0;j<xMatrix[i].size();j++) {
            razn.append(fabs(xMatrix[i][j] - avg));
        }
        double R = maxElement(razn);
        for (int j=0;j<xMatrix[i].size();j++)
            xNiMatrix.append((xMatrix[i][j] - avg)/R);
        xNMatrix.append(xNiMatrix);
    }

    QList<double> bMatrix;
    double temp = 0.0;
    for (int i=0;i<yList.size();i++)
        temp += yList[i];
    bMatrix.append(temp);
    for (int i=0;i<xNMatrix.size();i++) {
        temp = 0.0;
        for (int j=0;j<xNMatrix[i].size();j++) {
            temp += yList[j] * xNMatrix[i][j];
        }
        bMatrix.append(temp);
    }

    QList<QList<double> > aMatrix;
    QList<double> firstRow;
    firstRow.append(yList.size());
    for (int i=0;i<xNMatrix.size();i++)
        firstRow.append(sumElements(xNMatrix[i]));
    aMatrix.append(firstRow);
    for (int row=0;row<xNMatrix.size();row++) {
        QList<double> tempRow;
        for (int col=0;col<bMatrix.size();col++) {
            if (col<=row) {
                tempRow.append(0.0);
            }
            else {
                if (col>0) {
                    tempRow.append(sumListsElements(xNMatrix[col-1], xNMatrix[row]));
                }
            }
        }
        aMatrix.append(tempRow);
    }

    for (int row = 0;row<aMatrix.size();row++) {
        for (int col = 0; col < aMatrix[row].size();col++) {
            if (row <= col)
                continue;
            aMatrix[row][col] = aMatrix[col][row];
        }
    }

    results = Gauss(aMatrix, bMatrix);


    QList<double> y2List;
    for (int i=0;i<xNMatrix[0].size();i++) {
        temp = 0.0;
        for (int j= 0;j<results.size();j++) {
            if (j<results.size()-1)
                temp += results[j] * xNMatrix[j][i];
            else
                temp += results[j];
        }
        y2List.append(temp);
    }

    double y2Avg = average(y2List);
    double yAvg = average(yList);

    double RUp = 0.0, RDown = 0.0;
    for (int i=0;i<yList.size();i++) {
        RUp += (y2List[i]-y2Avg)*(y2List[i]-y2Avg);
        RDown += (yList[i] - yAvg)*(yList[i] - yAvg);
    }

    R2 = RUp/RDown;
}
Esempio n. 4
0
unsigned int simulator::drawEventType()
{
	/// Determine which event type occurs
	/// (after an event time has been drawn)
	
	
	vector<double> x;
	
	// sufficiently small such that probability to fall
	// b/w x and x+tiny is pratically 0 but large enough
	// that a 'double comparison' recognizes it
	// (used when no indiv in a given status)
	double tiny = 1E-10;
	
	// Anchor at 0
	x.push_back(0.0);
	
	// New infection event
	double tmp = at_least_one_S_and_I()?_beta*_count_I*_count_S/_popSize:tiny;
	x.push_back(tmp);
	
	// Migrations through the E[k]
	for(int i=0; i<_nE; i++)
	{
		double tmp = (census_status(i+1)>0)?_sigma[i]*census_status(i+1):tiny;
		x.push_back(tmp);
	}
	
	// Migrations through the I[k]
	for(int i=0; i<_nI; i++)
	{
		double tmp = (census_status(_nE+1+i)>0)?_gamma[i]*census_status(_nE+1+i):tiny;
		x.push_back(tmp);
	}
	
	// draw a uniform on sum of all rates and
	// see where it lands -> that's the drawn event type
	double u = uniform01()*sumElements(x);
	
	//	cout<<"drawEventType: "<<u<<" :: " <<sumElements(x)<<endl;
	
	
	// vector of cumulative sum of x elements
	vector<double> cumx;
	for(int i=0; i<x.size(); i++)
	{
		// initialize sum at 0
		cumx.push_back(0.0);
		// Calculate cumulative value
		for(int j=0; j<=i; j++) cumx[i]+=x[j];
	}
	
	unsigned int idx = 0;
	bool found = false;
	for(int i=0; i<cumx.size(); i++)
	{
		if(cumx[i]<u)
		{
			idx = i;
			found = true;
		}
	}
	stopif(!found, "can't find index");
	
	// Make sure there is an individual
	// in the drawn event (they may be very close, see 'tiny')
	if (census_status(idx)==0)
	{
		unsigned int idx2 = idx;
		while (census_status(idx2)==0) idx2=idx2-1;
		idx=idx2;
	}
	
	return idx;
}
Esempio n. 5
0
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// calcMean
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
double calcMean( const RealVector& x )
{
   return sumElements( x ) / x.size();
}
Esempio n. 6
0
float getAverage(int nelem_in_array, int *array) 
{
  sumElements(nelem_in_array, array);

  return (float)sum/nelem_in_array;
}