Esempio n. 1
0
status_t
Transaction::AddNodes(Node* node1, Node* node2, Node* node3)
{
	ASSERT(fID >= 0);

	// sort the nodes
	swap_if_greater(node1, node2);
	if (node3 != NULL && swap_if_greater(node2, node3))
		swap_if_greater(node1, node2);

	// add them
	status_t error = AddNode(node1);
	if (error == B_OK)
		error = AddNode(node2);
	if (error == B_OK && node3 != NULL)
		AddNode(node3);

	return error;
}
Esempio n. 2
0
	void sort(T& a, T& b, T& c)
	{
	    swap_if_greater(a, b);
	    swap_if_greater(a, c);
	    swap_if_greater(b, c);
	}
Esempio n. 3
0
// Finds where to chop a non-loop around its intersection point. The resulting cubic segments will
// be chopped such that a box of radius 'padRadius', centered at any point along the curve segment,
// is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M).
//
// 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be
// drawn with quadratic splines instead of cubics.
//
// A loop intersection falls at two different T values, so this method takes Sk2f and computes the
// padding for both in SIMD.
static inline void find_chops_around_loop_intersection(float padRadius, Sk2f t2, Sk2f s2,
                                                       const Sk2f& C0, const Sk2f& C1,
                                                       ExcludedTerm skipTerm, float Cdet,
                                                       SkSTArray<4, float>* chops) {
    SkASSERT(chops->empty());
    SkASSERT(padRadius >= 0);

    padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on.

    // The parametric functions for distance from lines L & M are:
    //
    //     l(T) = (T - Td)^2 * (T - Te)
    //     m(T) = (T - Td) * (T - Te)^2
    //
    // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
    // 4.3 Finding klmn:
    //
    // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
    Sk2f T2 = t2/s2; // T2 is the double root of l(T).
    Sk2f T1 = SkNx_shuffle<1,0>(T2); // T1 is the other root of l(T).

    // Convert l(T), m(T) to power-basis form:
    //
    //                                      |  1   1 |
    //    |l(T)  m(T)| = |T^3  T^2  T  1| * | l2  m2 |
    //                                      | l1  m1 |
    //                                      | l0  m0 |
    //
    // From here on we use Sk2f with "L" names, but the second lane will be for line M.
    Sk2f l2 = SkNx_fma(Sk2f(-2), T2, -T1);
    Sk2f l1 = T2 * SkNx_fma(Sk2f(2), T1, T2);
    Sk2f l0 = -T2*T2*T1;

    // The equation for line L can be found as follows:
    //
    //     L = C^-1 * (l excluding skipTerm)
    //
    // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.)
    // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather
    // than divide by determinant(C) here, we have already performed this divide on padRadius.
    Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? l2 : l1;
    Sk2f Lx = -C0[1]*l2or1 + C1[1]; // l3 is always 1.
    Sk2f Ly =  C0[0]*l2or1 - C1[0];

    // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan
    // with of L. (See rationale in are_collinear.)
    Sk2f Lwidth = Lx.abs() + Ly.abs();
    Sk2f pad = Lwidth * padRadius;

    // Is l(T=0) outside the padding around line L?
    Sk2f lT0 = l0; // l(T=0) = |0  0  0  1| dot |1  l2  l1  l0| = l0
    Sk2f outsideT0 = lT0.abs() - pad;

    // Is l(T=1) outside the padding around line L?
    Sk2f lT1 = (Sk2f(1) + l2 + l1 + l0).abs(); // l(T=1) = |1  1  1  1| dot |1  l2  l1  l0|
    Sk2f outsideT1 = lT1.abs() - pad;

    // Values for solving the cubic.
    Sk2f p, q, qqq, discr, numRoots, D;
    bool hasDiscr = false;

    // Values for calculating one root (rarely needed).
    Sk2f R, QQ;
    bool hasOneRootVals = false;

    // Values for calculating three roots.
    Sk2f P, cosTheta3;
    bool hasThreeRootVals = false;

    // Solve for the T values where l(T) = +pad and m(T) = -pad.
    for (int i = 0; i < 2; ++i) {
        float T = T2[i]; // T is the point we are chopping around.
        if ((T < 0 && outsideT0[i] >= 0) || (T > 1 && outsideT1[i] >= 0)) {
            // The padding around T is completely out of range. No point solving for it.
            continue;
        }

        if (!hasDiscr) {
            p = Sk2f(+.5f, -.5f) * pad;
            q = (1.f/3) * (T2 - T1);
            qqq = q*q*q;
            discr = qqq*p*2 + p*p;
            numRoots = (discr < 0).thenElse(3, 1);
            D = T2 - q;
            hasDiscr = true;
        }

        if (1 == numRoots[i]) {
            if (!hasOneRootVals) {
                Sk2f r = qqq + p;
                Sk2f s = r.abs() + discr.sqrt();
                R = (r > 0).thenElse(-s, s);
                QQ = q*q;
                hasOneRootVals = true;
            }

            float A = cbrtf(R[i]);
            float B = A != 0 ? QQ[i]/A : 0;
            // When there is only one root, ine L chops from root..1, line M chops from 0..root.
            if (1 == i) {
                chops->push_back(0);
            }
            chops->push_back(A + B + D[i]);
            if (0 == i) {
                chops->push_back(1);
            }
            continue;
        }

        if (!hasThreeRootVals) {
            P = q.abs() * -2;
            cosTheta3 = (q >= 0).thenElse(1, -1) + p / qqq.abs();
            hasThreeRootVals = true;
        }

        static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
        float theta = std::acos(cosTheta3[i]) * (1.f/3);
        float roots[3] = {P[i] * std::cos(theta) + D[i],
                          P[i] * std::cos(theta + k2PiOver3) + D[i],
                          P[i] * std::cos(theta - k2PiOver3) + D[i]};

        // Sort the three roots.
        swap_if_greater(roots[0], roots[1]);
        swap_if_greater(roots[1], roots[2]);
        swap_if_greater(roots[0], roots[1]);

        // Line L chops around the first 2 roots, line M chops around the second 2.
        chops->push_back_n(2, &roots[i]);
    }
}