Esempio n. 1
0
			void deserialise(stream_type & in)
			{
				libmaus::wavelet::ImpHuffmanWaveletTree::unique_ptr_type tIHWT(new libmaus::wavelet::ImpHuffmanWaveletTree(in));
				IHWT = UNIQUE_PTR_MOVE(tIHWT);
				C = libmaus::autoarray::AutoArray< ::libmaus::bitio::CompactArray::unique_ptr_type >(IHWT->enctable.maxsym+1);

				if ( IHWT->getN() )
					for ( int s = IHWT->enctable.minsym; s <= IHWT->enctable.maxsym; ++s )
						if ( s > 1 && IHWT->rank(s,IHWT->getN()-1) )
						{
							::libmaus::bitio::CompactArray::unique_ptr_type tCs(
                                                                        new ::libmaus::bitio::CompactArray(in));
							C[s] = UNIQUE_PTR_MOVE(tCs);
						}
			}
Esempio n. 2
0
tmp<fvVectorMatrix> surfaceShearForce::correct(volVectorField& U)
{
    // local reference to film model
    const kinematicSingleLayer& film =
        static_cast<const kinematicSingleLayer&>(owner_);

    // local references to film fields
    const volScalarField& mu = film.mu();
    const volVectorField& Uw = film.Uw();
    const volScalarField& delta = film.delta();
    const volVectorField& Up = film.UPrimary();

    // film surface linear coeff to apply to velocity
    tmp<volScalarField> tCs;

    typedef compressible::turbulenceModel turbModel;
    if (film.primaryMesh().foundObject<turbModel>("turbulenceProperties"))
    {
        // local reference to turbulence model
        const turbModel& turb =
            film.primaryMesh().lookupObject<turbModel>("turbulenceProperties");

        // calculate and store the stress on the primary region
        const volSymmTensorField primaryReff(turb.devRhoReff());

        // create stress field on film
        // - note boundary condition types (mapped)
        // - to map, the field name must be the same as the field on the
        //   primary region
        volSymmTensorField Reff
        (
            IOobject
            (
                primaryReff.name(),
                film.regionMesh().time().timeName(),
                film.regionMesh(),
                IOobject::NO_READ,
                IOobject::NO_WRITE
            ),
            film.regionMesh(),
            dimensionedSymmTensor
            (
                "zero",
                primaryReff.dimensions(),
                symmTensor::zero
            ),
            film.mappedFieldAndInternalPatchTypes<symmTensor>()
        );

        // map stress from primary region to film region
        Reff.correctBoundaryConditions();

        dimensionedScalar U0("SMALL", U.dimensions(), SMALL);
        tCs = Cf_*mag(-film.nHat() & Reff)/(mag(Up - U) + U0);
    }
    else
    {
        // laminar case - employ simple coeff-based model
        const volScalarField& rho = film.rho();
        tCs = Cf_*rho*mag(Up - U);
    }

    dimensionedScalar d0("SMALL", delta.dimensions(), SMALL);

    // linear coeffs to apply to velocity
    const volScalarField& Cs = tCs();
    volScalarField Cw("Cw", mu/(0.3333*(delta + d0)));
    Cw.min(1.0e+06);

    return
    (
       - fvm::Sp(Cs, U) + Cs*Up // surface contribution
       - fvm::Sp(Cw, U) + Cw*Uw // wall contribution
    );
}