static void slirp_tcp_load(QEMUFile *f, struct tcpcb *tp) { int i; tp->t_state = qemu_get_sbe16(f); for (i = 0; i < TCPT_NTIMERS; i++) tp->t_timer[i] = qemu_get_sbe16(f); tp->t_rxtshift = qemu_get_sbe16(f); tp->t_rxtcur = qemu_get_sbe16(f); tp->t_dupacks = qemu_get_sbe16(f); tp->t_maxseg = qemu_get_be16(f); tp->t_force = qemu_get_sbyte(f); tp->t_flags = qemu_get_be16(f); tp->snd_una = qemu_get_be32(f); tp->snd_nxt = qemu_get_be32(f); tp->snd_up = qemu_get_be32(f); tp->snd_wl1 = qemu_get_be32(f); tp->snd_wl2 = qemu_get_be32(f); tp->iss = qemu_get_be32(f); tp->snd_wnd = qemu_get_be32(f); tp->rcv_wnd = qemu_get_be32(f); tp->rcv_nxt = qemu_get_be32(f); tp->rcv_up = qemu_get_be32(f); tp->irs = qemu_get_be32(f); tp->rcv_adv = qemu_get_be32(f); tp->snd_max = qemu_get_be32(f); tp->snd_cwnd = qemu_get_be32(f); tp->snd_ssthresh = qemu_get_be32(f); tp->t_idle = qemu_get_sbe16(f); tp->t_rtt = qemu_get_sbe16(f); tp->t_rtseq = qemu_get_be32(f); tp->t_srtt = qemu_get_sbe16(f); tp->t_rttvar = qemu_get_sbe16(f); tp->t_rttmin = qemu_get_be16(f); tp->max_sndwnd = qemu_get_be32(f); tp->t_oobflags = qemu_get_byte(f); tp->t_iobc = qemu_get_byte(f); tp->t_softerror = qemu_get_sbe16(f); tp->snd_scale = qemu_get_byte(f); tp->rcv_scale = qemu_get_byte(f); tp->request_r_scale = qemu_get_byte(f); tp->requested_s_scale = qemu_get_byte(f); tp->ts_recent = qemu_get_be32(f); tp->ts_recent_age = qemu_get_be32(f); tp->last_ack_sent = qemu_get_be32(f); tcp_template(tp); }
/* * TCP input routine, follows pages 65-76 of the * protocol specification dated September, 1981 very closely. */ void tcp_input(struct mbuf *m, int iphlen, struct socket *inso) { struct ip save_ip, *ip; register struct tcpiphdr *ti; caddr_t optp = NULL; int optlen = 0; int len, tlen, off; register struct tcpcb *tp = NULL; register int tiflags; struct socket *so = NULL; int todrop, acked, ourfinisacked, needoutput = 0; int iss = 0; u_long tiwin; int ret; struct ex_list *ex_ptr; Slirp *slirp; DEBUG_CALL("tcp_input"); DEBUG_ARGS((dfd, " m = %8lx iphlen = %2d inso = %lx\n", (long )m, iphlen, (long )inso )); /* * If called with m == 0, then we're continuing the connect */ if (m == NULL) { so = inso; slirp = so->slirp; /* Re-set a few variables */ tp = sototcpcb(so); m = so->so_m; so->so_m = NULL; ti = so->so_ti; tiwin = ti->ti_win; tiflags = ti->ti_flags; goto cont_conn; } slirp = m->slirp; /* * Get IP and TCP header together in first mbuf. * Note: IP leaves IP header in first mbuf. */ ti = mtod(m, struct tcpiphdr *); if (iphlen > sizeof(struct ip )) { ip_stripoptions(m, (struct mbuf *)0); iphlen=sizeof(struct ip ); } /* XXX Check if too short */ /* * Save a copy of the IP header in case we want restore it * for sending an ICMP error message in response. */ ip=mtod(m, struct ip *); save_ip = *ip; save_ip.ip_len+= iphlen; /* * Checksum extended TCP header and data. */ tlen = ((struct ip *)ti)->ip_len; tcpiphdr2qlink(ti)->next = tcpiphdr2qlink(ti)->prev = NULL; memset(&ti->ti_i.ih_mbuf, 0 , sizeof(struct mbuf_ptr)); ti->ti_x1 = 0; ti->ti_len = htons((uint16_t)tlen); len = sizeof(struct ip ) + tlen; if(cksum(m, len)) { goto drop; } /* * Check that TCP offset makes sense, * pull out TCP options and adjust length. XXX */ off = ti->ti_off << 2; if (off < sizeof (struct tcphdr) || off > tlen) { goto drop; } tlen -= off; ti->ti_len = tlen; if (off > sizeof (struct tcphdr)) { optlen = off - sizeof (struct tcphdr); optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr); } tiflags = ti->ti_flags; /* * Convert TCP protocol specific fields to host format. */ NTOHL(ti->ti_seq); NTOHL(ti->ti_ack); NTOHS(ti->ti_win); NTOHS(ti->ti_urp); /* * Drop TCP, IP headers and TCP options. */ m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); /* * Locate pcb for segment. */ findso: so = slirp->tcp_last_so; if (so->so_fport != ti->ti_dport || so->so_lport != ti->ti_sport || so->so_laddr.s_addr != ti->ti_src.s_addr || so->so_faddr.s_addr != ti->ti_dst.s_addr) { so = solookup(&slirp->tcb, ti->ti_src, ti->ti_sport, ti->ti_dst, ti->ti_dport); if (so) slirp->tcp_last_so = so; } /* * If the state is CLOSED (i.e., TCB does not exist) then * all data in the incoming segment is discarded. * If the TCB exists but is in CLOSED state, it is embryonic, * but should either do a listen or a connect soon. * * state == CLOSED means we've done socreate() but haven't * attached it to a protocol yet... * * XXX If a TCB does not exist, and the TH_SYN flag is * the only flag set, then create a session, mark it * as if it was LISTENING, and continue... */ if (so == NULL) { if (slirp->restricted) { /* Any hostfwds will have an existing socket, so we only get here * for non-hostfwd connections. These should be dropped, unless it * happens to be a guestfwd. */ for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { if (ex_ptr->ex_fport == ti->ti_dport && ti->ti_dst.s_addr == ex_ptr->ex_addr.s_addr) { break; } } if (!ex_ptr) { goto dropwithreset; } } if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN) goto dropwithreset; if ((so = socreate(slirp)) == NULL) goto dropwithreset; if (tcp_attach(so) < 0) { free(so); /* Not sofree (if it failed, it's not insqued) */ goto dropwithreset; } sbreserve(&so->so_snd, TCP_SNDSPACE); sbreserve(&so->so_rcv, TCP_RCVSPACE); so->so_laddr = ti->ti_src; so->so_lport = ti->ti_sport; so->so_faddr = ti->ti_dst; so->so_fport = ti->ti_dport; if ((so->so_iptos = tcp_tos(so)) == 0) so->so_iptos = ((struct ip *)ti)->ip_tos; tp = sototcpcb(so); tp->t_state = TCPS_LISTEN; } /* * If this is a still-connecting socket, this probably * a retransmit of the SYN. Whether it's a retransmit SYN * or something else, we nuke it. */ if (so->so_state & SS_ISFCONNECTING) goto drop; tp = sototcpcb(so); /* XXX Should never fail */ if (tp == NULL) goto dropwithreset; if (tp->t_state == TCPS_CLOSED) goto drop; tiwin = ti->ti_win; /* * Segment received on connection. * Reset idle time and keep-alive timer. */ tp->t_idle = 0; if (SO_OPTIONS) tp->t_timer[TCPT_KEEP] = TCPTV_KEEPINTVL; else tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_IDLE; /* * Process options if not in LISTEN state, * else do it below (after getting remote address). */ if (optp && tp->t_state != TCPS_LISTEN) tcp_dooptions(tp, (u_char *)optp, optlen, ti); /* * Header prediction: check for the two common cases * of a uni-directional data xfer. If the packet has * no control flags, is in-sequence, the window didn't * change and we're not retransmitting, it's a * candidate. If the length is zero and the ack moved * forward, we're the sender side of the xfer. Just * free the data acked & wake any higher level process * that was blocked waiting for space. If the length * is non-zero and the ack didn't move, we're the * receiver side. If we're getting packets in-order * (the reassembly queue is empty), add the data to * the socket buffer and note that we need a delayed ack. * * XXX Some of these tests are not needed * eg: the tiwin == tp->snd_wnd prevents many more * predictions.. with no *real* advantage.. */ if (tp->t_state == TCPS_ESTABLISHED && (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && ti->ti_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd && tp->snd_nxt == tp->snd_max) { if (ti->ti_len == 0) { if (SEQ_GT(ti->ti_ack, tp->snd_una) && SEQ_LEQ(ti->ti_ack, tp->snd_max) && tp->snd_cwnd >= tp->snd_wnd) { /* * this is a pure ack for outstanding data. */ if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(tp, tp->t_rtt); acked = ti->ti_ack - tp->snd_una; sbdrop(&so->so_snd, acked); tp->snd_una = ti->ti_ack; m_free(m); /* * If all outstanding data are acked, stop * retransmit timer, otherwise restart timer * using current (possibly backed-off) value. * If process is waiting for space, * wakeup/selwakeup/signal. If data * are ready to send, let tcp_output * decide between more output or persist. */ if (tp->snd_una == tp->snd_max) tp->t_timer[TCPT_REXMT] = 0; else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; /* * This is called because sowwakeup might have * put data into so_snd. Since we don't so sowwakeup, * we don't need this.. XXX??? */ if (so->so_snd.sb_cc) (void) tcp_output(tp); return; } } else if (ti->ti_ack == tp->snd_una && tcpfrag_list_empty(tp) && ti->ti_len <= sbspace(&so->so_rcv)) { /* * this is a pure, in-sequence data packet * with nothing on the reassembly queue and * we have enough buffer space to take it. */ tp->rcv_nxt += ti->ti_len; /* * Add data to socket buffer. */ if (so->so_emu) { if (tcp_emu(so,m)) sbappend(so, m); } else sbappend(so, m); /* * If this is a short packet, then ACK now - with Nagel * congestion avoidance sender won't send more until * he gets an ACK. * * It is better to not delay acks at all to maximize * TCP throughput. See RFC 2581. */ tp->t_flags |= TF_ACKNOW; tcp_output(tp); return; } } /* header prediction */ /* * Calculate amount of space in receive window, * and then do TCP input processing. * Receive window is amount of space in rcv queue, * but not less than advertised window. */ { int win; win = sbspace(&so->so_rcv); if (win < 0) win = 0; tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt)); } switch (tp->t_state) { /* * If the state is LISTEN then ignore segment if it contains an RST. * If the segment contains an ACK then it is bad and send a RST. * If it does not contain a SYN then it is not interesting; drop it. * Don't bother responding if the destination was a broadcast. * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial * tp->iss, and send a segment: * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. * Fill in remote peer address fields if not previously specified. * Enter SYN_RECEIVED state, and process any other fields of this * segment in this state. */ case TCPS_LISTEN: { if (tiflags & TH_RST) goto drop; if (tiflags & TH_ACK) goto dropwithreset; if ((tiflags & TH_SYN) == 0) goto drop; /* * This has way too many gotos... * But a bit of spaghetti code never hurt anybody :) */ /* * If this is destined for the control address, then flag to * tcp_ctl once connected, otherwise connect */ if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) == slirp->vnetwork_addr.s_addr) { if (so->so_faddr.s_addr != slirp->vhost_addr.s_addr && so->so_faddr.s_addr != slirp->vnameserver_addr.s_addr) { /* May be an add exec */ for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { if(ex_ptr->ex_fport == so->so_fport && so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr) { so->so_state |= SS_CTL; break; } } if (so->so_state & SS_CTL) { goto cont_input; } } /* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */ } if (so->so_emu & EMU_NOCONNECT) { so->so_emu &= ~EMU_NOCONNECT; goto cont_input; } if ((tcp_fconnect(so) == -1) && #if defined(_WIN32) socket_error() != WSAEWOULDBLOCK #else (errno != EINPROGRESS) && (errno != EWOULDBLOCK) #endif ) { u_char code=ICMP_UNREACH_NET; DEBUG_MISC((dfd, " tcp fconnect errno = %d-%s\n", errno,strerror(errno))); if(errno == ECONNREFUSED) { /* ACK the SYN, send RST to refuse the connection */ tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0, TH_RST|TH_ACK); } else { if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST; HTONL(ti->ti_seq); /* restore tcp header */ HTONL(ti->ti_ack); HTONS(ti->ti_win); HTONS(ti->ti_urp); m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); m->m_len += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); *ip=save_ip; icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno)); } tcp_close(tp); m_free(m); } else { /* * Haven't connected yet, save the current mbuf * and ti, and return * XXX Some OS's don't tell us whether the connect() * succeeded or not. So we must time it out. */ so->so_m = m; so->so_ti = ti; tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; tp->t_state = TCPS_SYN_RECEIVED; tcp_template(tp); } return; cont_conn: /* m==NULL * Check if the connect succeeded */ if (so->so_state & SS_NOFDREF) { tp = tcp_close(tp); goto dropwithreset; } cont_input: tcp_template(tp); if (optp) tcp_dooptions(tp, (u_char *)optp, optlen, ti); if (iss) tp->iss = iss; else tp->iss = slirp->tcp_iss; slirp->tcp_iss += TCP_ISSINCR/2; tp->irs = ti->ti_seq; tcp_sendseqinit(tp); tcp_rcvseqinit(tp); tp->t_flags |= TF_ACKNOW; tp->t_state = TCPS_SYN_RECEIVED; tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; goto trimthenstep6; } /* case TCPS_LISTEN */ /* * If the state is SYN_SENT: * if seg contains an ACK, but not for our SYN, drop the input. * if seg contains a RST, then drop the connection. * if seg does not contain SYN, then drop it. * Otherwise this is an acceptable SYN segment * initialize tp->rcv_nxt and tp->irs * if seg contains ack then advance tp->snd_una * if SYN has been acked change to ESTABLISHED else SYN_RCVD state * arrange for segment to be acked (eventually) * continue processing rest of data/controls, beginning with URG */ case TCPS_SYN_SENT: if ((tiflags & TH_ACK) && (SEQ_LEQ(ti->ti_ack, tp->iss) || SEQ_GT(ti->ti_ack, tp->snd_max))) goto dropwithreset; if (tiflags & TH_RST) { if (tiflags & TH_ACK) { tcp_drop(tp, 0); /* XXX Check t_softerror! */ } goto drop; } if ((tiflags & TH_SYN) == 0) goto drop; if (tiflags & TH_ACK) { tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; } tp->t_timer[TCPT_REXMT] = 0; tp->irs = ti->ti_seq; tcp_rcvseqinit(tp); tp->t_flags |= TF_ACKNOW; if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) { soisfconnected(so); tp->t_state = TCPS_ESTABLISHED; (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); /* * if we didn't have to retransmit the SYN, * use its rtt as our initial srtt & rtt var. */ if (tp->t_rtt) tcp_xmit_timer(tp, tp->t_rtt); } else tp->t_state = TCPS_SYN_RECEIVED; trimthenstep6: /* * Advance ti->ti_seq to correspond to first data byte. * If data, trim to stay within window, * dropping FIN if necessary. */ ti->ti_seq++; if (ti->ti_len > tp->rcv_wnd) { todrop = ti->ti_len - tp->rcv_wnd; m_adj(m, -todrop); ti->ti_len = tp->rcv_wnd; tiflags &= ~TH_FIN; } tp->snd_wl1 = ti->ti_seq - 1; tp->rcv_up = ti->ti_seq; goto step6; } /* switch tp->t_state */ /* * States other than LISTEN or SYN_SENT. * Check that at least some bytes of segment are within * receive window. If segment begins before rcv_nxt, * drop leading data (and SYN); if nothing left, just ack. */ todrop = tp->rcv_nxt - ti->ti_seq; if (todrop > 0) { if (tiflags & TH_SYN) { tiflags &= ~TH_SYN; ti->ti_seq++; if (ti->ti_urp > 1) ti->ti_urp--; else tiflags &= ~TH_URG; todrop--; } /* * Following if statement from Stevens, vol. 2, p. 960. */ if (todrop > ti->ti_len || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) { /* * Any valid FIN must be to the left of the window. * At this point the FIN must be a duplicate or out * of sequence; drop it. */ tiflags &= ~TH_FIN; /* * Send an ACK to resynchronize and drop any data. * But keep on processing for RST or ACK. */ tp->t_flags |= TF_ACKNOW; todrop = ti->ti_len; } m_adj(m, todrop); ti->ti_seq += todrop; ti->ti_len -= todrop; if (ti->ti_urp > todrop) ti->ti_urp -= todrop; else { tiflags &= ~TH_URG; ti->ti_urp = 0; } } /* * If new data are received on a connection after the * user processes are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { tp = tcp_close(tp); goto dropwithreset; } /* * If segment ends after window, drop trailing data * (and PUSH and FIN); if nothing left, just ACK. */ todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); if (todrop > 0) { if (todrop >= ti->ti_len) { /* * If a new connection request is received * while in TIME_WAIT, drop the old connection * and start over if the sequence numbers * are above the previous ones. */ if (tiflags & TH_SYN && tp->t_state == TCPS_TIME_WAIT && SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { iss = tp->rcv_nxt + TCP_ISSINCR; tp = tcp_close(tp); goto findso; } /* * If window is closed can only take segments at * window edge, and have to drop data and PUSH from * incoming segments. Continue processing, but * remember to ack. Otherwise, drop segment * and ack. */ if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { tp->t_flags |= TF_ACKNOW; } else { goto dropafterack; } } m_adj(m, -todrop); ti->ti_len -= todrop; tiflags &= ~(TH_PUSH|TH_FIN); } /* * If the RST bit is set examine the state: * SYN_RECEIVED STATE: * If passive open, return to LISTEN state. * If active open, inform user that connection was refused. * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: * Inform user that connection was reset, and close tcb. * CLOSING, LAST_ACK, TIME_WAIT STATES * Close the tcb. */ if (tiflags&TH_RST) switch (tp->t_state) { case TCPS_SYN_RECEIVED: case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: tp->t_state = TCPS_CLOSED; tcp_close(tp); goto drop; case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: tcp_close(tp); goto drop; } /* * If a SYN is in the window, then this is an * error and we send an RST and drop the connection. */ if (tiflags & TH_SYN) { tp = tcp_drop(tp,0); goto dropwithreset; } /* * If the ACK bit is off we drop the segment and return. */ if ((tiflags & TH_ACK) == 0) goto drop; /* * Ack processing. */ switch (tp->t_state) { /* * In SYN_RECEIVED state if the ack ACKs our SYN then enter * ESTABLISHED state and continue processing, otherwise * send an RST. una<=ack<=max */ case TCPS_SYN_RECEIVED: if (SEQ_GT(tp->snd_una, ti->ti_ack) || SEQ_GT(ti->ti_ack, tp->snd_max)) goto dropwithreset; tp->t_state = TCPS_ESTABLISHED; /* * The sent SYN is ack'ed with our sequence number +1 * The first data byte already in the buffer will get * lost if no correction is made. This is only needed for * SS_CTL since the buffer is empty otherwise. * tp->snd_una++; or: */ tp->snd_una=ti->ti_ack; if (so->so_state & SS_CTL) { /* So tcp_ctl reports the right state */ ret = tcp_ctl(so); if (ret == 1) { soisfconnected(so); so->so_state &= ~SS_CTL; /* success XXX */ } else if (ret == 2) { so->so_state &= SS_PERSISTENT_MASK; so->so_state |= SS_NOFDREF; /* CTL_CMD */ } else { needoutput = 1; tp->t_state = TCPS_FIN_WAIT_1; } } else { soisfconnected(so); } (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); tp->snd_wl1 = ti->ti_seq - 1; /* Avoid ack processing; snd_una==ti_ack => dup ack */ goto synrx_to_est; /* fall into ... */ /* * In ESTABLISHED state: drop duplicate ACKs; ACK out of range * ACKs. If the ack is in the range * tp->snd_una < ti->ti_ack <= tp->snd_max * then advance tp->snd_una to ti->ti_ack and drop * data from the retransmission queue. If this ACK reflects * more up to date window information we update our window information. */ case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { if (ti->ti_len == 0 && tiwin == tp->snd_wnd) { DEBUG_MISC((dfd, " dup ack m = %lx so = %lx\n", (long )m, (long )so)); /* * If we have outstanding data (other than * a window probe), this is a completely * duplicate ack (ie, window info didn't * change), the ack is the biggest we've * seen and we've seen exactly our rexmt * threshold of them, assume a packet * has been dropped and retransmit it. * Kludge snd_nxt & the congestion * window so we send only this one * packet. * * We know we're losing at the current * window size so do congestion avoidance * (set ssthresh to half the current window * and pull our congestion window back to * the new ssthresh). * * Dup acks mean that packets have left the * network (they're now cached at the receiver) * so bump cwnd by the amount in the receiver * to keep a constant cwnd packets in the * network. */ if (tp->t_timer[TCPT_REXMT] == 0 || ti->ti_ack != tp->snd_una) tp->t_dupacks = 0; else if (++tp->t_dupacks == TCPREXMTTHRESH) { tcp_seq onxt = tp->snd_nxt; u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg; if (win < 2) win = 2; tp->snd_ssthresh = win * tp->t_maxseg; tp->t_timer[TCPT_REXMT] = 0; tp->t_rtt = 0; tp->snd_nxt = ti->ti_ack; tp->snd_cwnd = tp->t_maxseg; (void) tcp_output(tp); tp->snd_cwnd = tp->snd_ssthresh + tp->t_maxseg * tp->t_dupacks; if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; goto drop; } else if (tp->t_dupacks > TCPREXMTTHRESH) { tp->snd_cwnd += tp->t_maxseg; (void) tcp_output(tp); goto drop; } } else tp->t_dupacks = 0; break; } synrx_to_est: /* * If the congestion window was inflated to account * for the other side's cached packets, retract it. */ if (tp->t_dupacks > TCPREXMTTHRESH && tp->snd_cwnd > tp->snd_ssthresh) tp->snd_cwnd = tp->snd_ssthresh; tp->t_dupacks = 0; if (SEQ_GT(ti->ti_ack, tp->snd_max)) { goto dropafterack; } acked = ti->ti_ack - tp->snd_una; /* * If transmit timer is running and timed sequence * number was acked, update smoothed round trip time. * Since we now have an rtt measurement, cancel the * timer backoff (cf., Phil Karn's retransmit alg.). * Recompute the initial retransmit timer. */ if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(tp,tp->t_rtt); /* * If all outstanding data is acked, stop retransmit * timer and remember to restart (more output or persist). * If there is more data to be acked, restart retransmit * timer, using current (possibly backed-off) value. */ if (ti->ti_ack == tp->snd_max) { tp->t_timer[TCPT_REXMT] = 0; needoutput = 1; } else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; /* * When new data is acked, open the congestion window. * If the window gives us less than ssthresh packets * in flight, open exponentially (maxseg per packet). * Otherwise open linearly: maxseg per window * (maxseg^2 / cwnd per packet). */ { register u_int cw = tp->snd_cwnd; register u_int incr = tp->t_maxseg; if (cw > tp->snd_ssthresh) incr = incr * incr / cw; tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale); } if (acked > so->so_snd.sb_cc) { tp->snd_wnd -= so->so_snd.sb_cc; sbdrop(&so->so_snd, (int )so->so_snd.sb_cc); ourfinisacked = 1; } else { sbdrop(&so->so_snd, acked); tp->snd_wnd -= acked; ourfinisacked = 0; } tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; switch (tp->t_state) { /* * In FIN_WAIT_1 STATE in addition to the processing * for the ESTABLISHED state if our FIN is now acknowledged * then enter FIN_WAIT_2. */ case TCPS_FIN_WAIT_1: if (ourfinisacked) { /* * If we can't receive any more * data, then closing user can proceed. * Starting the timer is contrary to the * specification, but if we don't get a FIN * we'll hang forever. */ if (so->so_state & SS_FCANTRCVMORE) { tp->t_timer[TCPT_2MSL] = TCP_MAXIDLE; } tp->t_state = TCPS_FIN_WAIT_2; } break; /* * In CLOSING STATE in addition to the processing for * the ESTABLISHED state if the ACK acknowledges our FIN * then enter the TIME-WAIT state, otherwise ignore * the segment. */ case TCPS_CLOSING: if (ourfinisacked) { tp->t_state = TCPS_TIME_WAIT; tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; } break; /* * In LAST_ACK, we may still be waiting for data to drain * and/or to be acked, as well as for the ack of our FIN. * If our FIN is now acknowledged, delete the TCB, * enter the closed state and return. */ case TCPS_LAST_ACK: if (ourfinisacked) { tcp_close(tp); goto drop; } break; /* * In TIME_WAIT state the only thing that should arrive * is a retransmission of the remote FIN. Acknowledge * it and restart the finack timer. */ case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; goto dropafterack; } } /* switch(tp->t_state) */ step6: /* * Update window information. * Don't look at window if no ACK: TAC's send garbage on first SYN. */ if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, ti->ti_seq) || (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) || (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) { tp->snd_wnd = tiwin; tp->snd_wl1 = ti->ti_seq; tp->snd_wl2 = ti->ti_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; needoutput = 1; } /* * Process segments with URG. */ if ((tiflags & TH_URG) && ti->ti_urp && TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * This is a kludge, but if we receive and accept * random urgent pointers, we'll crash in * soreceive. It's hard to imagine someone * actually wanting to send this much urgent data. */ if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) { ti->ti_urp = 0; tiflags &= ~TH_URG; goto dodata; } /* * If this segment advances the known urgent pointer, * then mark the data stream. This should not happen * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since * a FIN has been received from the remote side. * In these states we ignore the URG. * * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section as the original * spec states (in one of two places). */ if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { tp->rcv_up = ti->ti_seq + ti->ti_urp; so->so_urgc = so->so_rcv.sb_cc + (tp->rcv_up - tp->rcv_nxt); /* -1; */ tp->rcv_up = ti->ti_seq + ti->ti_urp; } } else /* * If no out of band data is expected, * pull receive urgent pointer along * with the receive window. */ if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) tp->rcv_up = tp->rcv_nxt; dodata: /* * If this is a small packet, then ACK now - with Nagel * congestion avoidance sender won't send more until * he gets an ACK. */ if (ti->ti_len && (unsigned)ti->ti_len <= 5 && ((struct tcpiphdr_2 *)ti)->first_char == (char)27) { tp->t_flags |= TF_ACKNOW; } /* * Process the segment text, merging it into the TCP sequencing queue, * and arranging for acknowledgment of receipt if necessary. * This process logically involves adjusting tp->rcv_wnd as data * is presented to the user (this happens in tcp_usrreq.c, * case PRU_RCVD). If a FIN has already been received on this * connection then we just ignore the text. */ if ((ti->ti_len || (tiflags&TH_FIN)) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { TCP_REASS(tp, ti, m, so, tiflags); } else { m_free(m); tiflags &= ~TH_FIN; } /* * If FIN is received ACK the FIN and let the user know * that the connection is closing. */ if (tiflags & TH_FIN) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * If we receive a FIN we can't send more data, * set it SS_FDRAIN * Shutdown the socket if there is no rx data in the * buffer. * soread() is called on completion of shutdown() and * will got to TCPS_LAST_ACK, and use tcp_output() * to send the FIN. */ sofwdrain(so); tp->t_flags |= TF_ACKNOW; tp->rcv_nxt++; } switch (tp->t_state) { /* * In SYN_RECEIVED and ESTABLISHED STATES * enter the CLOSE_WAIT state. */ case TCPS_SYN_RECEIVED: case TCPS_ESTABLISHED: if(so->so_emu == EMU_CTL) /* no shutdown on socket */ tp->t_state = TCPS_LAST_ACK; else tp->t_state = TCPS_CLOSE_WAIT; break; /* * If still in FIN_WAIT_1 STATE FIN has not been acked so * enter the CLOSING state. */ case TCPS_FIN_WAIT_1: tp->t_state = TCPS_CLOSING; break; /* * In FIN_WAIT_2 state enter the TIME_WAIT state, * starting the time-wait timer, turning off the other * standard timers. */ case TCPS_FIN_WAIT_2: tp->t_state = TCPS_TIME_WAIT; tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; break; /* * In TIME_WAIT state restart the 2 MSL time_wait timer. */ case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; break; } } /* * Return any desired output. */ if (needoutput || (tp->t_flags & TF_ACKNOW)) { (void) tcp_output(tp); } return; dropafterack: /* * Generate an ACK dropping incoming segment if it occupies * sequence space, where the ACK reflects our state. */ if (tiflags & TH_RST) goto drop; m_free(m); tp->t_flags |= TF_ACKNOW; (void) tcp_output(tp); return; dropwithreset: /* reuses m if m!=NULL, m_free() unnecessary */ if (tiflags & TH_ACK) tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); else { if (tiflags & TH_SYN) ti->ti_len++; tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, TH_RST|TH_ACK); } return; drop: /* * Drop space held by incoming segment and return. */ m_free(m); }
/* * TCP input routine, follows pages 65-76 of the * protocol specification dated September, 1981 very closely. */ void tcp_input(usn_mbuf_t *m, int iphlen) { struct tcpiphdr *ti; struct inpcb *inp; u_char *optp = NULL; int optlen; int len, tlen, off; struct tcpcb *tp = 0; int tiflags; struct usn_socket *so = 0; int todrop, acked, ourfinisacked; int needoutput = 0; short ostate; struct usn_in_addr laddr; int dropsocket = 0; int iss = 0; u_long tiwin, ts_val, ts_ecr; int ts_present = 0; (void)needoutput; g_tcpstat.tcps_rcvtotal++; // Get IP and TCP header together in first mbuf. // Note: IP leaves IP header in first mbuf. ti = mtod(m, struct tcpiphdr *); if (iphlen > sizeof (usn_ip_t)) ip_stripoptions(m, (usn_mbuf_t *)0); if (m->mlen < sizeof (struct tcpiphdr)) { if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { g_tcpstat.tcps_rcvshort++; return; } ti = mtod(m, struct tcpiphdr *); } #ifdef DUMP_PAYLOAD dump_chain(m,"tcp"); #endif /* * Checksum extended TCP header and data. */ tlen = ntohs(((usn_ip_t *)ti)->ip_len); len = sizeof (usn_ip_t) + tlen; ti->ti_next = ti->ti_prev = 0; ti->ti_x1 = 0; ti->ti_len = (u_short)tlen; HTONS(ti->ti_len); ti->ti_sum = in_cksum(m, len); if (ti->ti_sum) { g_tcpstat.tcps_rcvbadsum++; goto drop; } /* * Check that TCP offset makes sense, * pull out TCP options and adjust length. XXX */ off = ti->ti_off << 2; if (off < sizeof (struct tcphdr) || off > tlen) { g_tcpstat.tcps_rcvbadoff++; goto drop; } tlen -= off; ti->ti_len = tlen; if (off > sizeof (struct tcphdr)) { if (m->mlen < sizeof(usn_ip_t) + off) { if ((m = m_pullup(m, sizeof (usn_ip_t) + off)) == 0) { g_tcpstat.tcps_rcvshort++; return; } ti = mtod(m, struct tcpiphdr *); } optlen = off - sizeof (struct tcphdr); optp = mtod(m, u_char *) + sizeof (struct tcpiphdr); // Do quick retrieval of timestamp options ("options // prediction?"). If timestamp is the only option and it's // formatted as recommended in RFC 1323 appendix A, we // quickly get the values now and not bother calling // tcp_dooptions(), etc. if ((optlen == TCPOLEN_TSTAMP_APPA || (optlen > TCPOLEN_TSTAMP_APPA && optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && *(u_int *)optp == htonl(TCPOPT_TSTAMP_HDR) && (ti->ti_flags & TH_SYN) == 0) { ts_present = 1; ts_val = ntohl(*(u_long *)(optp + 4)); ts_ecr = ntohl(*(u_long *)(optp + 8)); optp = NULL; // we've parsed the options } } tiflags = ti->ti_flags; // Convert TCP protocol specific fields to host format. NTOHL(ti->ti_seq); NTOHL(ti->ti_ack); NTOHS(ti->ti_win); NTOHS(ti->ti_urp); // Locate pcb for segment. findpcb: inp = g_tcp_last_inpcb; if (inp->inp_lport != ti->ti_dport || inp->inp_fport != ti->ti_sport || inp->inp_faddr.s_addr != ti->ti_src.s_addr || inp->inp_laddr.s_addr != ti->ti_dst.s_addr) { inp = in_pcblookup(&g_tcb, ti->ti_src, ti->ti_sport, ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD); if (inp) g_tcp_last_inpcb = inp; ++g_tcpstat.tcps_pcbcachemiss; } // If the state is CLOSED (i.e., TCB does not exist) then // all data in the incoming segment is discarded. // If the TCB exists but is in CLOSED state, it is embryonic, // but should either do a listen or a connect soon. if (inp == 0) goto dropwithreset; tp = intotcpcb(inp); DEBUG("found inp cb, laddr=%x, lport=%d, faddr=%x," " fport=%d, tp_state=%d, tp_flags=%d", inp->inp_laddr.s_addr, inp->inp_lport, inp->inp_faddr.s_addr, inp->inp_fport, tp->t_state, tp->t_flags); if (tp == 0) goto dropwithreset; if (tp->t_state == TCPS_CLOSED) goto drop; // Unscale the window into a 32-bit value. if ((tiflags & TH_SYN) == 0) tiwin = ti->ti_win << tp->snd_scale; else tiwin = ti->ti_win; so = inp->inp_socket; DEBUG("socket info, options=%x", so->so_options); if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { if (so->so_options & SO_DEBUG) { ostate = tp->t_state; g_tcp_saveti = *ti; } if (so->so_options & SO_ACCEPTCONN) { if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { // Note: dropwithreset makes sure we don't // send a reset in response to a RST. if (tiflags & TH_ACK) { g_tcpstat.tcps_badsyn++; goto dropwithreset; } DEBUG("SYN is expected, tiflags=%d", tiflags); goto drop; } so = sonewconn(so, 0); if (so == 0) { DEBUG("failed to create new connection, tiflags=%d", tiflags); goto drop; } // Mark socket as temporary until we're // committed to keeping it. The code at // ``drop'' and ``dropwithreset'' check the // flag dropsocket to see if the temporary // socket created here should be discarded. // We mark the socket as discardable until // we're committed to it below in TCPS_LISTEN. dropsocket++; inp = (struct inpcb *)so->so_pcb; inp->inp_laddr = ti->ti_dst; inp->inp_lport = ti->ti_dport; // BSD >= 4.3 inp->inp_options = ip_srcroute(); tp = intotcpcb(inp); tp->t_state = TCPS_LISTEN; // Compute proper scaling value from buffer space while (tp->request_r_scale < TCP_MAX_WINSHIFT && TCP_MAXWIN << tp->request_r_scale < so->so_rcv->sb_hiwat) tp->request_r_scale++; } } // Segment received on connection. // Reset idle time and keep-alive timer. tp->t_idle = 0; tp->t_timer[TCPT_KEEP] = g_tcp_keepidle; // Process options if not in LISTEN state, // else do it below (after getting remote address). if (optp && tp->t_state != TCPS_LISTEN) tcp_dooptions(tp, optp, optlen, ti, &ts_present, &ts_val, &ts_ecr); // Header prediction: check for the two common cases // of a uni-directional data xfer. If the packet has // no control flags, is in-sequence, the window didn't // change and we're not retransmitting, it's a // candidate. If the length is zero and the ack moved // forward, we're the sender side of the xfer. Just // free the data acked & wake any higher level process // that was blocked waiting for space. If the length // is non-zero and the ack didn't move, we're the // receiver side. If we're getting packets in-order // (the reassembly queue is empty), add the data to // the socket buffer and note that we need a delayed ack. if (tp->t_state == TCPS_ESTABLISHED && (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) && ti->ti_seq == tp->rcv_nxt && tiwin && tiwin == tp->snd_wnd && tp->snd_nxt == tp->snd_max) { // If last ACK falls within this segment's sequence numbers, // record the timestamp. if ( ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) ){ tp->ts_recent_age = g_tcp_now; tp->ts_recent = ts_val; } if (ti->ti_len == 0) { if (SEQ_GT(ti->ti_ack, tp->snd_una) && SEQ_LEQ(ti->ti_ack, tp->snd_max) && tp->snd_cwnd >= tp->snd_wnd) { // this is a pure ack for outstanding data. ++g_tcpstat.tcps_predack; if (ts_present) tcp_xmit_timer(tp, g_tcp_now-ts_ecr+1); else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(tp, tp->t_rtt); acked = ti->ti_ack - tp->snd_una; g_tcpstat.tcps_rcvackpack++; g_tcpstat.tcps_rcvackbyte += acked; TRACE("drop so_snd buffer, drop_bytes=%d, len=%d", acked, so->so_snd.sb_cc); sbdrop(so->so_snd, acked); tp->snd_una = ti->ti_ack; usn_free_cmbuf(m); // If all outstanding data are acked, stop // retransmit timer, otherwise restart timer // using current (possibly backed-off) value. // If process is waiting for space, // wakeup/selwakeup/signal. If data // are ready to send, let tcp_output // decide between more output or persist. if (tp->snd_una == tp->snd_max) tp->t_timer[TCPT_REXMT] = 0; else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, &g_tcp_saveti, 0); //if (so->so_snd->sb_flags & SB_NOTIFY) { // usnet_tcpin_wwakeup(so, USN_TCP_IN, usn_tcpev_sbnotify, 0); // sowwakeup(so); //} // send buffer is available for app thread. usnet_tcpin_wwakeup(so, USN_TCP_IN, USN_TCPEV_WRITE, 0); if (so->so_snd->sb_cc) tcp_output(tp); return; } } else if (ti->ti_ack == tp->snd_una && tp->seg_next == (struct tcpiphdr *)tp && ti->ti_len <= sbspace(so->so_rcv)) { // this is a pure, in-sequence data packet // with nothing on the reassembly queue and // we have enough buffer space to take it. ++g_tcpstat.tcps_preddat; tp->rcv_nxt += ti->ti_len; g_tcpstat.tcps_rcvpack++; g_tcpstat.tcps_rcvbyte += ti->ti_len; // Drop TCP, IP headers and TCP options then add data // to socket buffer. m->head += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); m->mlen -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); TRACE("add data to rcv buf"); sbappend(so->so_rcv, m); sorwakeup(so); // new data is available for app threads. usnet_tcpin_rwakeup(so, USN_TCP_IN, USN_TCPEV_READ, m); if (so->so_options & SO_DEBUG) { TRACE("tcp trace, so_options=%d", so->so_options); tcp_trace(TA_INPUT, ostate, tp, &g_tcp_saveti, 0); } tp->t_flags |= TF_DELACK; return; } } // Drop TCP, IP headers and TCP options. m->head += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); m->mlen -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); // Calculate amount of space in receive window, // and then do TCP input processing. // Receive window is amount of space in rcv queue, // but not less than advertised window. { int win; win = sbspace(so->so_rcv); if (win < 0) win = 0; tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt)); } switch (tp->t_state) { // If the state is LISTEN then ignore segment if it contains an RST. // If the segment contains an ACK then it is bad and send a RST. // If it does not contain a SYN then it is not interesting; drop it. // Don't bother responding if the destination was a broadcast. // Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial // tp->iss, and send a segment: // <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> // Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. // Fill in remote peer address fields if not previously specified. // Enter SYN_RECEIVED state, and process any other fields of this // segment in this state. case TCPS_LISTEN: { usn_mbuf_t *am; struct usn_sockaddr_in *sin; if (tiflags & TH_RST) goto drop; if (tiflags & TH_ACK) goto dropwithreset; if ((tiflags & TH_SYN) == 0) goto drop; // RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN // in_broadcast() should never return true on a received // packet with M_BCAST not set. //if (m->m_flags & (M_BCAST|M_MCAST) || // IN_MULTICAST(ntohl(ti->ti_dst.s_addr))) // goto drop; am = usn_get_mbuf(0, BUF_MSIZE, 0); // XXX: the size! if (am == NULL) goto drop; am->mlen = sizeof (struct usn_sockaddr_in); sin = mtod(am, struct usn_sockaddr_in *); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = ti->ti_src; sin->sin_port = ti->ti_sport; bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); laddr = inp->inp_laddr; if (inp->inp_laddr.s_addr == USN_INADDR_ANY) inp->inp_laddr = ti->ti_dst; if (in_pcbconnect(inp, am)) { inp->inp_laddr = laddr; usn_free_mbuf(am); goto drop; } usn_free_mbuf(am); tp->t_template = tcp_template(tp); if (tp->t_template == 0) { tp = tcp_drop(tp, ENOBUFS); dropsocket = 0; // socket is already gone goto drop; } if (optp) tcp_dooptions(tp, optp, optlen, ti, &ts_present, &ts_val, &ts_ecr); if (iss) tp->iss = iss; else tp->iss = g_tcp_iss; g_tcp_iss += TCP_ISSINCR/4; tp->irs = ti->ti_seq; tcp_sendseqinit(tp); tcp_rcvseqinit(tp); tp->t_flags |= TF_ACKNOW; TRACE("change tcp state to TCPS_SYN_RECEIVED, state=%d, tp_flags=%d", tp->t_state, tp->t_flags); tp->t_state = TCPS_SYN_RECEIVED; // tcp event usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_SYN_RECEIVED, 0); tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; dropsocket = 0; // committed to socket g_tcpstat.tcps_accepts++; goto trimthenstep6; } // If the state is SYN_SENT: // if seg contains an ACK, but not for our SYN, drop the input. // if seg contains a RST, then drop the connection. // if seg does not contain SYN, then drop it. // Otherwise this is an acceptable SYN segment // initialize tp->rcv_nxt and tp->irs // if seg contains ack then advance tp->snd_una // if SYN has been acked change to ESTABLISHED else SYN_RCVD state // arrange for segment to be acked (eventually) // continue processing rest of data/controls, beginning with URG case TCPS_SYN_SENT: if ((tiflags & TH_ACK) && (SEQ_LEQ(ti->ti_ack, tp->iss) || SEQ_GT(ti->ti_ack, tp->snd_max))) goto dropwithreset; if (tiflags & TH_RST) { if (tiflags & TH_ACK) tp = tcp_drop(tp, ECONNREFUSED); goto drop; } if ((tiflags & TH_SYN) == 0) goto drop; if (tiflags & TH_ACK) { tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; tp->t_timer[TCPT_REXMT] = 0; } tp->irs = ti->ti_seq; tcp_rcvseqinit(tp); tp->t_flags |= TF_ACKNOW; TRACE("ack now, tp flags=%d", tp->t_flags); // XXX: remove second test. if (tiflags & TH_ACK /*&& SEQ_GT(tp->snd_una, tp->iss)*/) { g_tcpstat.tcps_connects++; soisconnected(so); TRACE("change tcp state to TCPS_ESTABLISHED," " state=%d, tp_flags=%d", tp->t_state, tp->t_flags); tp->t_state = TCPS_ESTABLISHED; // Do window scaling on this connection? if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->snd_scale = tp->requested_s_scale; tp->rcv_scale = tp->request_r_scale; } tcp_reass(tp, (struct tcpiphdr *)0, (usn_mbuf_t *)0); // if we didn't have to retransmit the SYN, // use its rtt as our initial srtt & rtt var. if (tp->t_rtt) tcp_xmit_timer(tp, tp->t_rtt); } else { TRACE("change tcp state to TCPS_SYN_RECEIVED, state=%d, tp_flags=%d", tp->t_state, tp->t_flags); tp->t_state = TCPS_SYN_RECEIVED; // tcp event usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_SYN_RECEIVED, 0); } trimthenstep6: // Advance ti->ti_seq to correspond to first data byte. // If data, trim to stay within window, // dropping FIN if necessary. ti->ti_seq++; if (ti->ti_len > tp->rcv_wnd) { todrop = ti->ti_len - tp->rcv_wnd; m_adj(m, -todrop); ti->ti_len = tp->rcv_wnd; tiflags &= ~TH_FIN; g_tcpstat.tcps_rcvpackafterwin++; g_tcpstat.tcps_rcvbyteafterwin += todrop; } tp->snd_wl1 = ti->ti_seq - 1; tp->rcv_up = ti->ti_seq; goto step6; } // States other than LISTEN or SYN_SENT. // First check timestamp, if present. // Then check that at least some bytes of segment are within // receive window. If segment begins before rcv_nxt, // drop leading data (and SYN); if nothing left, just ack. // // RFC 1323 PAWS: If we have a timestamp reply on this segment // and it's less than ts_recent, drop it. if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent && TSTMP_LT(ts_val, tp->ts_recent)) { // Check to see if ts_recent is over 24 days old. if ((int)(g_tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { // Invalidate ts_recent. If this segment updates // ts_recent, the age will be reset later and ts_recent // will get a valid value. If it does not, setting // ts_recent to zero will at least satisfy the // requirement that zero be placed in the timestamp // echo reply when ts_recent isn't valid. The // age isn't reset until we get a valid ts_recent // because we don't want out-of-order segments to be // dropped when ts_recent is old. tp->ts_recent = 0; } else { g_tcpstat.tcps_rcvduppack++; g_tcpstat.tcps_rcvdupbyte += ti->ti_len; g_tcpstat.tcps_pawsdrop++; goto dropafterack; } } todrop = tp->rcv_nxt - ti->ti_seq; if (todrop > 0) { if (tiflags & TH_SYN) { tiflags &= ~TH_SYN; ti->ti_seq++; if (ti->ti_urp > 1) ti->ti_urp--; else tiflags &= ~TH_URG; todrop--; } if ( todrop >= ti->ti_len || ( todrop == ti->ti_len && (tiflags & TH_FIN ) == 0 ) ) { // Any valid FIN must be to the left of the window. // At this point the FIN must be a duplicate or // out of sequence; drop it. tiflags &= ~TH_FIN; // Send an ACK to resynchronize and drop any data // But keep on processing for RST or ACK. tp->t_flags |= TF_ACKNOW; TRACE("send ack now to resync, tp_flags=%d", tp->t_flags); todrop = ti->ti_len; g_tcpstat.tcps_rcvdupbyte += ti->ti_len; g_tcpstat.tcps_rcvduppack++; } else { g_tcpstat.tcps_rcvpartduppack++; g_tcpstat.tcps_rcvpartdupbyte += ti->ti_len; } m_adj(m, todrop); ti->ti_seq += todrop; ti->ti_len -= todrop; if (ti->ti_urp > todrop) ti->ti_urp -= todrop; else { tiflags &= ~TH_URG; ti->ti_urp = 0; } } // If new data are received on a connection after the // user processes are gone, then RST the other end. if ((so->so_state & USN_NOFDREF) && tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { tp = tcp_close(tp); g_tcpstat.tcps_rcvafterclose++; goto dropwithreset; } // If segment ends after window, drop trailing data // (and PUSH and FIN); if nothing left, just ACK. todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); if (todrop > 0) { g_tcpstat.tcps_rcvpackafterwin++; if (todrop >= ti->ti_len) { g_tcpstat.tcps_rcvbyteafterwin += ti->ti_len; // If a new connection request is received // while in TIME_WAIT, drop the old connection // and start over if the sequence numbers // are above the previous ones. if (tiflags & TH_SYN && tp->t_state == TCPS_TIME_WAIT && SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { iss = tp->snd_nxt + TCP_ISSINCR; tp = tcp_close(tp); goto findpcb; } // If window is closed can only take segments at // window edge, and have to drop data and PUSH from // incoming segments. Continue processing, but // remember to ack. Otherwise, drop segment // and ack. if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { tp->t_flags |= TF_ACKNOW; g_tcpstat.tcps_rcvwinprobe++; } else goto dropafterack; } else g_tcpstat.tcps_rcvbyteafterwin += todrop; m_adj(m, -todrop); ti->ti_len -= todrop; tiflags &= ~(TH_PUSH|TH_FIN); } // check valid timestamp. Replace code above. if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) ) { tp->ts_recent_age = g_tcp_now; tp->ts_recent = ts_val; } // If the RST bit is set examine the state: // SYN_RECEIVED STATE: // If passive open, return to LISTEN state. // If active open, inform user that connection was refused. // ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: // Inform user that connection was reset, and close tcb. // CLOSING, LAST_ACK, TIME_WAIT STATES // Close the tcb. if (tiflags&TH_RST) switch (tp->t_state) { case TCPS_SYN_RECEIVED: so->so_error = ECONNREFUSED; goto close; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: so->so_error = ECONNRESET; close: DEBUG("change tcp state to TCPS_CLOSED, state=%d", tp->t_state); tp->t_state = TCPS_CLOSED; // tcp event usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_CLOSED, 0); g_tcpstat.tcps_drops++; tp = tcp_close(tp); goto drop; case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: tp = tcp_close(tp); goto drop; } // If a SYN is in the window, then this is an // error and we send an RST and drop the connection. if (tiflags & TH_SYN) { tp = tcp_drop(tp, ECONNRESET); goto dropwithreset; } // If the ACK bit is off we drop the segment and return. if ((tiflags & TH_ACK) == 0) goto drop; // Ack processing. switch (tp->t_state) { // In SYN_RECEIVED state if the ack ACKs our SYN then enter // ESTABLISHED state and continue processing, otherwise // send an RST. case TCPS_SYN_RECEIVED: if (SEQ_GT(tp->snd_una, ti->ti_ack) || SEQ_GT(ti->ti_ack, tp->snd_max)) goto dropwithreset; g_tcpstat.tcps_connects++; DEBUG("change tcp state to TCPS_ESTABLISHED, state=%d", tp->t_state); tp->t_state = TCPS_ESTABLISHED; soisconnected(so); // Do window scaling? if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->snd_scale = tp->requested_s_scale; tp->rcv_scale = tp->request_r_scale; } tcp_reass(tp, (struct tcpiphdr *)0, (usn_mbuf_t *)0); tp->snd_wl1 = ti->ti_seq - 1; // fall into ... // In ESTABLISHED state: drop duplicate ACKs; ACK out of range // ACKs. If the ack is in the range // tp->snd_una < ti->ti_ack <= tp->snd_max // then advance tp->snd_una to ti->ti_ack and drop // data from the retransmission queue. If this ACK reflects // more up to date window information we update our window information. case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { if (ti->ti_len == 0 && tiwin == tp->snd_wnd) { g_tcpstat.tcps_rcvdupack++; // If we have outstanding data (other than // a window probe), this is a completely // duplicate ack (ie, window info didn't // change), the ack is the biggest we've // seen and we've seen exactly our rexmt // threshhold of them, assume a packet // has been dropped and retransmit it. // Kludge snd_nxt & the congestion // window so we send only this one // packet. // // We know we're losing at the current // window size so do congestion avoidance // (set ssthresh to half the current window // and pull our congestion window back to // the new ssthresh). // // Dup acks mean that packets have left the // network (they're now cached at the receiver) // so bump cwnd by the amount in the receiver // to keep a constant cwnd packets in the // network. if (tp->t_timer[TCPT_REXMT] == 0 || ti->ti_ack != tp->snd_una) tp->t_dupacks = 0; else if (++tp->t_dupacks == g_tcprexmtthresh) { // congestion avoidance tcp_seq onxt = tp->snd_nxt; u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg; if (win < 2) win = 2; tp->snd_ssthresh = win * tp->t_maxseg; tp->t_timer[TCPT_REXMT] = 0; tp->t_rtt = 0; tp->snd_nxt = ti->ti_ack; tp->snd_cwnd = tp->t_maxseg; tcp_output(tp); tp->snd_cwnd = tp->snd_ssthresh + tp->t_maxseg * tp->t_dupacks; if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; goto drop; } else if (tp->t_dupacks > g_tcprexmtthresh) { tp->snd_cwnd += tp->t_maxseg; tcp_output(tp); goto drop; } } else tp->t_dupacks = 0; break; } // If the congestion window was inflated to account // for the other side's cached packets, retract it. if (tp->t_dupacks > g_tcprexmtthresh && tp->snd_cwnd > tp->snd_ssthresh) tp->snd_cwnd = tp->snd_ssthresh; tp->t_dupacks = 0; if (SEQ_GT(ti->ti_ack, tp->snd_max)) { g_tcpstat.tcps_rcvacktoomuch++; goto dropafterack; } acked = ti->ti_ack - tp->snd_una; g_tcpstat.tcps_rcvackpack++; g_tcpstat.tcps_rcvackbyte += acked; // If we have a timestamp reply, update smoothed // round trip time. If no timestamp is present but // transmit timer is running and timed sequence // number was acked, update smoothed round trip time. // Since we now have an rtt measurement, cancel the // timer backoff (cf., Phil Karn's retransmit alg.). // Recompute the initial retransmit timer. if (ts_present) tcp_xmit_timer(tp, g_tcp_now-ts_ecr+1); else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) tcp_xmit_timer(tp,tp->t_rtt); // If all outstanding data is acked, stop retransmit // timer and remember to restart (more output or persist). // If there is more data to be acked, restart retransmit // timer, using current (possibly backed-off) value. if (ti->ti_ack == tp->snd_max) { tp->t_timer[TCPT_REXMT] = 0; DEBUG("change needoutput to 1"); needoutput = 1; tp->t_flags |= TF_NEEDOUTPUT; } else if (tp->t_timer[TCPT_PERSIST] == 0) tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; // When new data is acked, open the congestion window. // If the window gives us less than ssthresh packets // in flight, open exponentially (maxseg per packet). // Otherwise open linearly: maxseg per window // (maxseg * (maxseg / cwnd) per packet). { u_int cw = tp->snd_cwnd; u_int incr = tp->t_maxseg; if (cw > tp->snd_ssthresh) incr = incr * incr / cw; tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale); } if (acked > so->so_snd->sb_cc) { tp->snd_wnd -= so->so_snd->sb_cc; DEBUG("drop all so_snd buffer, drop_bytes=%d, acked=%d", so->so_snd->sb_cc, acked); sbdrop(so->so_snd, (int)so->so_snd->sb_cc); ourfinisacked = 1; } else { DEBUG("drop so_snd buffer, drop_bytes=%d, len=%d", acked, so->so_snd->sb_cc); sbdrop(so->so_snd, acked); tp->snd_wnd -= acked; ourfinisacked = 0; } //if (so->so_snd->sb_flags & SB_NOTIFY) { sowwakeup(so); usnet_tcpin_wwakeup(so, USN_TCP_IN, USN_TCPEV_WRITE, 0); //} tp->snd_una = ti->ti_ack; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; switch (tp->t_state) { // In FIN_WAIT_1 STATE in addition to the processing // for the ESTABLISHED state if our FIN is now acknowledged // then enter FIN_WAIT_2. case TCPS_FIN_WAIT_1: if (ourfinisacked) { // If we can't receive any more // data, then closing user can proceed. // Starting the timer is contrary to the // specification, but if we don't get a FIN // we'll hang forever. if (so->so_state & USN_CANTRCVMORE) { soisdisconnected(so); tp->t_timer[TCPT_2MSL] = g_tcp_maxidle; } DEBUG("change tcp state to TCPS_FIN_WAIT_2, state=%d", tp->t_state); tp->t_state = TCPS_FIN_WAIT_2; usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_FIN_WAIT2, 0); } break; // In CLOSING STATE in addition to the processing for // the ESTABLISHED state if the ACK acknowledges our FIN // then enter the TIME-WAIT state, otherwise ignore // the segment. case TCPS_CLOSING: if (ourfinisacked) { DEBUG("change tcp state to TCPS_TIME_WAIT, state=%d", tp->t_state); tp->t_state = TCPS_TIME_WAIT; usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_TIME_WAIT, 0); tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; soisdisconnected(so); } break; // In LAST_ACK, we may still be waiting for data to drain // and/or to be acked, as well as for the ack of our FIN. // If our FIN is now acknowledged, delete the TCB, // enter the closed state and return. case TCPS_LAST_ACK: if (ourfinisacked) { tp = tcp_close(tp); goto drop; } break; // In TIME_WAIT state the only thing that should arrive // is a retransmission of the remote FIN. Acknowledge // it and restart the finack timer. case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; goto dropafterack; } } step6: // Update window information. // Don't look at window if no ACK: TAC's send garbage on first SYN. if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, ti->ti_seq) || (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) || (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd) )) )) { // keep track of pure window updates if (ti->ti_len == 0 && tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd) g_tcpstat.tcps_rcvwinupd++; tp->snd_wnd = tiwin; tp->snd_wl1 = ti->ti_seq; tp->snd_wl2 = ti->ti_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; DEBUG("change needoutput to 1"); tp->t_flags |= TF_NEEDOUTPUT; needoutput = 1; } // Process segments with URG. if ((tiflags & TH_URG) && ti->ti_urp && TCPS_HAVERCVDFIN(tp->t_state) == 0) { // This is a kludge, but if we receive and accept // random urgent pointers, we'll crash in // soreceive. It's hard to imagine someone // actually wanting to send this much urgent data. if (ti->ti_urp + so->so_rcv->sb_cc > g_sb_max) { ti->ti_urp = 0; // XXX tiflags &= ~TH_URG; // XXX goto dodata; // XXX } // If this segment advances the known urgent pointer, // then mark the data stream. This should not happen // in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since // a FIN has been received from the remote side. // In these states we ignore the URG. // // According to RFC961 (Assigned Protocols), // the urgent pointer points to the last octet // of urgent data. We continue, however, // to consider it to indicate the first octet // of data past the urgent section as the original // spec states (in one of two places). if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { tp->rcv_up = ti->ti_seq + ti->ti_urp; so->so_oobmark = so->so_rcv->sb_cc + (tp->rcv_up - tp->rcv_nxt) - 1; if (so->so_oobmark == 0) so->so_state |= USN_RCVATMARK; sohasoutofband(so); // send async event to app threads. usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPEV_OUTOFBOUND, 0); tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); } // Remove out of band data so doesn't get presented to user. // This can happen independent of advancing the URG pointer, // but if two URG's are pending at once, some out-of-band // data may creep in... ick. if (ti->ti_urp <= ti->ti_len #ifdef SO_OOBINLINE && (so->so_options & SO_OOBINLINE) == 0 #endif ) tcp_pulloutofband(so, ti, m); } else // If no out of band data is expected, // pull receive urgent pointer along // with the receive window. if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) tp->rcv_up = tp->rcv_nxt; dodata: // XXX #ifdef DUMP_PAYLOAD DEBUG("Handle data"); dump_chain(m,"tcp"); #endif // Process the segment text, merging it into the TCP sequencing queue, // and arranging for acknowledgment of receipt if necessary. // This process logically involves adjusting tp->rcv_wnd as data // is presented to the user (this happens in tcp_usrreq.c, // case PRU_RCVD). If a FIN has already been received on this // connection then we just ignore the text. if ((ti->ti_len || (tiflags&TH_FIN)) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { TCP_REASS(tp, ti, m, so, tiflags); // Note the amount of data that peer has sent into // our window, in order to estimate the sender's // buffer size. len = so->so_rcv->sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); } else { usn_free_cmbuf(m); tiflags &= ~TH_FIN; } // If FIN is received ACK the FIN and let the user know // that the connection is closing. if (tiflags & TH_FIN) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { socantrcvmore(so); tp->t_flags |= TF_ACKNOW; TRACE("ack FIN now, tp flags=%d", tp->t_flags); tp->rcv_nxt++; } switch (tp->t_state) { // In SYN_RECEIVED and ESTABLISHED STATES // enter the CLOSE_WAIT state. case TCPS_SYN_RECEIVED: case TCPS_ESTABLISHED: TRACE("change tcp state to TCPS_CLOSE_WAIT, state=%d", tp->t_state); tp->t_state = TCPS_CLOSE_WAIT; soewakeup(so, 0); usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_CLOSE_WAIT, 0); break; // If still in FIN_WAIT_1 STATE FIN has not been acked so // enter the CLOSING state. case TCPS_FIN_WAIT_1: TRACE("change tcp state to TCPS_CLOSING, state=%d", tp->t_state); tp->t_state = TCPS_CLOSING; usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_CLOSING, 0); break; // In FIN_WAIT_2 state enter the TIME_WAIT state, // starting the time-wait timer, turning off the other // standard timers. case TCPS_FIN_WAIT_2: TRACE("change tcp state to TCPS_TIME_WAIT, state=%d", tp->t_state); tp->t_state = TCPS_TIME_WAIT; tcp_canceltimers(tp); tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; soisdisconnected(so); usnet_tcpin_ewakeup(so, USN_TCP_IN, USN_TCPST_TIME_WAIT, 0); break; // In TIME_WAIT state restart the 2 MSL time_wait timer. case TCPS_TIME_WAIT: tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; break; } } if (so->so_options & SO_DEBUG) { TRACE("tcp trace, so_options=%d", so->so_options); tcp_trace(TA_INPUT, ostate, tp, &g_tcp_saveti, 0); } // Return any desired output. //if (needoutput || (tp->t_flags & TF_ACKNOW)){ if (tp->t_flags & TF_NEEDOUTPUT || (tp->t_flags & TF_ACKNOW)){ TRACE("ack now or need to ouput, tp->t_flags=%d", tp->t_flags); tcp_output(tp); } return; dropafterack: TRACE("dropafterack"); // Generate an ACK dropping incoming segment if it occupies // sequence space, where the ACK reflects our state. if (tiflags & TH_RST) goto drop; usn_free_cmbuf(m); tp->t_flags |= TF_ACKNOW; TRACE("ack now, tp flags=%d", tp->t_flags); tcp_output(tp); return; dropwithreset: TRACE("dropwithreset"); // Generate a RST, dropping incoming segment. // Make ACK acceptable to originator of segment. // Don't bother to respond if destination was broadcast/multicast. #define USN_MULTICAST(i) (((u_int)(i) & 0xf0000000) == 0xe0000000) if ((tiflags & TH_RST) || m->flags & (BUF_BCAST|BUF_MCAST) || USN_MULTICAST(ntohl(ti->ti_dst.s_addr))) goto drop; if (tiflags & TH_ACK) tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); else { if (tiflags & TH_SYN) ti->ti_len++; tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, TH_RST|TH_ACK); } // destroy temporarily created socket if (dropsocket) soabort(so); return; drop: TRACE("drop"); // Drop space held by incoming segment and return. if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) { TRACE("tcp trace: drop a socket"); tcp_trace(TA_DROP, ostate, tp, &g_tcp_saveti, 0); } usn_free_cmbuf(m); // destroy temporarily created socket if (dropsocket) soabort(so); return; }
int tcp_usrreq(struct socket * so, struct mbuf * m, struct mbuf * nam) { struct inpcb * inp; struct tcpcb * tp; int error = 0; int req; #ifdef DO_TCPTRACE int ostate; #endif req = so->so_req; /* get request from socket struct */ inp = sotoinpcb(so); /* * When a TCP is attached to a socket, then there will be * a (struct inpcb) pointed at by the socket, and this * structure will point at a subsidary (struct tcpcb). */ if (inp == 0 && req != PRU_ATTACH) { return (EINVAL); } if (inp) tp = intotcpcb(inp); else /* inp and tp not set, make sure this is OK: */ { if (req == PRU_ATTACH) tp = NULL; /* stifle compiler warnings about using unassigned tp*/ else { dtrap(); /* programming error? */ return EINVAL; } } switch (req) { /* * TCP attaches to socket via PRU_ATTACH, reserving space, * and an internet control block. */ case PRU_ATTACH: if (inp) { error = EISCONN; break; } error = tcp_attach(so); if (error) break; if ((so->so_options & SO_LINGER) && so->so_linger == 0) so->so_linger = TCP_LINGERTIME; #ifdef DO_TCPTRACE SETTP(tp, sototcpcb(so)); #endif break; /* * PRU_DETACH detaches the TCP protocol from the socket. * If the protocol state is non-embryonic, then can't * do this directly: have to initiate a PRU_DISCONNECT, * which may finish later; embryonic TCB's can just * be discarded here. */ case PRU_DETACH: if (tp->t_state > TCPS_LISTEN) SETTP(tp, tcp_disconnect(tp)); else SETTP(tp, tcp_close(tp)); break; /* * Give the socket an address. */ case PRU_BIND: /* bind is quite different for IPv4 and v6, so we use two * seperate pcbbind routines. so_domain was checked for * validity way up in t_bind() */ #ifdef IP_V4 if(inp->inp_socket->so_domain == AF_INET) { error = in_pcbbind(inp, nam); break; } #endif /* IP_V4 */ #ifdef IP_V6 if(inp->inp_socket->so_domain == AF_INET6) { error = ip6_pcbbind(inp, nam); break; } #endif /* IP_V6 */ dtrap(); /* not v4 or v6? */ error = EINVAL; break; /* * Prepare to accept connections. */ case PRU_LISTEN: if (inp->inp_lport == 0) error = in_pcbbind(inp, (struct mbuf *)0); if (error == 0) tp->t_state = TCPS_LISTEN; break; /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ case PRU_CONNECT: if (inp->inp_lport == 0) { #ifdef IP_V4 #ifndef IP_V6 /* v4 only */ error = in_pcbbind(inp, (struct mbuf *)0); #else /* dual mode */ if(so->so_domain == AF_INET) error = in_pcbbind(inp, (struct mbuf *)0); else error = ip6_pcbbind(inp, (struct mbuf *)0); #endif /* end dual mode code */ #else /* no v4, v6 only */ error = ip6_pcbbind(inp, (struct mbuf *)0); #endif /* end v6 only */ if (error) break; } #ifdef IP_V4 #ifndef IP_V6 /* v4 only */ error = in_pcbconnect(inp, nam); #else /* dual mode */ if(so->so_domain == AF_INET) error = in_pcbconnect(inp, nam); else error = ip6_pcbconnect(inp, nam); #endif /* end dual mode code */ #else /* no v4, v6 only */ error = ip6_pcbconnect(inp, nam); #endif /* end v6 only */ if (error) break; tp->t_template = tcp_template(tp); if (tp->t_template == 0) { #ifdef IP_V4 #ifndef IP_V6 /* v4 only */ in_pcbdisconnect(inp); #else /* dual mode */ if(so->so_domain == AF_INET) in_pcbdisconnect(inp); else ip6_pcbdisconnect(inp); #endif /* end dual mode code */ #else /* no v4, v6 only */ ip6_pcbdisconnect(inp); #endif /* end v6 only */ error = ENOBUFS; break; } soisconnecting(so); tcpstat.tcps_connattempt++; tp->t_state = TCPS_SYN_SENT; tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; tp->iss = tcp_iss; tcp_iss += (tcp_seq)(TCP_ISSINCR/2); tcp_sendseqinit(tp); error = tcp_output(tp); if (!error) TCP_MIB_INC(tcpActiveOpens); /* keep MIB stats */ break; /* * Create a TCP connection between two sockets. */ case PRU_CONNECT2: error = EOPNOTSUPP; break; /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ case PRU_DISCONNECT: SETTP(tp, tcp_disconnect(tp)); break; /* * Accept a connection. Essentially all the work is * done at higher levels; just return the address * of the peer, storing through addr. */ case PRU_ACCEPT: { struct sockaddr_in * sin = mtod(nam, struct sockaddr_in *); #ifdef IP_V6 struct sockaddr_in6 * sin6 = mtod(nam, struct sockaddr_in6 *); #endif #ifdef IP_V6 if (so->so_domain == AF_INET6) { nam->m_len = sizeof (struct sockaddr_in6); sin6->sin6_port = inp->inp_fport; sin6->sin6_family = AF_INET6; IP6CPY(&sin6->sin6_addr, &inp->ip6_faddr); } #endif #ifdef IP_V4 if (so->so_domain == AF_INET) { nam->m_len = sizeof (struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; } #endif if ( !(so->so_domain == AF_INET) && !(so->so_domain == AF_INET6) ) { dprintf("*** PRU_ACCEPT bad domain = %d\n", so->so_domain); dtrap(); } TCP_MIB_INC(tcpPassiveOpens); /* keep MIB stats */ break; } /* * Mark the connection as being incapable of further output. */ case PRU_SHUTDOWN: socantsendmore(so); tp = tcp_usrclosed(tp); if (tp) error = tcp_output(tp); break; /* * After a receive, possibly send window update to peer. */ case PRU_RCVD: (void) tcp_output(tp); break; /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. */ case PRU_SEND: if (so->so_pcb == NULL) { /* Return EPIPE error if socket is not connected */ error = EPIPE; break; } sbappend(&so->so_snd, m); error = tcp_output(tp); if (error == ENOBUFS) sbdropend(&so->so_snd,m); /* Remove data from socket buffer */ break; /* * Abort the TCP. */ case PRU_ABORT: SETTP(tp, tcp_drop(tp, ECONNABORTED)); break; case PRU_SENSE: /* ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat; */ dtrap(); /* does this ever happen? */ return (0); case PRU_RCVOOB: if ((so->so_oobmark == 0 && (so->so_state & SS_RCVATMARK) == 0) || #ifdef SO_OOBINLINE so->so_options & SO_OOBINLINE || #endif tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; break; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; break; } m->m_len = 1; *mtod(m, char *) = tp->t_iobc; if ((MBUF2LONG(nam) & MSG_PEEK) == 0) tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); break; case PRU_SENDOOB: if (so->so_pcb == NULL) { /* Return EPIPE error if socket is not connected */ error = EPIPE; break; } if (sbspace(&so->so_snd) == 0) { m_freem(m); error = ENOBUFS; break; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ sbappend(&so->so_snd, m); tp->snd_up = tp->snd_una + so->so_snd.sb_cc; tp->t_force = 1; error = tcp_output(tp); if (error == ENOBUFS) sbdropend(&so->so_snd,m); /* Remove data from socket buffer */ tp->t_force = 0; break; case PRU_SOCKADDR: /* sockaddr and peeraddr have to switch based on IP type */ #ifdef IP_V4 #ifndef IP_V6 /* v4 only */ in_setsockaddr(inp, nam); #else /* dual mode */ if(so->so_domain == AF_INET6) ip6_setsockaddr(inp, nam); else in_setsockaddr(inp, nam); #endif /* dual mode */ #else /* IP_V6 */ ip6_setsockaddr(inp, nam); #endif break; case PRU_PEERADDR: #ifdef IP_V4 #ifndef IP_V6 /* v4 only */ in_setpeeraddr(inp, nam); #else /* dual mode */ if(so->so_domain == AF_INET6) ip6_setpeeraddr(inp, nam); else in_setpeeraddr(inp, nam); #endif /* dual mode */ #else /* IP_V6 */ ip6_setpeeraddr(inp, nam); #endif break; case PRU_SLOWTIMO: SETTP(tp, tcp_timers(tp, (int)MBUF2LONG(nam))); #ifdef DO_TCPTRACE req |= (long)nam << 8; /* for debug's sake */ #endif break; default: panic("tcp_usrreq"); } #ifdef DO_TCPTRACE if (tp && (so->so_options & SO_DEBUG)) tcp_trace("usrreq: state: %d, tcpcb: %x, req: %d", ostate, tp, req); #endif return (error); }