Matrix reshape(const Matrix& input, const Dimension& size)
{
    Matrix tempInput(input);

    auto newSize = fillInDimension(size, input.size());

    return Matrix(newSize, fillInStride(newSize, input.stride(), input.size()),
        input.precision(), tempInput.allocation(), tempInput.data());
}
Matrix slice(const Matrix& input, const Dimension& begin, const Dimension& end)
{
    assert(begin.size() == input.size().size());
    assert(end.size()   == input.size().size());

    assert(begin <= input.size());
    assert(end   <= input.size());

    auto size = end - begin;

    Matrix tempInput(input);

    return Matrix(size, input.stride(), input.precision(),
        tempInput.allocation(), tempInput[begin].address());
}
Esempio n. 3
0
//After using the peer() method of ACE_Svc_Handler to obtain a reference to the underlying stream of the service
//handler class we call recv() on it to read the data which has been received. This data is stored in the data
//array and then printed out.
//Return  0 = Keep you registered with the reactor
//Return -1 = This will call handle_close() wich close our handle
int PacketHandler::handle_input(ACE_HANDLE handle) {
	//Retrieve the session; it is pointer and can be used like the following:
	//session->username = "******";		   //->username is an object of type `std::string`
	//session->inventory.newItem(1234);    //->iventory is an object of type `Inventory`
	SessionMgr::s_session* session = m_sessionMgr.getSession(handle);

	//Print the handle
	std::cout << "Handle: " << handle << std::endl;
	
	//Receive packets and print the input
	int readBytes = peer_.recv(m_data,BUFFER_SIZE);
	std::string tempInput(m_data, readBytes);
	std::cout << "Input: " << tempInput << std::endl;

	//The recv() function blocks until it have received data.
	//If the function unblock with 0 byte read, the client logged out.
	if (readBytes == 0) {
		std::cerr << "Client logged out!" << std::endl;
		return -1;
	}
	
	return 0; 
 } 
Esempio n. 4
0
void Mesh::transform()
{
	const NifModel * nif = static_cast<const NifModel *>( iBlock.model() );
	if ( ! nif || ! iBlock.isValid() )
	{
		clear();
		return;
	}
	
	if ( upData )
	{
		upData = false;
		
		// update for NiMesh
		if ( nif->checkVersion( 0x14050000, 0 ) && nif->inherits( iBlock, "NiMesh" ) )
		{
#ifndef QT_NO_DEBUG
			// do stuff
			qWarning() << "Entering NiMesh decoding...";
			// mesh primitive type
			QString meshPrimitiveType = NifValue::enumOptionName( "MeshPrimitiveType", nif->get<uint>( iData, "Primitive Type" ) );
			qWarning() << "Mesh uses" << meshPrimitiveType;
			for ( int i = 0; i < nif->rowCount( iData ); i ++ )
			{
				// each data reference is to a single data stream
				quint32 stream = nif->getLink( iData.child( i, 0 ), "Stream" );
				qWarning() << "Data stream: " << stream;
				// can have multiple submeshes, unsure of exact meaning
				ushort numSubmeshes = nif->get<ushort>( iData.child( i, 0 ), "Num Submeshes" );
				qWarning() << "Submeshes: " << numSubmeshes;
				QPersistentModelIndex submeshMap = nif->getIndex( iData.child( i, 0 ), "Submesh To Region Map" );
				for ( int j = 0; j < numSubmeshes; j++ )
				{
					qWarning() << "Submesh" << j << "maps to region" << nif->get<ushort>( submeshMap.child( j, 0 ) );
				}
				// each stream can have multiple components, and each has a starting index
				QMap<uint, QString> componentIndexMap;
				int numComponents = nif->get<int>( iData.child( i, 0 ), "Num Components" );
				qWarning() << "Components: " << numComponents;
				// semantics determine the usage
				QPersistentModelIndex componentSemantics = nif->getIndex( iData.child( i, 0 ), "Component Semantics" );
				for( int j = 0; j < numComponents; j++ )
				{
					QString name = nif->get<QString>( componentSemantics.child( j, 0 ), "Name" );
					uint index = nif->get<uint>( componentSemantics.child( j, 0 ), "Index" );
					qWarning() << "Component" << name << "at position" << index << "of component" << j << "in stream" << stream;
					componentIndexMap.insert( j, QString( "%1 %2").arg( name ).arg( index ) );
				}
				
				// now the data stream itself...
				QPersistentModelIndex dataStream = nif->getBlock( stream );
				QByteArray streamData = nif->get<QByteArray>( nif->getIndex( dataStream, "Data" ).child( 0, 0 ) );
				QBuffer streamBuffer( &streamData );
				streamBuffer.open( QIODevice::ReadOnly );
				// probably won't use this
				QDataStream streamReader( &streamData, QIODevice::ReadOnly );
				// we should probably check the header here, but we expect things to be little endian
				streamReader.setByteOrder( QDataStream::LittleEndian );
				// each region exists within the data stream at the specified index
				quint32 numRegions = nif->get<quint32>( dataStream, "Num Regions");
				QPersistentModelIndex regions = nif->getIndex( dataStream, "Regions" );
				quint32 totalIndices = 0;
				if ( regions.isValid() )
				{
					qWarning() << numRegions << " regions in this stream";
					for( quint32 j = 0; j < numRegions; j++ )
					{
						qWarning() << "Start index: " << nif->get<quint32>( regions.child( j, 0 ), "Start Index" );
						qWarning() << "Num indices: " << nif->get<quint32>( regions.child( j, 0 ), "Num Indices" );
						totalIndices += nif->get<quint32>( regions.child( j, 0 ), "Num Indices" );
					}
					qWarning() << totalIndices << "total indices in" << numRegions << "regions";
				}
				uint numStreamComponents = nif->get<uint>( dataStream, "Num Components" );
				qWarning() << "Stream has" << numStreamComponents << "components";
				QPersistentModelIndex streamComponents = nif->getIndex( dataStream, "Component Formats" );
				// stream components are interleaved, so we need to know their type before we read them
				QList<uint> typeList;
				for( uint j = 0; j < numStreamComponents; j++ )
				{
					uint compFormat = nif->get<uint>( streamComponents.child( j, 0 ) );
					QString compName = NifValue::enumOptionName( "ComponentFormat", compFormat );
					qWarning() << "Component format is" << compName;
					qWarning() << "Stored as a" << compName.split( "_" )[1];
					typeList.append( compFormat - 1 );
					
					// this can probably wait until we're reading the stream values
					QString compNameIndex = componentIndexMap.value( j );
					QString compType = compNameIndex.split( " " )[0];
					uint startIndex = compNameIndex.split( " " )[1].toUInt();
					qWarning() << "Component" << j << "contains" << compType << "starting at index" << startIndex;

					// try and sort out texcoords here...
					if( compType == "TEXCOORD" )
					{
						QVector<Vector2> tempCoords;
						coords.append( tempCoords );
						qWarning() << "Assigning coordinate set" << startIndex;
					}

				}	
				
				// for each component
				// get the length
				// get the underlying type (will probably need OpenEXR to deal with float16 types)
				// read that type in, k times, where k is the length of the vector
				// start index will not be 0 if eg. multiple UV maps, but hopefully we don't have multiple components
				
				for( uint j = 0; j < totalIndices; j++ )
				{
					for( uint k = 0; k < numStreamComponents; k++ )
					{
						int typeLength = ( ( typeList[k] & 0x000F0000 ) >> 0x10 );
						int typeSize = ( ( typeList[k] & 0x00000F00 ) >> 0x08 );
						qWarning() << "Reading" << typeLength << "values" << typeSize << "bytes";

						NifIStream tempInput( new NifModel, &streamBuffer );
						QList<NifValue> values;
						NifValue tempValue;
						// if we had the right types, we could read in Vector etc. and not have the mess below
						switch( ( typeList[k] & 0x00000FF0 ) >> 0x04 )
						{
							case 0x10:
								tempValue.changeType( NifValue::tByte );
								break;
							case 0x21:
								tempValue.changeType( NifValue::tShort );
								break;
							case 0x42:
								tempValue.changeType( NifValue::tInt );
								break;
							case 0x43:
								tempValue.changeType( NifValue::tFloat );
								break;
						}
						for( int l = 0; l < typeLength; l++ )
						{
							tempInput.read( tempValue );
							values.append( tempValue );
							qWarning() << tempValue.toString();
						}
						QString compType = componentIndexMap.value( k ).split( " " )[0];
						qWarning() << "Will store this value in" << compType;
						// the mess begins...
						if( NifValue::enumOptionName( "ComponentFormat", (typeList[k] + 1 ) ) == "F_FLOAT32_3" )
						{
							Vector3 tempVect3( values[0].toFloat(), values[1].toFloat(), values[2].toFloat() );
							if( compType == "POSITION" )
							{
								verts.append( tempVect3 );
							}
							else if( compType == "NORMAL" )
							{
								norms.append( tempVect3 );
							}
						}
						else if( compType == "INDEX" )
						{
							indices.append( values[0].toCount() );
						}
						else if( compType == "TEXCOORD" )
						{
							Vector2 tempVect2( values[0].toFloat(), values[1].toFloat() );
							quint32 coordSet = componentIndexMap.value( k ).split( " " )[1].toUInt();
							qWarning() << "Need to append" << tempVect2 << "to texcoords" << coordSet;
							QVector<Vector2> currentSet = coords[coordSet];
							currentSet.append( tempVect2 );
							coords[coordSet] = currentSet;
						}
					}
				}

				// build triangles, strips etc.
				if( meshPrimitiveType == "MESH_PRIMITIVE_TRIANGLES" )
				{
					for( int k = 0; k < indices.size(); )
					{
						Triangle tempTri( indices[k], indices[k+1], indices[k+2] );
						qWarning() << "Inserting triangle" << tempTri;
						triangles.append( tempTri );
						k = k+3;
					}
				}
			}
#endif
		}
		else
		{