Esempio n. 1
0
File: icp.c Progetto: Dimitryk/repo
float* globalICPRegistration(	float* model, int modelSize, 
								Vector3f minModelBounds, Vector3f maxModelBounds, 
								float *data, int dataSize,
								int maxIterations)
{
	float mdlSntrMass[4], dataSntrMass[4];
	float *bestRegistration, lowestError = MAX_FLOAT_VALUE; //stores best attempt to registrate
	int iterations;
	icpStruct *localICP;

	//Allocate memmory for IcpStruct 
	localICP = createICPInstance(modelSize, dataSize);
	//Structure model as an OctTree and attach it to IcpStruct
	localICP->model = createKD_Tree(model, modelSize);
	
	//save
	sntrMass(mdlSntrMass, model, modelSize);
	sntrMass(dataSntrMass, data, dataSize);
	memcpy(localICP->modelSntrMass, mdlSntrMass, sizeof(float) * 4);

	bestRegistration = (float*)malloc(sizeof(float) * 16);
	seedRandomGen();

	for(iterations = 0; iterations < maxIterations; iterations++){
		memcpy(localICP->data, data, sizeof(float) * dataSize);
		memcpy(localICP->dataSntrMass, dataSntrMass, sizeof(float) * 4);
		localICP->errorMeasure = MAX_FLOAT_VALUE;
		toIdentity(localICP->registrationMatrix, 4);

		//fill registration Translation vector with random trans values
		matrix4Access(localICP->registrationMatrix, 0, 3) = randomInLimitf(minModelBounds.x, maxModelBounds.x);
		matrix4Access(localICP->registrationMatrix, 1, 3) = randomInLimitf(minModelBounds.y, maxModelBounds.y);
		matrix4Access(localICP->registrationMatrix, 2, 3) = randomInLimitf(minModelBounds.z, maxModelBounds.z);
		applyInitialRegistration(localICP);

		localICPRegistration(localICP, THRESHOLD, DELTA_THRESHOLD, MAX_LOCAL_ICP_ITERATIONS);

		if( localICP->errorMeasure < lowestError ){
			memcpy(bestRegistration, localICP->registrationMatrix, sizeof(float) * 16);
			lowestError = localICP->errorMeasure;
			if(lowestError < THRESHOLD)
				break;
		}
	}
	deleteICPInstance(localICP);
	return bestRegistration;
}
Esempio n. 2
0
ccGLMatrix::ccGLMatrix(const CCLib::SquareMatrix& R, const CCVector3& T)
{
    toIdentity();

	if (R.size()==3)
	{
		//we copy each column
		float* mat = m_mat;
		for (unsigned j=0;j<3;++j)
		{
			*mat++ = (float)R.m_values[0][j];
			*mat++ = (float)R.m_values[1][j];
			*mat++ = (float)R.m_values[2][j];
			mat++;
		}
	}

    *this += T;
}
Esempio n. 3
0
File: icp.c Progetto: Dimitryk/repo
static float* rotationMtrxFromQuaternion( float *dst, float *q )
		{
			float q00 = q[0]*q[0];
			float q11 = q[1]*q[1];
			float q22 = q[2]*q[2];
			float q33 = q[3]*q[3];
			float q03 = q[0]*q[3];
			float q13 = q[1]*q[3];
			float q23 = q[2]*q[3];
			float q02 = q[0]*q[2];
			float q12 = q[1]*q[2];
			float q01 = q[0]*q[1];
			toIdentity(dst, 4);
			matrixAccess(dst, 0, 0, 4) = (q00 + q11 - q22 - q33);
			matrixAccess(dst, 1, 1, 4) = (q00 - q11 + q22 - q33);
			matrixAccess(dst, 2, 2, 4) = (q00 - q11 - q22 + q33);
			matrixAccess(dst, 0, 1, 4) = (2.0f*(q12-q03));
			matrixAccess(dst, 1, 0, 4) = (2.0f*(q12+q03));
			matrixAccess(dst, 0, 2, 4) = (2.0f*(q13+q02));
			matrixAccess(dst, 2, 0, 4) = (2.0f*(q13-q02));
			matrixAccess(dst, 1, 2, 4) = (2.0f*(q23-q01));
			matrixAccess(dst, 2, 1, 4) = (2.0f*(q23+q01));
			return dst;
		}
Esempio n. 4
0
ccGLMatrix::ccGLMatrix()
{
	toIdentity();
}
Matrix4::~Matrix4(void)	{
    toIdentity();
}
Esempio n. 6
0
File: icp.c Progetto: Dimitryk/repo
/* computes egenvectors and eigenvalues using Jacobian method
 * returns egenValues on succses and NULL of failiar
 * eigenVectors on succses will be filled with egenVectors corresponding to eigenvalues
 * NB n can be up to a maximum of 10 for speed increace (static alloc vs dynamic)
 */
static float* computeJacobianEigenValuesAndVectors(float* matrix, float** eigenVectors, int n)
		{
			int j,iq,ip,i,nrot;
			float tresh,theta,tau,t,sm,s,h,g,c,b[10],z[10],*d;

			float *eigenValues;
			*eigenVectors = (float*)malloc(sizeof(float) * n*n);
			toIdentity(*eigenVectors, n);

			d = eigenValues = (float*)malloc(sizeof(float) * n );

			for (ip=0;ip<n;ip++)
			{
				b[ip]=d[ip]=matrix4Access(matrix, ip, ip); //Initialize b and d to the diagonal of a.
				z[ip]=0.0; //This vector will accumulate terms of the form tapq as in equation (11.1.14)
			}

			nrot=0;
			for (i=1;i<=50;i++)
			{
				sm=0.0;
				for (ip=0;ip<n-1;ip++) //Sum off-diagonal elements.
				{
					for (iq=ip+1;iq<n;iq++)
						sm += (float)fabs(matrix4Access(matrix, ip, iq));
				}

				if (sm == 0.0) //The normal return, which relies on quadratic convergence to machine underflow.
				{
					//we only need the absolute values of eigenvalues
					for (ip=0;ip<n;ip++)
						d[ip]=(float)fabs(d[ip]);
					return eigenValues;
				}

				if (i < 4)
					tresh = 0.2f * sm/(float)(n*n); //...on the first three sweeps.
				else
					tresh = 0.0f; //...thereafter.

				for (ip=0;ip<n-1;ip++)
				{
					for (iq=ip+1;iq<n;iq++)
					{
						g=100.0f * (float)fabs(matrix4Access(matrix, ip, iq));
						//After four sweeps, skip the rotation if the off-diagonal element is small.
						if (i > 4 && (float)(fabs(d[ip])+g) == (float)fabs(d[ip])
							&& (float)(fabs(d[iq])+g) == (float)fabs(d[iq]))
						{
							matrix4Access(matrix, ip, iq)=0.0f;
						}
						else if (fabs(matrix4Access(matrix, ip, iq)) > tresh)
						{
							h=d[iq]-d[ip];
							if ((float)(fabs(h)+g) == (float)fabs(h))
								t = matrix4Access(matrix, ip, iq )/h; //t = 1/(2¦theta)
							else
							{
								theta=0.5f * h/matrix4Access(matrix, ip, iq); //Equation (11.1.10).
								t=1.0f/(float)(fabs(theta)+sqrt(1.0f+theta*theta));
								if (theta < 0.0)
									t = -t;
							}

							c=1.0f/(float)sqrt(1.0f+t*t);
							s=t*c;
							tau=s/(1.0f+c);
							h=t*matrix4Access(matrix, ip, iq);
							z[ip] -= h;
							z[iq] += h;
							d[ip] -= h;
							d[iq] += h;
							matrix4Access(matrix, ip, iq)=0.0;

							for (j=0;j<=ip-1;j++) //Case of rotations 1 <= j < p.
							{
								ROTATE(matrix,j,ip,j,iq);
							}
							for (j=ip+1;j<=iq-1;j++) //Case of rotations p < j < q.
							{
								ROTATE(matrix,ip,j,j,iq);
							}
							for (j=iq+1;j<n;j++) //Case of rotations q < j <= n.
							{
								ROTATE(matrix,ip,j,iq,j);
							}
							for (j=0;j<n;j++)
							{
								ROTATE((*eigenVectors),j,ip,j,iq);
							}

							++nrot;
						}

					}

				}

				for (ip=0;ip<n;ip++)
				{
					b[ip]+=z[ip];
					d[ip]=b[ip]; //Update d with the sum of tapq,
					z[ip]=0.0; //and reinitialize z.
				}

			}

			//Too many iterations in routine jacobi!
			free(eigenValues);
			free(*eigenVectors);
			return NULL;
}
Matrix3::Matrix3(void) {
	toIdentity();
}