Esempio n. 1
0
// This is the C function that will get control when any callback is made.  The "data"
// argument is the index of the entry in the callback table..
static void callbackEntryPt(ffi_cif *cif, void *ret, void* args[], void *data)
{
    uintptr_t cbIndex = (uintptr_t)data;
    ASSERT(cbIndex >= 0 && cbIndex < callBackEntries);
    // We should get the task data for the thread that is running this code.
    // If this thread has been created by the foreign code we will have to
    // create a new one here.
    TaskData *taskData = processes->GetTaskDataForThread();
    if (taskData == 0)
    {
        try {
            taskData = processes->CreateNewTaskData(0, 0, 0, TAGGED(0));
        }
        catch (std::bad_alloc &) {
            ::Exit("Unable to create thread data - insufficient memory");
        }
        catch (MemoryException &) {
            ::Exit("Unable to create thread data - insufficient memory");
        }
    }
    else processes->ThreadUseMLMemory(taskData);
    // We may get multiple calls to call-backs and we mustn't risk
    // overflowing the save-vec.
    Handle mark = taskData->saveVec.mark();

    // In the future we might want to call C functions without some of the
    // overhead that comes with an RTS call which may allocate in ML
    // memory.  If we do that we also have to ensure that callbacks
    // don't allocate, so this code would have to change.
    Handle mlEntryHandle;
    {
        // Get the ML function.  Lock to avoid another thread moving
        // callbackTable under our feet.
        PLocker pLocker(&callbackTableLock);
        struct _cbStructEntry *cbEntry = &callbackTable[cbIndex];
        mlEntryHandle = taskData->saveVec.push(cbEntry->mlFunction);
    }

    // Create a pair of the arg vector and the result pointer.
    Handle argHandle = toSysWord(taskData, args);
    Handle resHandle = toSysWord(taskData, ret); // Result must go in here.
    Handle pairHandle = alloc_and_save(taskData, 2);
    pairHandle->WordP()->Set(0, argHandle->Word());
    pairHandle->WordP()->Set(1, resHandle->Word());

    // TODO: This calls BuildCodeSegment to allocate small stub code.
    // They could easily be cached in X86TaskData::SetCallbackFunction at least
    // up to the next GC.
    taskData->EnterCallbackFunction(mlEntryHandle, pairHandle);

    taskData->saveVec.reset(mark);

    // Release ML memory now we're going back to C.
    processes->ThreadReleaseMLMemory(taskData);
}
Esempio n. 2
0
Handle cmem_load_32(TaskData *taskData, Handle indexH, Handle offsetH, Handle baseH)
{
    // Load 32-bit int - In 32-bit mode this needs to be boxed
    uint8_t *baseAddr =
        *((uint8_t**)baseH->Word().AsAddress()) +
        getPolySigned(taskData, offsetH->Word());
    POLYSIGNED index = getPolySigned(taskData, indexH->Word());
    return toSysWord(taskData, ((uint32_t*)baseAddr)[index]);
}
Esempio n. 3
0
Handle cmem_load_64(TaskData *taskData, Handle indexH, Handle offsetH, Handle baseH)
{
    uint8_t *baseAddr =
        *((uint8_t**)baseH->Word().AsAddress()) +
        getPolySigned(taskData, offsetH->Word());
    POLYSIGNED index = getPolySigned(taskData, indexH->Word());
    // Box the result.
    return toSysWord(taskData, ((uint64_t*)baseAddr)[index]);
}
Esempio n. 4
0
Handle poly_ffi(TaskData *taskData, Handle args, Handle code)
{
    unsigned c = get_C_unsigned(taskData, code->Word());
    switch (c)
    {
    case 0: // malloc
        {
            POLYUNSIGNED size = getPolyUnsigned(taskData, args->Word());
            return toSysWord(taskData, malloc(size));
        }
    case 1: // free
        {
            void *mem = *(void**)(args->WordP());
            free(mem);
            return taskData->saveVec.push(TAGGED(0));
        }

    case 2: // Load library
        {
            TempString libName(args->Word());
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HINSTANCE lib = LoadLibrary(libName);
            if (lib == NULL)
            {
                char buf[256];
#if (defined(UNICODE))
                _snprintf(buf, sizeof(buf), "Loading <%S> failed. Error %lu", libName, GetLastError());
#else
                _snprintf(buf, sizeof(buf), "Loading <%s> failed. Error %lu", libName, GetLastError());
#endif
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#else
            void *lib = dlopen(libName, RTLD_LAZY);
            if (lib == NULL)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "Loading <%s> failed: %s", (const char *)libName, dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return toSysWord(taskData, lib);
        }

    case 3: // Load address of executable.
        {
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HINSTANCE lib = hApplicationInstance;
#else
            void *lib = dlopen(NULL, RTLD_LAZY);
            if (lib == NULL)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "Loading address of executable failed: %s", dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return toSysWord(taskData, lib);
        }
    case 4: // Unload library - Is this actually going to be used?
        {
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HMODULE hMod = *(HMODULE*)(args->WordP());
            if (! FreeLibrary(hMod))
                raise_syscall(taskData, "FreeLibrary failed", -(int)GetLastError());
#else
            void *lib = *(void**)(args->WordP());
            if (dlclose(lib) != 0)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "dlclose failed: %s", dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return taskData->saveVec.push(TAGGED(0));
        }
    case 5: // Load the address of a symbol from a library.
        {
            TempCString symName(args->WordP()->Get(1));
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HMODULE hMod = *(HMODULE*)(args->WordP()->Get(0).AsAddress());
            void *sym = (void*)GetProcAddress(hMod, symName);
            if (sym == NULL)
            {
                char buf[256];
                _snprintf(buf, sizeof(buf), "Loading symbol <%s> failed. Error %lu", symName, GetLastError());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#else
            void *lib = *(void**)(args->WordP()->Get(0).AsAddress());
            void *sym = dlsym(lib, symName);
            if (sym == NULL)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "load_sym <%s> : %s", (const char *)symName, dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return toSysWord(taskData, sym);
        }

        // Libffi functions
    case 50: // Return a list of available ABIs
            return makeList(taskData, sizeof(abiTable)/sizeof(abiTable[0]),
                            (char*)abiTable, sizeof(abiTable[0]), 0, mkAbitab);

    case 51: // A constant from the table
        {
            unsigned index = get_C_unsigned(taskData, args->Word());
            if (index >= sizeof(constantTable) / sizeof(constantTable[0]))
                raise_exception_string(taskData, EXC_foreign, "Index out of range");
            return Make_arbitrary_precision(taskData, constantTable[index]);
        }

    case 52: // Return an FFI type
        {
            unsigned index = get_C_unsigned(taskData, args->Word());
            if (index >= sizeof(ffiTypeTable) / sizeof(ffiTypeTable[0]))
                raise_exception_string(taskData, EXC_foreign, "Index out of range");
            return toSysWord(taskData, ffiTypeTable[index]);
        }

    case 53: // Extract fields from ffi type.
        {
            ffi_type *ffit = *(ffi_type**)(args->WordP());
            Handle sizeHandle = Make_arbitrary_precision(taskData, ffit->size);
            Handle alignHandle = Make_arbitrary_precision(taskData, ffit->alignment);
            Handle typeHandle = Make_arbitrary_precision(taskData, ffit->type);
            Handle elemHandle = toSysWord(taskData, ffit->elements);
            Handle resHandle = alloc_and_save(taskData, 4);
            resHandle->WordP()->Set(0, sizeHandle->Word());
            resHandle->WordP()->Set(1, alignHandle->Word());
            resHandle->WordP()->Set(2, typeHandle->Word());
            resHandle->WordP()->Set(3, elemHandle->Word());
            return resHandle;
        }

    case 54: // Construct an ffi type.
        {
            // This is probably only used to create structs.
            size_t size = getPolyUnsigned(taskData, args->WordP()->Get(0));
            unsigned short align = get_C_ushort(taskData, args->WordP()->Get(1));
            unsigned short type = get_C_ushort(taskData, args->WordP()->Get(2));
            unsigned nElems = 0;
            for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
                nElems++;
            size_t space = sizeof(ffi_type);
            // If we need the elements add space for the elements plus
            // one extra for the zero terminator.
            if (nElems != 0) space += (nElems+1) * sizeof(ffi_type *);
            ffi_type *result = (ffi_type*)malloc(space);
            // Raise an exception rather than returning zero.
            if (result == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM);
            ffi_type **elem = 0;
            if (nElems != 0) elem = (ffi_type **)(result+1);
            memset(result, 0, sizeof(ffi_type)); // Zero it in case they add fields
            result->size = size;
            result->alignment = align;
            result->type = type;
            result->elements = elem;
            if (elem != 0)
            {
                for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
                {
                    PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h;
                    *elem++ = *(ffi_type**)(e.AsAddress());
                }
                *elem = 0;
            }
            return toSysWord(taskData, result);
        }

    case 55: // Create a CIF.  This contains all the types and some extra information.
        // The result is in allocated memory followed immediately by the argument type vector.
        {
            ffi_abi abi = (ffi_abi)get_C_ushort(taskData, args->WordP()->Get(0));
            ffi_type *rtype = *(ffi_type **)args->WordP()->Get(1).AsAddress();
            unsigned nArgs = 0;
            for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
                nArgs++;
            // Allocate space for the cif followed by the argument type vector
            size_t space = sizeof(ffi_cif) + nArgs * sizeof(ffi_type*);
            ffi_cif *cif = (ffi_cif *)malloc(space);
            if (cif == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM);
            ffi_type **atypes = (ffi_type **)(cif+1);
            // Copy the arguments types.
            ffi_type **at = atypes;
            for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
            {
                PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h;
                *at++ = *(ffi_type**)(e.AsAddress());
            }
            ffi_status status = ffi_prep_cif(cif, abi, nArgs, rtype, atypes);
            if (status == FFI_BAD_TYPEDEF)
                raise_exception_string(taskData, EXC_foreign, "Bad typedef in ffi_prep_cif");
            else if (status == FFI_BAD_ABI)
                raise_exception_string(taskData, EXC_foreign, "Bad ABI in ffi_prep_cif");
            else if (status != FFI_OK)
                raise_exception_string(taskData, EXC_foreign, "Error in ffi_prep_cif");
            return toSysWord(taskData, cif);
        }

    case 56: // Call a function.
        {
            ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(0).AsAddress();
            void *f = *(void**)args->WordP()->Get(1).AsAddress();
            void *res = *(void**)args->WordP()->Get(2).AsAddress();
            void **arg = *(void***)args->WordP()->Get(3).AsAddress();
            // We release the ML memory across the call so a GC can occur
            // even if this thread is blocked in the C code.
            processes->ThreadReleaseMLMemory(taskData);
            ffi_call(cif, FFI_FN(f), res, arg);
            processes->ThreadUseMLMemory(taskData);
            return taskData->saveVec.push(TAGGED(0));
        }

    case 57: // Create a callback.
        {
#ifdef INTERPRETED
            raise_exception_string(taskData, EXC_foreign, "Callbacks are not implemented in the byte code interpreter");
#endif
            Handle mlFunction = taskData->saveVec.push(args->WordP()->Get(0));
            ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(1).AsAddress();

            void *resultFunction;
            // Allocate the memory.  resultFunction is set to the executable address in or related to
            // the memory.
            ffi_closure *closure = (ffi_closure *)ffi_closure_alloc(sizeof(ffi_closure), &resultFunction);
            if (closure == 0)
                raise_exception_string(taskData, EXC_foreign, "Callbacks not implemented or insufficient memory");

            PLocker pLocker(&callbackTableLock);
            // Find a free entry in the table if there is one.
            unsigned entryNo = 0;
            while (entryNo < callBackEntries && callbackTable[entryNo].closureSpace != 0) entryNo++;
            if (entryNo == callBackEntries)
            {
                // Need to grow the table.
                struct _cbStructEntry *newTable =
                    (struct _cbStructEntry*)realloc(callbackTable, (callBackEntries+1)*sizeof(struct _cbStructEntry));
                if (newTable == 0)
                    raise_exception_string(taskData, EXC_foreign, "Unable to allocate memory for callback table");
                callbackTable = newTable;
                callBackEntries++;
            }

            callbackTable[entryNo].mlFunction = mlFunction->Word();
            callbackTable[entryNo].closureSpace = closure;
            callbackTable[entryNo].resultFunction = resultFunction;

            if (ffi_prep_closure_loc(closure, cif, callbackEntryPt, (void*)((uintptr_t)entryNo), resultFunction) != FFI_OK)
                raise_exception_string(taskData, EXC_foreign,"libffi error: ffi_prep_closure_loc failed");
            return toSysWord(taskData, resultFunction);
        }

    case 58: // Free an existing callback.
        {
            // The address returned from call 57 above is the executable address that can
            // be passed as a callback function.  The writable memory address returned
            // as the result of ffi_closure_alloc may or may not be the same.  To be safe
            // we need to search the table.
            void *resFun = *(void**)args->Word().AsAddress();
            PLocker pLocker(&callbackTableLock);
            unsigned i = 0;
            while (i < callBackEntries)
            {
                if (callbackTable[i].resultFunction == resFun)
                {
                    ffi_closure_free(callbackTable[i].closureSpace);
                    callbackTable[i].closureSpace = 0;
                    callbackTable[i].resultFunction = 0;
                    callbackTable[i].mlFunction = TAGGED(0); // Release the ML function
                    return taskData->saveVec.push(TAGGED(0));
                }
            }
            raise_exception_string(taskData, EXC_foreign, "Invalid callback entry");
        }

    default:
        {
            char msg[100];
            sprintf(msg, "Unknown ffi function: %d", c);
            raise_exception_string(taskData, EXC_foreign, msg);
            return 0;
        }
    }
}
Esempio n. 5
0
static Handle toSysWord(TaskData *taskData, void *p)
{
    return toSysWord(taskData, (uintptr_t)p);
}