/** * toi_end_bio - bio completion function. * @bio: bio that has completed. * @err: Error value. Yes, like end_swap_bio_read, we ignore it. * * Function called by the block driver from interrupt context when I/O is * completed. If we were writing the page, we want to free it and will have * set bio->bi_private to the parameter we should use in telling the page * allocation accounting code what the page was allocated for. If we're * reading the page, it will be in the singly linked list made from * page->private pointers. **/ static void toi_end_bio(struct bio *bio, int err) { struct page *page = bio->bi_io_vec[0].bv_page; /* hib_log("err %d flags 0x%08x\n", err, bio->bi_flags); */ if (!err) BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); unlock_page(page); bio_put(bio); if (waiting_on == page) waiting_on = NULL; put_page(page); if (bio->bi_private) toi__free_page((int)((unsigned long)bio->bi_private), page); bio_put(bio); atomic_dec(&toi_io_in_progress); atomic_inc(&toi_io_done); wake_up(&num_in_progress_wait); }
static void free_conflicting_pages(void) { while (first_conflicting_page) { struct page *next = *((struct page **) kmap(first_conflicting_page)); kunmap(first_conflicting_page); toi__free_page(29, first_conflicting_page); first_conflicting_page = next; } }
/** * free_pbe_list - free page backup entries used by the atomic copy code. * @list: List to free. * @highmem: Whether the list is in highmem. * * Normally, this function isn't used. If, however, we need to abort before * doing the atomic copy, we use this to free the pbes previously allocated. **/ static void free_pbe_list(struct pbe **list, int highmem) { while (*list) { int i; struct pbe *free_pbe, *next_page = NULL; struct page *page; if (highmem) { page = (struct page *) *list; free_pbe = (struct pbe *) kmap(page); } else { page = virt_to_page(*list); free_pbe = *list; } for (i = 0; i < PBES_PER_PAGE; i++) { if (!free_pbe) break; if (highmem) toi__free_page(29, free_pbe->address); else toi_free_page(29, (unsigned long) free_pbe->address); free_pbe = free_pbe->next; } if (highmem) { if (free_pbe) next_page = free_pbe; kunmap(page); } else { if (free_pbe) next_page = free_pbe; } toi__free_page(29, page); *list = (struct pbe *) next_page; }; }
/** * get_pageset1_load_addresses - generate pbes for conflicting pages * * We check here that pagedir & pages it points to won't collide * with pages where we're going to restore from the loaded pages * later. * * Returns: * Zero on success, one if couldn't find enough pages (shouldn't * happen). **/ int toi_get_pageset1_load_addresses(void) { int pfn, highallocd = 0, lowallocd = 0; int low_needed = pagedir1.size - get_highmem_size(pagedir1); int high_needed = get_highmem_size(pagedir1); int low_pages_for_highmem = 0; gfp_t flags = GFP_ATOMIC | __GFP_NOWARN | __GFP_HIGHMEM; struct page *page, *high_pbe_page = NULL, *last_high_pbe_page = NULL, *low_pbe_page, *last_low_pbe_page = NULL; struct pbe **last_high_pbe_ptr = &restore_highmem_pblist, *this_high_pbe = NULL; int orig_low_pfn, orig_high_pfn; int high_pbes_done = 0, low_pbes_done = 0; int low_direct = 0, high_direct = 0, result = 0, i; int high_page = 1, high_offset = 0, low_page = 1, low_offset = 0; memory_bm_set_iterators(pageset1_map, 3); memory_bm_position_reset(pageset1_map); memory_bm_set_iterators(pageset1_copy_map, 2); memory_bm_position_reset(pageset1_copy_map); last_low_pbe_ptr = &restore_pblist; /* First, allocate pages for the start of our pbe lists. */ if (high_needed) { high_pbe_page = ___toi_get_nonconflicting_page(1); if (!high_pbe_page) { result = -ENOMEM; goto out; } this_high_pbe = (struct pbe *) kmap(high_pbe_page); memset(this_high_pbe, 0, PAGE_SIZE); } low_pbe_page = ___toi_get_nonconflicting_page(0); if (!low_pbe_page) { result = -ENOMEM; goto out; } this_low_pbe = (struct pbe *) page_address(low_pbe_page); /* * Next, allocate the number of pages we need. */ i = low_needed + high_needed; do { int is_high; if (i == low_needed) flags &= ~__GFP_HIGHMEM; page = toi_alloc_page(30, flags); BUG_ON(!page); SetPagePageset1Copy(page); is_high = PageHighMem(page); if (PagePageset1(page)) { if (is_high) high_direct++; else low_direct++; } else { if (is_high) highallocd++; else lowallocd++; } } while (--i); high_needed -= high_direct; low_needed -= low_direct; /* * Do we need to use some lowmem pages for the copies of highmem * pages? */ if (high_needed > highallocd) { low_pages_for_highmem = high_needed - highallocd; high_needed -= low_pages_for_highmem; low_needed += low_pages_for_highmem; } /* * Now generate our pbes (which will be used for the atomic restore), * and free unneeded pages. */ memory_bm_position_reset(pageset1_copy_map); for (pfn = memory_bm_next_pfn_index(pageset1_copy_map, 1); pfn != BM_END_OF_MAP; pfn = memory_bm_next_pfn_index(pageset1_copy_map, 1)) { int is_high; page = pfn_to_page(pfn); is_high = PageHighMem(page); if (PagePageset1(page)) continue; /* Nope. We're going to use this page. Add a pbe. */ if (is_high || low_pages_for_highmem) { struct page *orig_page; high_pbes_done++; if (!is_high) low_pages_for_highmem--; do { orig_high_pfn = memory_bm_next_pfn_index(pageset1_map, 1); BUG_ON(orig_high_pfn == BM_END_OF_MAP); orig_page = pfn_to_page(orig_high_pfn); } while (!PageHighMem(orig_page) || PagePageset1Copy(orig_page)); this_high_pbe->orig_address = orig_page; this_high_pbe->address = page; this_high_pbe->next = NULL; toi_message(TOI_PAGEDIR, TOI_VERBOSE, 0, "High pbe %d/%d: %p(%d)=>%p", high_page, high_offset, page, orig_high_pfn, orig_page); if (last_high_pbe_page != high_pbe_page) { *last_high_pbe_ptr = (struct pbe *) high_pbe_page; if (last_high_pbe_page) { kunmap(last_high_pbe_page); high_page++; high_offset = 0; } else high_offset++; last_high_pbe_page = high_pbe_page; } else { *last_high_pbe_ptr = this_high_pbe; high_offset++; } last_high_pbe_ptr = &this_high_pbe->next; this_high_pbe = get_next_pbe(&high_pbe_page, this_high_pbe, 1); if (IS_ERR(this_high_pbe)) { printk(KERN_INFO "This high pbe is an error.\n"); return -ENOMEM; } } else { struct page *orig_page; low_pbes_done++; do { orig_low_pfn = memory_bm_next_pfn_index(pageset1_map, 2); BUG_ON(orig_low_pfn == BM_END_OF_MAP); orig_page = pfn_to_page(orig_low_pfn); } while (PageHighMem(orig_page) || PagePageset1Copy(orig_page)); this_low_pbe->orig_address = page_address(orig_page); this_low_pbe->address = page_address(page); this_low_pbe->next = NULL; toi_message(TOI_PAGEDIR, TOI_VERBOSE, 0, "Low pbe %d/%d: %p(%d)=>%p", low_page, low_offset, this_low_pbe->orig_address, orig_low_pfn, this_low_pbe->address); *last_low_pbe_ptr = this_low_pbe; last_low_pbe_ptr = &this_low_pbe->next; this_low_pbe = get_next_pbe(&low_pbe_page, this_low_pbe, 0); if (low_pbe_page != last_low_pbe_page) { if (last_low_pbe_page) { low_page++; low_offset = 0; } last_low_pbe_page = low_pbe_page; } else low_offset++; if (IS_ERR(this_low_pbe)) { printk(KERN_INFO "this_low_pbe is an error.\n"); return -ENOMEM; } } } if (high_pbe_page) kunmap(high_pbe_page); if (last_high_pbe_page != high_pbe_page) { if (last_high_pbe_page) kunmap(last_high_pbe_page); toi__free_page(29, high_pbe_page); } free_conflicting_pages(); out: memory_bm_set_iterators(pageset1_map, 1); memory_bm_set_iterators(pageset1_copy_map, 1); return result; }