int
main()
{
    //dubug uart init
    dbg_setup_uart();
    clock_init();
		rtimer_init();
	
    //process init first
    process_init();

    uart1_set_input(serial_line_input_byte);
    serial_line_init();

    process_start(&etimer_process, NULL);

    /* with keil, can't use the AUTOSTART_PROCESSES to add the exmaple or it will be error
     * So in this project, start the process manual.
     */
#ifdef WITH_LED_BLINK
    process_start(&blink_process, NULL);
#endif
#ifdef WITH_CONTIKI_SHELL
    process_start(&stm32_shell_process, NULL);
#endif
#ifdef WITH_RTIMER_TEST
		process_start(&rtimer_ex_process, NULL);
#endif
    while(1)
    {
        do {}
        while(process_run()>0);
        idle_count++;
    }
}
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(start_app, ev, data)
{
  PROCESS_BEGIN();
  static int is_coordinator = 0;

  memset(rx_buf, '\0', sizeof(rx_buf));
  /* Define process that handles data */
  process_start(&rx_data_process ,NULL);
  /* Initialise UART1 */
  uart1_init(UART1_BAUD_RATE); 
  /* Callback received byte */
  uart1_set_input(handleRxChar);

  /* Start network stack */
  if(is_coordinator) {
    uip_ipaddr_t prefix;
    uip_ip6addr(&prefix, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);
    rpl_tools_init(&prefix);
  } else {
    rpl_tools_init(NULL);
  }
  printf("Starting RPL node\n");
  
  rest_init_engine();
  rest_activate_resource(&resource_coap_rx_uart1, "UART1-RX");
  rest_activate_resource(&resource_coap_tx_uart1, "UART1-TX");

  PROCESS_END();
}
Esempio n. 3
0
PROCESS_THREAD(moteread_process, ev, data)
{
	
	PROCESS_BEGIN();
	uart1_init(BAUD2UBR(115200)); //set the baud rate as necessary
	uart1_set_input(uart_rx_callback); //set the callback function
	PROCESS_END();
}
Esempio n. 4
0
/*---------------------------------------------------------------------------*/
void
collect_common_net_init(void)
{
  collect_common_set_send_active(1);
  uart1_set_input(serial_line_input_byte);
  serial_line_init();

  PRINTF("I am sink!\r\n");
}
Esempio n. 5
0
/*---------------------------------------------------------------------------*/
static int
init(void)
{
	uart1_init(0);
	uart1_set_input(xbee_input_handler);
	ringbuf_init(&rxbuf, rxbuf_data, sizeof(rxbuf_data));
	process_start(&xbee_process, NULL);
	return 0;
}
Esempio n. 6
0
/*--------------------------------------------------------------------------*/
void slip_arch_init(unsigned long ubr)
{
	/* We do not initialize the UART [console] 
	 * connection; we expect it to be already
	 * started in contiki-main.c. So, here we
	 * only register the callback function for
	 * receive.
	 */
	uart1_set_input(slip_input_byte);
}
Esempio n. 7
0
/*---------------------------------------------------------------------------*/
void
collect_common_net_init(void)
{
#if CONTIKI_TARGET_Z1
  uart0_set_input(serial_line_input_byte);
#else
  uart1_set_input(serial_line_input_byte);
#endif
  serial_line_init();
}
Esempio n. 8
0
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(hello_world_process, ev, data)
{
  PROCESS_BEGIN();
  
	uart1_init(BAUD2UBR(115200)); //set the baud rate as necessary
	uart1_set_input(uart_rx_callback); //set the callback function
	
	//printf("dct\n");
    
    //printf(">");
  PROCESS_END();
}
Esempio n. 9
0
/*---------------------------------------------------------------------------*/
void
collect_common_net_init(void)
{
#if CONTIKI_TARGET_Z1
  uart0_set_input(serial_line_input_byte);
#else
  uart1_set_input(serial_line_input_byte);
#endif
  serial_line_init();

  PRINTF("I am sink!\n");
  printf("Energy: %d\n", ENERGEST_CONF_ON);
}
Esempio n. 10
0
/*---------------------------------------------------------------------------*/
void
collect_common_net_init(void)
{
#if CONTIKI_TARGET_Z1
  uart0_set_input(serial_line_input_byte);
#else
  uart1_set_input(serial_line_input_byte);
#endif
  serial_line_init();

  PRINTF("I am sink!\n");
  //NETSTACK_RDC.off(0);
  //NETSTACK_RDC.init();
}
Esempio n. 11
0
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(sky_shell_process, ev, data)
{
  PROCESS_BEGIN();

  /* WITH_UIP=1 assumes incoming SLIP serial data.
   * We override this assumption by restoring default serial input handler. */
  uart1_set_input(serial_line_input_byte);
  serial_line_init();

  serial_shell_init();

  shell_file_init();
  shell_wget_init();
  shell_text_init();

  PROCESS_END();
}
Esempio n. 12
0
PROCESS_THREAD(demo_6lbr_process, ev, data)
{
  PROCESS_BEGIN();

#if SHELL
  uart1_set_input(serial_line_input_byte);
  serial_line_init();

  serial_shell_init();
  shell_ping_init();
  shell_6lbr_init();
#else
  start_apps();
#endif

  PROCESS_END();
}
/*---------------------------------------------------------------------------*/
int
main(void)
{

  /* Hardware initialization */
  bus_init();

  leds_init();
  fade(LEDS_GREEN);

  uart1_init(115200);
  uart1_set_input(serial_line_input_byte);

  /* initialize process manager. */
  process_init();

  serial_line_init();

  printf("\n" CONTIKI_VERSION_STRING " started\n");
  printf("model: " SENSINODE_MODEL "\n\n");

  /* initialize the radio driver */

  cc2430_rf_init();
  rime_init(sicslowmac_init(&cc2430_rf_driver));
  set_rime_addr();

  /* start services */
  process_start(&etimer_process, NULL);

  fade(LEDS_RED);

  autostart_start(autostart_processes);

  while(1) {
    process_run();
    etimer_request_poll();
  }
}
Esempio n. 14
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initalize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  /* Led initialization */
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n", boardDescription->name); 
  boardPrintStringDescription();
  PRINTF("\r\n"); 


  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  /* rtimer and ctimer should be initialized before radio duty cycling
     layers */
  rtimer_init();
  /* etimer_process should be initialized before ctimer */
  process_start(&etimer_process, NULL);  
  ctimer_init();

  netstack_init();

  set_rime_addr();

  printf("%s %s, channel check rate %lu Hz\n",
         NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                                  NETSTACK_RDC.channel_check_interval()));
  printf("802.15.4 PAN ID 0x%x, EUI-%d:",
      IEEE802154_CONF_PANID, UIP_CONF_LL_802154?64:16);
  uip_debug_lladdr_print(&linkaddr_node_addr);
  printf(", radio channel %u\n", RF_CHANNEL);

  procinit_init();

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  /* Set the Clear Channel Assessment (CCA) threshold of the
     radio. The CCA threshold is used both for sending packets and for
     waking up ContikiMAC nodes. If the CCA threshold is too high,
     ContikiMAC will not wake up from neighbor transmissions. If the
     CCA threshold is too low, transmissions will be too restrictive
     and no packets will be sent. DEFAULT_RADIO_CCA_THRESHOLD is
     defined in this file. */
  ST_RadioSetEdCcaThreshold(DEFAULT_RADIO_CCA_THRESHOLD);
  
  autostart_start(autostart_processes);
#if UIP_CONF_IPV6
  printf("Tentative link-local IPv6 address ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }


  if(!UIP_CONF_IPV6_RPL) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    printf("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }
#endif /* UIP_CONF_IPV6 */
  
  watchdog_start();
  
  while(1) {
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    /* watchdog_stop(); */
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    /* watchdog_start(); */
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}
Esempio n. 15
0
/*--------------------------------------------------------------------------*/
int
main(int argc, char **argv)
{
  /*
   * Initalize hardware.
   */
  msp430_cpu_init();
  clock_init();
  leds_init();

  leds_on(LEDS_RED);

  uart1_init(BAUD2UBR(115200)); /* Must come before first printf */
#if NETSTACK_CONF_WITH_IPV4
  slip_arch_init(BAUD2UBR(115200));
#endif /* NETSTACK_CONF_WITH_IPV4 */

  leds_on(LEDS_GREEN);
  /* xmem_init(); */
  
  rtimer_init();

  lcd_init();

  PRINTF(CONTIKI_VERSION_STRING "\n");
  /*
   * Hardware initialization done!
   */
  
  leds_on(LEDS_RED);
  /* Restore node id if such has been stored in external mem */

  //  node_id_restore();
#ifdef NODEID
  node_id = NODEID;

#ifdef BURN_NODEID
  flash_setup();
  flash_clear(0x1800);
  flash_write(0x1800, node_id);
  flash_done();
#endif /* BURN_NODEID */
#endif /* NODE_ID */

  if(node_id == 0) {
    node_id = *((unsigned short *)0x1800);
  }
  memset(node_mac, 0, sizeof(node_mac));
  node_mac[6] = node_id >> 8;
  node_mac[7] = node_id & 0xff;

  /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */
#ifdef MAC_1
  {
    uint8_t ieee[] = { MAC_1, MAC_2, MAC_3, MAC_4, MAC_5, MAC_6, MAC_7, MAC_8 };
    memcpy(node_mac, ieee, sizeof(uip_lladdr.addr));
  }
#endif

   /*
   * Initialize Contiki and our processes.
   */
  process_init();
  process_start(&etimer_process, NULL);

  ctimer_init();

  set_rime_addr();

  cc2420_init();

  {
    uint8_t longaddr[8];
    uint16_t shortaddr;

    shortaddr = (linkaddr_node_addr.u8[0] << 8) +
      linkaddr_node_addr.u8[1];
    memset(longaddr, 0, sizeof(longaddr));
    linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr);
    printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
           longaddr[0], longaddr[1], longaddr[2], longaddr[3],
           longaddr[4], longaddr[5], longaddr[6], longaddr[7]);

    cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
  }

  leds_off(LEDS_ALL);

  if(node_id > 0) {
    PRINTF("Node id %u.\n", node_id);
  } else {
    PRINTF("Node id not set.\n");
  }

#if NETSTACK_CONF_WITH_IPV6
  memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr));
  /* Setup nullmac-like MAC for 802.15.4 */

  queuebuf_init();

  NETSTACK_RDC.init();
  NETSTACK_MAC.init();
  NETSTACK_NETWORK.init();

  printf("%s %lu %u\n",
         NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                         NETSTACK_RDC.channel_check_interval()),
         CC2420_CONF_CHANNEL);

  process_start(&tcpip_process, NULL);

  printf("IPv6 ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }

  if(!UIP_CONF_IPV6_RPL) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, UIP_DS6_DEFAULT_PREFIX, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    printf("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }

#else /* NETSTACK_CONF_WITH_IPV6 */

  NETSTACK_RDC.init();
  NETSTACK_MAC.init();
  NETSTACK_NETWORK.init();

  printf("%s %lu %u\n",
         NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1:
                         NETSTACK_RDC.channel_check_interval()),
         CC2420_CONF_CHANNEL);
#endif /* NETSTACK_CONF_WITH_IPV6 */

#if !NETSTACK_CONF_WITH_IPV6
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif

#if TIMESYNCH_CONF_ENABLED
  timesynch_init();
  timesynch_set_authority_level(linkaddr_node_addr.u8[0]);
#endif /* TIMESYNCH_CONF_ENABLED */


  /*  process_start(&sensors_process, NULL);
      SENSORS_ACTIVATE(button_sensor);*/

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  print_processes(autostart_processes);
  autostart_start(autostart_processes);

  duty_cycle_scroller_start(CLOCK_SECOND * 2);

  /*
   * This is the scheduler loop.
   */
  watchdog_start();
  watchdog_stop(); /* Stop the wdt... */
  while(1) {
    int r;
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);

    /*
     * Idle processing.
     */
    int s = splhigh();          /* Disable interrupts. */
    /* uart1_active is for avoiding LPM3 when still sending or receiving */
    if(process_nevents() != 0 || uart1_active()) {
      splx(s);                  /* Re-enable interrupts. */
    } else {
      static unsigned long irq_energest = 0;

      /* Re-enable interrupts and go to sleep atomically. */
      ENERGEST_SWITCH(ENERGEST_TYPE_CPU, ENERGEST_TYPE_LPM);
      /* We only want to measure the processing done in IRQs when we
         are asleep, so we discard the processing time done when we
         were awake. */
      energest_type_set(ENERGEST_TYPE_IRQ, irq_energest);
      watchdog_stop();
      _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This
                                              statement will block
                                              until the CPU is
                                              woken up by an
                                              interrupt that sets
                                              the wake up flag. */

      /* We get the current processing time for interrupts that was
         done during the LPM and store it for next time around.  */
      dint();
      irq_energest = energest_type_time(ENERGEST_TYPE_IRQ);
      eint();
      watchdog_start();
      ENERGEST_SWITCH(ENERGEST_TYPE_LPM, ENERGEST_TYPE_CPU);
    }
  }
}
Esempio n. 16
0
PROCESS_THREAD(checkpoint_serial_process, ev, data)
{
  static int set_fd = -1;
  static int set_count = -1;

  PROCESS_BEGIN();

  /* Note: 'cp', 'rb', and 'mt' commands are intercepted */
  PROCESS_PAUSE();
  uart1_set_input(serial_input_byte_intercept);

  /* Format Coffee? */
  PRINTF("Formatting Coffee\n");
  cfs_coffee_format();
  PRINTF("Formatting Coffee... done!\n");

  while(1) {
    PROCESS_WAIT_EVENT_UNTIL(ev == serial_line_event_message && data != NULL);

    if(strcmp("set", data) == 0) {
      /* TODO Handle set command */
      /* Open file */
      cfs_remove("cp");
      cfs_coffee_reserve("cp", checkpoint_arch_size());
      set_fd = cfs_open("cp", CFS_WRITE);
      set_count = 0;
      if(set_fd < 0) {
        printf("SET:FSBUSY\n");
      } else {
        printf("SET:LINE\n");
      }
    } else if(set_fd >= 0 && strcmp("set:done", data) == 0) {
        cfs_close(set_fd);
        set_fd = -1;
        if(set_count == 9862) {
          printf("SET:DONE\n");
        } else {
          printf("SET:WRONGSIZE\n");
        }
    } else if(set_fd >= 0) {
      /* We are ready for another line */
      printf("SET:LINE\n");
      /* Set command: parse hex data */
      int len = strlen((char*)data);
      if(len > 16 || (len%2)!=0) {
        printf("WARN: bad set data: %s\n", (char*)data);
      } else {
        int i;
        for (i=0; i < len; i+=2) {
          uint8_t b =
            (hex_decode_char(((char*)data)[i]) << 4) +
            (hex_decode_char(((char*)data)[i+1]));

          PRINTF("Parsing set command: writing to CFS: %02x\n", b);
          write_byte(set_fd, b); /* TODO Check return value */
          set_count++;
        }
      }
    } else if(strcmp("", data) == 0 ||
        strcmp("cp", data) == 0 ||
        strcmp("rb", data) == 0 ||
        strcmp("mt", data) == 0) {
      /* ignore commands: handled by interrupt */
    } else if(strcmp("ping", data) == 0) {
      nr_pongs++;
      printf("pong %u\n", nr_pongs);
    } else if(strcmp("get", data) == 0) {
      handle_get_command();
    } else {
      printf("WARN: Unknown command: '%s'\n", (char*)data);
    }
  }

  PROCESS_END();
}
/**
 * \brief Main routine for the cc2538dk platform
 */
int
main(void)
{
  nvic_init();
  sys_ctrl_init();
  clock_init();
  dint();
  /*Init Watchdog*/
  watchdog_init();//Need to check the watchdog on 123gxl

  rtimer_init();
  lpm_init();  
  gpio_init();
  ioc_init();

  leds_init();
  fade(LEDS_YELLOW);
  button_sensor_init();

  /*
   * Character I/O Initialisation.
   * When the UART receives a character it will call serial_line_input_byte to
   * notify the core. The same applies for the USB driver.
   *
   * If slip-arch is also linked in afterwards (e.g. if we are a border router)
   * it will overwrite one of the two peripheral input callbacks. Characters
   * received over the relevant peripheral will be handled by
   * slip_input_byte instead
   */
#if UART_CONF_ENABLE
  uart_init(0);
  uart_init(1);
  uart_set_input(SERIAL_LINE_CONF_UART, serial_line_input_byte);
#endif

#if USB_SERIAL_CONF_ENABLE
  usb_serial_init();
  usb_serial_set_input(serial_line_input_byte);
#endif

  serial_line_init();

  /*Enable EA*/
  eint();
  INTERRUPTS_ENABLE();
  fade(LEDS_GREEN);
  PRINTF("=================================\r\n");
  PUTS(CONTIKI_VERSION_STRING);
  PRINTF("======================\r\n");  
  PRINTF("\r\n");
  PUTS(BOARD_STRING);
  PRINTF("\r\n");

#ifdef NODEID
  node_id = NODEID;
#ifdef BURN_NODEID
  node_id_burn(node_id);
  node_id_restore(); /* also configures node_mac[] */
#endif /* BURN_NODEID */
#else
  node_id_restore(); /* also configures node_mac[] */
#endif /* NODE_ID */

  /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */
#ifdef MAC_1
  {
    uint8_t ieee[] = { MAC_1, MAC_2, MAC_3, MAC_4, MAC_5, MAC_6, MAC_7, MAC_8 };
    memcpy(node_mac, ieee, sizeof(uip_lladdr.addr));
  }
#endif

  /*
   * Initialize Contiki and our processes.
   */
  process_init();
  process_start(&sensors_process, NULL);
  button_sensor_init();

  process_start(&etimer_process, NULL);

  ctimer_init();

  set_rime_addr();
  printf("finish addr seting\r\n");

  /* Initialise the H/W RNG engine. */
  random_init(0);

  udma_init();

  if(node_id > 0) {
    printf("Node id %u.\r\n", node_id);
  } else {
    printf("Node id not set.\r\n");
  }

#if WITH_UIP6
  memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr));
  /* Setup nullmac-like MAC for 802.15.4 */

  queuebuf_init();

  netstack_init();
  PRINTF("CC2538 IEEE802154 PANID %d\r\n", IEEE802154_PANID);  
  cc2538_rf_set_addr(IEEE802154_PANID);

  printf("%s/%s %lu %u\r\n",
         NETSTACK_RDC.name,
         NETSTACK_MAC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                         NETSTACK_RDC.channel_check_interval()),
         RF_CHANNEL);

  process_start(&tcpip_process, NULL);

  printf("IPv6 ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\r\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }

  if(1) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, 0xfc00, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    printf("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\r\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }

#else /* WITH_UIP6 */

  netstack_init();
  PRINTF("CC2538 IEEE802154 PANID %d\r\n", IEEE802154_PANID);  
  cc2538_rf_set_addr(IEEE802154_PANID);
  
  printf("%s %lu %u\r\n",
         NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1:
                         NETSTACK_RDC.channel_check_interval()),
         RF_CHANNEL);
#endif /* WITH_UIP6 */

#if !WITH_UIP6
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif

#ifdef NETSTACK_AES_H
#ifndef NETSTACK_AES_KEY
#error Please define NETSTACK_AES_KEY!
#endif /* NETSTACK_AES_KEY */
  {
    const uint8_t key[] = NETSTACK_AES_KEY;
    netstack_aes_set_key(key);
  }
  /*printf("AES encryption is enabled: '%s'\n", NETSTACK_AES_KEY);*/
  printf("AES encryption is enabled\r\n");
#else /* NETSTACK_AES_H */
  printf("Warning: AES encryption is disabled\r\n");
#endif /* NETSTACK_AES_H */

#if TIMESYNCH_CONF_ENABLED
  timesynch_init();
  timesynch_set_authority_level(rimeaddr_node_addr.u8[0]);
#endif /* TIMESYNCH_CONF_ENABLED */  

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  simple_rpl_init();
  /*Watch dog configuration*/
  watchdog_periodic();
  watchdog_start();

  autostart_start(autostart_processes);

  //duty_cycle_scroller_start(CLOCK_SECOND * 2);
#if IP64_CONF_UIP_FALLBACK_INTERFACE_SLIP && WITH_SLIP
  /* Start the SLIP */
  printf("Initiating SLIP: my IP is 172.16.0.2...\r\n");
  slip_arch_init(0);
  {
    uip_ip4addr_t ipv4addr, netmask;

    uip_ipaddr(&ipv4addr, 172, 16, 0, 2);
    uip_ipaddr(&netmask, 255, 255, 255, 0);
    ip64_set_ipv4_address(&ipv4addr, &netmask);
  }
  uart1_set_input(slip_input_byte);
#endif /* IP64_CONF_UIP_FALLBACK_INTERFACE_SLIP */

  fade(LEDS_ORANGE);

  /*
   * This is the scheduler loop.
   */
  while(1) {
    uint8_t r;
    do {
      /* Reset watchdog and handle polls and events */
      // printf("reset watchdog\r\n");
      watchdog_periodic();

      r = process_run();
    } while(r > 0);

    /* We have serviced all pending events. Enter a Low-Power mode. */
    lpm_enter();
  }
}
/*---------------------------------------------------------------------------*/
int
main(void)
{

  /* Hardware initialization */
  bus_init();//ʱÖÓ³õʼ»¯
  rtimer_init();//¼ÆʱÆ÷³õʼ»¯

  /* model-specific h/w init. */
  io_port_init();

  /* Init LEDs here */
  leds_init();//LED³õʼ»¯
  /*LEDS_GREEN indicate LEDs Init finished*/
  fade(LEDS_GREEN);

  /* initialize process manager. */
  process_init();//½ø³Ì¹ÜÀí³õʼ»¯

  /* Init UART0
   * Based on the EJOY MCU CC2430 Circuit Design
   *  */
  uart0_init();//UART0´®¿Ú³õʼ»¯

#if DMA_ON
  dma_init();//DMA³õʼ»¯
#endif

#if SLIP_ARCH_CONF_ENABLE
  /* On cc2430, the argument is not used */
  slip_arch_init(0);//SLIP³õʼ»¯
#else
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif

  PUTSTRING("##########################################\n");
  putstring(CONTIKI_VERSION_STRING "\n");
//  putstring(SENSINODE_MODEL " (CC24");
  puthex(((CHIPID >> 3) | 0x20));
  putstring("-" FLASH_SIZE ")\n");

#if STARTUP_VERBOSE
#ifdef HAVE_SDCC_BANKING
  PUTSTRING("  With Banking.\n");
#endif /* HAVE_SDCC_BANKING */
#ifdef SDCC_MODEL_LARGE
  PUTSTRING("  --model-large\n");
#endif /* SDCC_MODEL_LARGE */
#ifdef SDCC_MODEL_HUGE
  PUTSTRING("  --model-huge\n");
#endif /* SDCC_MODEL_HUGE */
#ifdef SDCC_STACK_AUTO
  PUTSTRING("  --stack-auto\n");
#endif /* SDCC_STACK_AUTO */

  PUTCHAR('\n');

  PUTSTRING(" Net: ");
  PUTSTRING(NETSTACK_NETWORK.name);
  PUTCHAR('\n');
  PUTSTRING(" MAC: ");
  PUTSTRING(NETSTACK_MAC.name);
  PUTCHAR('\n');
  PUTSTRING(" RDC: ");
  PUTSTRING(NETSTACK_RDC.name);
  PUTCHAR('\n');

  PUTSTRING("##########################################\n");
#endif

  watchdog_init();//¿´ÃŹ·³õʼ»¯

  /* Initialise the cc2430 RNG engine. */
  random_init(0);//Ëæ»úÊýÉú³ÉÆ÷³õʼ»¯

  /* start services */
  process_start(&etimer_process, NULL);//
  ctimer_init();//ctimer³õʼ»¯

  /* initialize the netstack */
  netstack_init();//ÍøÂçµ×²ãÕ»³õʼ»¯
  set_rime_addr();//rimeµØÖ·ÉèÖÃ

//there is no sensor for us maintenance
#if BUTTON_SENSOR_ON || ADC_SENSOR_ON
  process_start(&sensors_process, NULL);
  sensinode_sensors_activate();
#endif

//IPV6,YES!
#if UIP_CONF_IPV6
  memcpy(&uip_lladdr.addr, &rimeaddr_node_addr, sizeof(uip_lladdr.addr));
  queuebuf_init();
  process_start(&tcpip_process, NULL);
//DISCO
#if DISCO_ENABLED
  process_start(&disco_process, NULL);
#endif /* DISCO_ENABLED */
//VIZTOOL
#if VIZTOOL_CONF_ON
  process_start(&viztool_process, NULL);
#endif

#if (!UIP_CONF_IPV6_RPL)
  {
    uip_ipaddr_t ipaddr;
    uip_ip6addr(&ipaddr, 0x2001, 0x630, 0x301, 0x6453, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
  }
#endif /* UIP_CONF_IPV6_RPL */
#endif /* UIP_CONF_IPV6 */

  /*
   * Acknowledge the UART1 RX interrupt
   * now that we're sure we are ready to process it
   *
   * We don't need it. by MW
   */
//  model_uart_intr_en();

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  fade(LEDS_RED);

#if BATMON_CONF_ON
  process_start(&batmon_process, NULL);
#endif

  autostart_start(autostart_processes);

  watchdog_start();

  while(1) {
    do {
      /* Reset watchdog and handle polls and events */
      watchdog_periodic();

      /**/
#if !CLOCK_CONF_ACCURATE
      if(sleep_flag) {
        if(etimer_pending() &&
            (etimer_next_expiration_time() - count - 1) > MAX_TICKS) { /*core/sys/etimer.c*/
          etimer_request_poll();
        }
        sleep_flag = 0;
      }
#endif
      r = process_run();
    } while(r > 0);
#if SHORTCUTS_CONF_NETSTACK
    len = NETSTACK_RADIO.pending_packet();
    if(len) {
      packetbuf_clear();
      len = NETSTACK_RADIO.read(packetbuf_dataptr(), PACKETBUF_SIZE);
      if(len > 0) {
        packetbuf_set_datalen(len);
        NETSTACK_RDC.input();
      }
    }
#endif

#if LPM_MODE
#if (LPM_MODE==LPM_MODE_PM2)
    SLEEP &= ~OSC_PD;            /* Make sure both HS OSCs are on */
    while(!(SLEEP & HFRC_STB));  /* Wait for RCOSC to be stable */
    CLKCON |= OSC;               /* Switch to the RCOSC */
    while(!(CLKCON & OSC));      /* Wait till it's happened */
    SLEEP |= OSC_PD;             /* Turn the other one off */
#endif /* LPM_MODE==LPM_MODE_PM2 */

    /*
     * Set MCU IDLE or Drop to PM1. Any interrupt will take us out of LPM
     * Sleep Timer will wake us up in no more than 7.8ms (max idle interval)
     */
    SLEEP = (SLEEP & 0xFC) | (LPM_MODE - 1);

#if (LPM_MODE==LPM_MODE_PM2)
    /*
     * Wait 3 NOPs. Either an interrupt occurred and SLEEP.MODE was cleared or
     * no interrupt occurred and we can safely power down
     */
    __asm
      nop
      nop
      nop
    __endasm;

    if (SLEEP & SLEEP_MODE0) {
#endif /* LPM_MODE==LPM_MODE_PM2 */

      ENERGEST_OFF(ENERGEST_TYPE_CPU);
      ENERGEST_ON(ENERGEST_TYPE_LPM);

      /* We are only interested in IRQ energest while idle or in LPM */
      ENERGEST_IRQ_RESTORE(irq_energest);

      /* Go IDLE or Enter PM1 */
      PCON |= IDLE;

      /* First instruction upon exiting PM1 must be a NOP */
      __asm
        nop
      __endasm;

      /* Remember energest IRQ for next pass */
      ENERGEST_IRQ_SAVE(irq_energest);

      ENERGEST_ON(ENERGEST_TYPE_CPU);
      ENERGEST_OFF(ENERGEST_TYPE_LPM);

#if (LPM_MODE==LPM_MODE_PM2)
      SLEEP &= ~OSC_PD;            /* Make sure both HS OSCs are on */
      while(!(SLEEP & XOSC_STB));  /* Wait for XOSC to be stable */
      CLKCON &= ~OSC;              /* Switch to the XOSC */
      /*
       * On occasion the XOSC is reported stable when in reality it's not.
       * We need to wait for a safeguard of 64us or more before selecting it
       */
      clock_delay(10);
      while(CLKCON & OSC);         /* Wait till it's happened */
    }
#endif /* LPM_MODE==LPM_MODE_PM2 */
#endif /* LPM_MODE */
  }
}
Esempio n. 19
0
/*---------------------------------------------------------------------------*/
#if WITH_TINYOS_AUTO_IDS
uint16_t TOS_NODE_ID = 0x1234; /* non-zero */
uint16_t TOS_LOCAL_ADDRESS = 0x1234; /* non-zero */
#endif /* WITH_TINYOS_AUTO_IDS */
int
main(int argc, char **argv)
{
  /*
   * Initalize hardware.
   */
  msp430_cpu_init();
  clock_init();
  leds_init();
  leds_on(LEDS_RED);


  uart1_init(BAUD2UBR(115200)); /* Must come before first printf */

  leds_on(LEDS_GREEN);
  ds2411_init();

  /* XXX hack: Fix it so that the 802.15.4 MAC address is compatible
     with an Ethernet MAC address - byte 0 (byte 2 in the DS ID)
     cannot be odd. */
  ds2411_id[2] &= 0xfe;

  leds_on(LEDS_BLUE);
  xmem_init();

  leds_off(LEDS_RED);
  rtimer_init();
  /*
   * Hardware initialization done!
   */

  /* Initialize energest first (but after rtimer)
   */
  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);
  
#if WITH_TINYOS_AUTO_IDS
  node_id = TOS_NODE_ID;
#else /* WITH_TINYOS_AUTO_IDS */
  /* Restore node id if such has been stored in external mem */
  node_id_restore();
#endif /* WITH_TINYOS_AUTO_IDS */

  /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */
#ifdef IEEE_802154_MAC_ADDRESS
  {
    uint8_t ieee[] = IEEE_802154_MAC_ADDRESS;
    memcpy(ds2411_id, ieee, sizeof(uip_lladdr.addr));
    ds2411_id[7] = node_id & 0xff;
  }
#endif

  random_init(ds2411_id[0] + node_id);
  
  leds_off(LEDS_BLUE);
  /*
   * Initialize Contiki and our processes.
   */
  process_init();
  process_start(&etimer_process, NULL);

  ctimer_init();

#if NETSTACK_CONF_WITH_IPV4
  slip_arch_init(BAUD2UBR(115200));
#endif /* NETSTACK_CONF_WITH_IPV4 */

  init_platform();

  set_rime_addr();
  
  cc2420_init();
  {
    uint8_t longaddr[8];
    uint16_t shortaddr;
    
    shortaddr = (linkaddr_node_addr.u8[0] << 8) +
      linkaddr_node_addr.u8[1];
    memset(longaddr, 0, sizeof(longaddr));
    linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr);
    PRINTF("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ",
           longaddr[0], longaddr[1], longaddr[2], longaddr[3],
           longaddr[4], longaddr[5], longaddr[6], longaddr[7]);
    
    cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
  }

  PRINTF(CONTIKI_VERSION_STRING " started. ");
  if(node_id > 0) {
    PRINTF("Node id is set to %u.\n", node_id);
  } else {
    PRINTF("Node id is not set.\n");
  }

  /*  PRINTF("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
	 ds2411_id[0], ds2411_id[1], ds2411_id[2], ds2411_id[3],
	 ds2411_id[4], ds2411_id[5], ds2411_id[6], ds2411_id[7]);*/

#if NETSTACK_CONF_WITH_IPV6
  memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr));
  /* Setup nullmac-like MAC for 802.15.4 */
/*   sicslowpan_init(sicslowmac_init(&cc2420_driver)); */
/*   PRINTF(" %s channel %u\n", sicslowmac_driver.name, CC2420_CONF_CCA_THRESH); */

  /* Setup X-MAC for 802.15.4 */
  queuebuf_init();
  NETSTACK_RDC.init();
  NETSTACK_MAC.init();
  NETSTACK_LLSEC.init();
  NETSTACK_NETWORK.init();

  PRINTF("%s %s %s, channel check rate %lu Hz, radio channel %u, CCA threshold %i\n",
         NETSTACK_LLSEC.name, NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                         NETSTACK_RDC.channel_check_interval()),
         CC2420_CONF_CHANNEL,
         CC2420_CONF_CCA_THRESH);
  
  process_start(&tcpip_process, NULL);

#if DEBUG
  PRINTF("Tentative link-local IPv6 address ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      PRINTF("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    PRINTF("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }
#endif /* DEBUG */

  if(!UIP_CONF_IPV6_RPL) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, UIP_DS6_DEFAULT_PREFIX, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    PRINTF("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      PRINTF("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    PRINTF("%02x%02x\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }
#else /* NETSTACK_CONF_WITH_IPV6 */

  NETSTACK_RDC.init();
  NETSTACK_MAC.init();
  NETSTACK_LLSEC.init();
  NETSTACK_NETWORK.init();

  PRINTF("%s %s %s, channel check rate %lu Hz, radio channel %u\n",
         NETSTACK_LLSEC.name, NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1:
                         NETSTACK_RDC.channel_check_interval()),
         CC2420_CONF_CHANNEL);
#endif /* NETSTACK_CONF_WITH_IPV6 */

#if !NETSTACK_CONF_WITH_IPV4 && !NETSTACK_CONF_WITH_IPV6
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif

  leds_off(LEDS_GREEN);

#if TIMESYNCH_CONF_ENABLED
  timesynch_init();
  timesynch_set_authority_level((linkaddr_node_addr.u8[0] << 4) + 16);
#endif /* TIMESYNCH_CONF_ENABLED */

#if NETSTACK_CONF_WITH_IPV4
  process_start(&tcpip_process, NULL);
  process_start(&uip_fw_process, NULL);	/* Start IP output */
  process_start(&slip_process, NULL);

  slip_set_input_callback(set_gateway);

  {
    uip_ipaddr_t hostaddr, netmask;

    uip_init();

    uip_ipaddr(&hostaddr, 172,16,
	       linkaddr_node_addr.u8[0],linkaddr_node_addr.u8[1]);
    uip_ipaddr(&netmask, 255,255,0,0);
    uip_ipaddr_copy(&meshif.ipaddr, &hostaddr);

    uip_sethostaddr(&hostaddr);
    uip_setnetmask(&netmask);
    uip_over_mesh_set_net(&hostaddr, &netmask);
    /*    uip_fw_register(&slipif);*/
    uip_over_mesh_set_gateway_netif(&slipif);
    uip_fw_default(&meshif);
    uip_over_mesh_init(UIP_OVER_MESH_CHANNEL);
    PRINTF("uIP started with IP address %d.%d.%d.%d\n",
	   uip_ipaddr_to_quad(&hostaddr));
  }
#endif /* NETSTACK_CONF_WITH_IPV4 */
  
  watchdog_start();

#if !PROCESS_CONF_NO_PROCESS_NAMES
  print_processes(autostart_processes);
#endif /* !PROCESS_CONF_NO_PROCESS_NAMES */
  autostart_start(autostart_processes);

  /*
   * This is the scheduler loop.
   */
#if DCOSYNCH_CONF_ENABLED
  timer_set(&mgt_timer, DCOSYNCH_PERIOD * CLOCK_SECOND);
#endif

  /*  watchdog_stop();*/
  while(1) {
    int r;
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);

    /*
     * Idle processing.
     */
    int s = splhigh();		/* Disable interrupts. */
    /* uart1_active is for avoiding LPM3 when still sending or receiving */
    if(process_nevents() != 0 || uart1_active()) {
      splx(s);			/* Re-enable interrupts. */
    } else {
      static unsigned long irq_energest = 0;

#if DCOSYNCH_CONF_ENABLED
      /* before going down to sleep possibly do some management */
      if(timer_expired(&mgt_timer)) {
        watchdog_periodic();
	timer_reset(&mgt_timer);
	msp430_sync_dco();
#if CC2420_CONF_SFD_TIMESTAMPS
        cc2420_arch_sfd_init();
#endif /* CC2420_CONF_SFD_TIMESTAMPS */
      }
#endif
      
      /* Re-enable interrupts and go to sleep atomically. */
      ENERGEST_SWITCH(ENERGEST_TYPE_CPU, ENERGEST_TYPE_LPM);
      /* We only want to measure the processing done in IRQs when we
	 are asleep, so we discard the processing time done when we
	 were awake. */
      energest_type_set(ENERGEST_TYPE_IRQ, irq_energest);
      watchdog_stop();
      /* check if the DCO needs to be on - if so - only LPM 1 */
      if (msp430_dco_required) {
	_BIS_SR(GIE | CPUOFF); /* LPM1 sleep for DMA to work!. */
      } else {
	_BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This
						statement will block
						until the CPU is
						woken up by an
						interrupt that sets
						the wake up flag. */
      }
      /* We get the current processing time for interrupts that was
	 done during the LPM and store it for next time around.  */
      dint();
      irq_energest = energest_type_time(ENERGEST_TYPE_IRQ);
      eint();
      watchdog_start();
      ENERGEST_SWITCH(ENERGEST_TYPE_LPM, ENERGEST_TYPE_CPU);
    }
  }

  return 0;
}
Esempio n. 20
0
void
slip_arch_init(unsigned long ubr)
{  
  uart1_set_input(slip_input_byte);  
}
Esempio n. 21
0
/*---------------------------------------------------------------------------*/
int
main(int argc, char **argv)
{
  /*
   * Initalize hardware.
   */
  msp430_cpu_init();
  clock_init();
  leds_init();
  leds_on(LEDS_RED);

  uart1_init(BAUD2UBR(115200)); /* Must come before first printf */
#if WITH_UIP
  slip_arch_init(BAUD2UBR(115200));
#endif /* WITH_UIP */

  leds_on(LEDS_GREEN);
  ds2411_init();

  /* XXX hack: Fix it so that the 802.15.4 MAC address is compatible
     with an Ethernet MAC address - byte 0 (byte 2 in the DS ID)
     cannot be odd. */
  ds2411_id[2] &= 0xfe;
  
  leds_on(LEDS_BLUE);
  xmem_init();

  leds_off(LEDS_RED);
  rtimer_init();
  /*
   * Hardware initialization done!
   */

  
  /* Restore node id if such has been stored in external mem */
  node_id_restore();

  random_init(ds2411_id[0] + node_id);
  
  leds_off(LEDS_BLUE);
  /*
   * Initialize Contiki and our processes.
   */
  process_init();
  process_start(&etimer_process, NULL);
  process_start(&sensors_process, NULL);

  /*
   * Initialize light and humidity/temp sensors.
   */
  sensors_light_init();
  battery_sensor.activate();
  sht11_init();

  ctimer_init();

  cc2420_init();
  cc2420_set_pan_addr(IEEE802154_PANID, 0 /*XXX*/, ds2411_id);
  cc2420_set_channel(RF_CHANNEL);

  printf(CONTIKI_VERSION_STRING " started. ");
  if(node_id > 0) {
    printf("Node id is set to %u.\n", node_id);
  } else {
    printf("Node id is not set.\n");
  }
  set_rime_addr();
  printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
	 ds2411_id[0], ds2411_id[1], ds2411_id[2], ds2411_id[3],
	 ds2411_id[4], ds2411_id[5], ds2411_id[6], ds2411_id[7]);

#if WITH_UIP6
  memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr));
  sicslowpan_init(sicslowmac_init(&cc2420_driver));
  process_start(&tcpip_process, NULL);
  printf(" %s channel %u\n", sicslowmac_driver.name, RF_CHANNEL);
#if UIP_CONF_ROUTER
  rime_init(rime_udp_init(NULL));
  uip_router_register(&rimeroute);
#endif /* UIP_CONF_ROUTER */
#else /* WITH_UIP6 */
  rime_init(MAC_DRIVER.init(&cc2420_driver));
  printf(" %s channel %u\n", rime_mac->name, RF_CHANNEL);
#endif /* WITH_UIP6 */

#if !WITH_UIP && !WITH_UIP6
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif

#if PROFILE_CONF_ON
  profile_init();
#endif /* PROFILE_CONF_ON */

  leds_off(LEDS_GREEN);

#if WITH_FTSP
  ftsp_init();
#endif /* WITH_FTSP */

#if TIMESYNCH_CONF_ENABLED
  timesynch_init();
  timesynch_set_authority_level(rimeaddr_node_addr.u8[0]);
#endif /* TIMESYNCH_CONF_ENABLED */

#if WITH_UIP
  process_start(&tcpip_process, NULL);
  process_start(&uip_fw_process, NULL);	/* Start IP output */
  process_start(&slip_process, NULL);

  slip_set_input_callback(set_gateway);

  {
    uip_ipaddr_t hostaddr, netmask;

    uip_init();

    uip_ipaddr(&hostaddr, 172,16,
	       rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]);
    uip_ipaddr(&netmask, 255,255,0,0);
    uip_ipaddr_copy(&meshif.ipaddr, &hostaddr);

    uip_sethostaddr(&hostaddr);
    uip_setnetmask(&netmask);
    uip_over_mesh_set_net(&hostaddr, &netmask);
    /*    uip_fw_register(&slipif);*/
    uip_over_mesh_set_gateway_netif(&slipif);
    uip_fw_default(&meshif);
    uip_over_mesh_init(UIP_OVER_MESH_CHANNEL);
    printf("uIP started with IP address %d.%d.%d.%d\n",
	   uip_ipaddr_to_quad(&hostaddr));
  }
#endif /* WITH_UIP */

  button_sensor.activate();

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  print_processes(autostart_processes);
  autostart_start(autostart_processes);

  /*
   * This is the scheduler loop.
   */
#if DCOSYNCH_CONF_ENABLED
  timer_set(&mgt_timer, DCOSYNCH_PERIOD * CLOCK_SECOND);
#endif
  watchdog_start();
  /*  watchdog_stop();*/
  while(1) {
    int r;
#if PROFILE_CONF_ON
    profile_episode_start();
#endif /* PROFILE_CONF_ON */
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
#if PROFILE_CONF_ON
    profile_episode_end();
#endif /* PROFILE_CONF_ON */

    /*
     * Idle processing.
     */
    int s = splhigh();		/* Disable interrupts. */
    /* uart1_active is for avoiding LPM3 when still sending or receiving */
    if(process_nevents() != 0 || uart1_active()) {
      splx(s);			/* Re-enable interrupts. */
    } else {
      static unsigned long irq_energest = 0;

#if DCOSYNCH_CONF_ENABLED
      /* before going down to sleep possibly do some management */
      if (timer_expired(&mgt_timer)) {
	timer_reset(&mgt_timer);
	msp430_sync_dco();
      }
#endif

      /* Re-enable interrupts and go to sleep atomically. */
      ENERGEST_OFF(ENERGEST_TYPE_CPU);
      ENERGEST_ON(ENERGEST_TYPE_LPM);
      /* We only want to measure the processing done in IRQs when we
	 are asleep, so we discard the processing time done when we
	 were awake. */
      energest_type_set(ENERGEST_TYPE_IRQ, irq_energest);
      watchdog_stop();
      _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This
					      statement will block
					      until the CPU is
					      woken up by an
					      interrupt that sets
					      the wake up flag. */

      /* We get the current processing time for interrupts that was
	 done during the LPM and store it for next time around.  */
      dint();
      irq_energest = energest_type_time(ENERGEST_TYPE_IRQ);
      eint();
      watchdog_start();
      ENERGEST_OFF(ENERGEST_TYPE_LPM);
      ENERGEST_ON(ENERGEST_TYPE_CPU);
    }
  }

  return 0;
}
Esempio n. 22
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initialize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  // Led initialization
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n",boardDescription->name);

  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  
  
  process_start(&etimer_process, NULL);   
  ctimer_init();
  rtimer_init();
  
  netstack_init();
  set_rime_addr();
  
  
PRINTF("ACK enable=%u %s %s, channel check rate=%luHz, check interval %ums, clock second=%u, radio channel %u\r\n",
         ST_RadioAutoAckEnabled(), NETSTACK_MAC.name, NETSTACK_RDC.name,  
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1:
                         NETSTACK_RDC.channel_check_interval()), NETSTACK_RDC.channel_check_interval(), CLOCK_SECOND,
         RF_CHANNEL);
  
#if !UIP_CONF_IPV6
  ST_RadioEnableAutoAck(FALSE); // Because frames are not 802.15.4 compatible. 
  ST_RadioEnableAddressFiltering(FALSE);
#endif
  ST_RadioEnableAutoAck(TRUE);

  
  procinit_init(); 
    


  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);
  
  autostart_start(autostart_processes);
  
  
  watchdog_start();
  
  while(1){
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    //watchdog_stop();    
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    //watchdog_start();
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}
Esempio n. 23
0
/*! \brief Main function. Execution starts here.
 */
int main(void)
{	
	sysclk_init();
	irq_initialize_vectors();
	cpu_irq_enable();

	/* Initialize the sleep manager */
	sleepmgr_init();
	
	/* Initialize the SAM board */
	board_init();
	
	/* Serial line [UART] initialization */
	uart1_init(CONF_UART_BAUDRATE);
	
	#if WITH_SERIAL_LINE_INPUT
	/* If SLIP-radio is enabled, the handler is overridden. */
	uart1_set_input(serial_line_input_byte);
	#endif
	
	while(!uart_is_tx_ready(CONSOLE_UART));
	/* PRINT Contiki Entry String */
	PRINTF("Starting ");	
	PRINTF(CONTIKI_VERSION_STRING);	
	
	/* Configure sys-tick for 1 ms */
	clock_init(); 
	
	/* Initialize Contiki Process function */
	process_init();
	
	/* rtimer and ctimer should be initialized before radio duty cycling layers*/
	rtimer_init();
	
	/* etimer_process should be initialized before ctimer */
	process_start(&etimer_process, NULL);
	
	/* Initialize the ctimer process */ 
	ctimer_init();	
#ifdef WITH_LED_DEBUGGING
	configure_led_debug_pins();
#ifdef WITH_AR9170_WIFI_SUPPORT
	configure_ar9170_disconnect_pins();
#endif
#endif		
	
	/* rtimer initialization */
	rtimer_init();
	
	/* Network protocol stack initialization */
	netstack_init();
	
	/* Process init initialization */
	procinit_init();
	
	/* Initialize energy estimation routines */
	energest_init();
		
	/* Initialize watch-dog process */
	watchdog_start();  

#ifdef WITH_AR9170_WIFI_SUPPORT
#ifdef WITH_USB_SUPPORT
	/* Start network-related system processes. */
	#if WITH_UIP6	
	#ifdef WITH_SLIP
	#warning SLIP_RADIO enabled!
	process_start(&slip_radio_process, NULL);
	#endif
	#endif		
#else
#error USB support must be enabled.
#endif
#endif

#ifdef WITH_USB_SUPPORT
	/* Start ARM Cortex-M3 USB Host Stack */
	uhc_start();
	configure_ar9170_disconnect_pins();
#endif	

	/* Autostart all declared [not system] processes */
	//autostart_start(autostart_processes);

	#if UIP_CONF_IPV6
	printf("Tentative link-local IPv6 address: ");
	{
		uip_ds6_addr_t *lladdr;
		int i;
		lladdr = uip_ds6_get_link_local(-1);
		for(i = 0; i < 7; ++i) {
			printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
			lladdr->ipaddr.u8[i * 2 + 1]);
		}
		printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
	}

	if(!UIP_CONF_IPV6_RPL) {
		uip_ipaddr_t ipaddr;
		int i;
		uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);
		uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
		uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
		printf("Tentative global IPv6 address ");
		for(i = 0; i < 7; ++i) {
			printf("%02x%02x:",
			ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
		}
		printf("%02x%02x\n",
		ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
	}
	#endif /* UIP_CONF_IPV6 */

	PRINTF("Starting Contiki OS main loop...\n");	

	while(true) {
		
		/* Contiki Polling System */
		process_run();
	}	
}
Esempio n. 24
0
/*--------------------------------------------------------------------------*/
int
main(int argc, char **argv)
{
  /*
   * Initalize hardware.
   */
  msp430_cpu_init();
  clock_init();
  leds_init();

  leds_on(LEDS_RED);

  uart1_init(BAUD2UBR(115200)); /* Must come before first printf */

  leds_on(LEDS_GREEN);
  /* xmem_init(); */
  
  rtimer_init();

  lcd_init();

  watchdog_init();
  
  PRINTF(CONTIKI_VERSION_STRING "\n");
  /*  PRINTF("Compiled at %s, %s\n", __TIME__, __DATE__);*/

  /*
   * Hardware initialization done!
   */
  
  leds_on(LEDS_RED);

  /* Restore node id if such has been stored in external mem */
#ifdef NODEID
  node_id = NODEID;

#ifdef BURN_NODEID
  node_id_burn(node_id);
  node_id_restore(); /* also configures node_mac[] */
#endif /* BURN_NODEID */
#else
  node_id_restore(); /* also configures node_mac[] */
#endif /* NODE_ID */

  /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */
#ifdef MAC_1
  {
    uint8_t ieee[] = { MAC_1, MAC_2, MAC_3, MAC_4, MAC_5, MAC_6, MAC_7, MAC_8 };
    memcpy(node_mac, ieee, sizeof(uip_lladdr.addr));
  }
#endif

   /*
   * Initialize Contiki and our processes.
   */
  process_init();
  process_start(&etimer_process, NULL);

  ctimer_init();

  set_rime_addr();

  random_init(node_id);

  NETSTACK_RADIO.init();
#if CC11xx_CC1101 || CC11xx_CC1120
  printf("Starting up cc11xx radio at channel %d\n", RF_CHANNEL);
  cc11xx_channel_set(RF_CHANNEL);
#endif /* CC11xx_CC1101 || CC11xx_CC1120 */
#if CONFIGURE_CC2420 || CONFIGURE_CC2520
  {
    uint8_t longaddr[8];
    uint16_t shortaddr;

    shortaddr = (rimeaddr_node_addr.u8[0] << 8) + rimeaddr_node_addr.u8[1];
    memset(longaddr, 0, sizeof(longaddr));
    rimeaddr_copy((rimeaddr_t *)&longaddr, &rimeaddr_node_addr);
    printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", longaddr[0],
           longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5],
           longaddr[6], longaddr[7]);

#if CONFIGURE_CC2420
    cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
#endif /* CONFIGURE_CC2420 */
#if CONFIGURE_CC2520
    cc2520_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
#endif /* CONFIGURE_CC2520 */
  }
#if CONFIGURE_CC2420
  cc2420_set_channel(RF_CHANNEL);
#endif /* CONFIGURE_CC2420 */
#if CONFIGURE_CC2520
  cc2520_set_channel(RF_CHANNEL);
#endif /* CONFIGURE_CC2520 */
#endif /* CONFIGURE_CC2420 || CONFIGURE_CC2520 */

  NETSTACK_RADIO.on();

  leds_off(LEDS_ALL);

  if(node_id > 0) {
    PRINTF("Node id %u.\n", node_id);
  } else {
    PRINTF("Node id not set.\n");
  }

#if WITH_UIP6
  memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr));
  /* Setup nullmac-like MAC for 802.15.4 */

  queuebuf_init();

  netstack_init();

  printf("%s/%s %lu %u\n",
         NETSTACK_RDC.name,
         NETSTACK_MAC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                         NETSTACK_RDC.channel_check_interval()),
         RF_CHANNEL);

  process_start(&tcpip_process, NULL);

  printf("IPv6 ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }

  if(1) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, 0xfc00, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    printf("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }

#else /* WITH_UIP6 */

  netstack_init();

  printf("%s %lu %u\n",
         NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1:
                         NETSTACK_RDC.channel_check_interval()),
         RF_CHANNEL);
#endif /* WITH_UIP6 */

#if !WITH_UIP6
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif

#ifdef NETSTACK_AES_H
#ifndef NETSTACK_AES_KEY
#error Please define NETSTACK_AES_KEY!
#endif /* NETSTACK_AES_KEY */
  {
    const uint8_t key[] = NETSTACK_AES_KEY;
    netstack_aes_set_key(key);
  }
  /*printf("AES encryption is enabled: '%s'\n", NETSTACK_AES_KEY);*/
  printf("AES encryption is enabled\n");
#else /* NETSTACK_AES_H */
  printf("Warning: AES encryption is disabled\n");
#endif /* NETSTACK_AES_H */

#if TIMESYNCH_CONF_ENABLED
  timesynch_init();
  timesynch_set_authority_level(rimeaddr_node_addr.u8[0]);
#endif /* TIMESYNCH_CONF_ENABLED */


#if CC11xx_CC1101 || CC11xx_CC1120
  printf("cc11xx radio at channel %d\n", RF_CHANNEL);
  cc11xx_channel_set(RF_CHANNEL);
#endif /* CC11xx_CC1101 || CC11xx_CC1120 */
#if CONFIGURE_CC2420
  {
    uint8_t longaddr[8];
    uint16_t shortaddr;

    shortaddr = (rimeaddr_node_addr.u8[0] << 8) +
      rimeaddr_node_addr.u8[1];
    memset(longaddr, 0, sizeof(longaddr));
    rimeaddr_copy((rimeaddr_t *)&longaddr, &rimeaddr_node_addr);
    printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
           longaddr[0], longaddr[1], longaddr[2], longaddr[3],
           longaddr[4], longaddr[5], longaddr[6], longaddr[7]);

    cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
  }
  cc2420_set_channel(RF_CHANNEL);
#endif /* CONFIGURE_CC2420 */
  NETSTACK_RADIO.on();

  /*  process_start(&sensors_process, NULL);
      SENSORS_ACTIVATE(button_sensor);*/

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  simple_rpl_init();

  watchdog_start();

  print_processes(autostart_processes);
  autostart_start(autostart_processes);

  duty_cycle_scroller_start(CLOCK_SECOND * 2);

#if IP64_CONF_UIP_FALLBACK_INTERFACE_SLIP && WITH_SLIP
  /* Start the SLIP */
  printf("Initiating SLIP: my IP is 172.16.0.2...\n");
  slip_arch_init(0);
  {
    uip_ip4addr_t ipv4addr, netmask;

    uip_ipaddr(&ipv4addr, 172, 16, 0, 2);
    uip_ipaddr(&netmask, 255, 255, 255, 0);
    ip64_set_ipv4_address(&ipv4addr, &netmask);
  }
  uart1_set_input(slip_input_byte);
#endif /* IP64_CONF_UIP_FALLBACK_INTERFACE_SLIP */

  /*
   * This is the scheduler loop.
   */
  while(1) {
    int r;
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);

    /*
     * Idle processing.
     */
    int s = splhigh();          /* Disable interrupts. */
    /* uart1_active is for avoiding LPM3 when still sending or receiving */
    if(process_nevents() != 0 || uart1_active()) {
      splx(s);                  /* Re-enable interrupts. */
    } else {
      static unsigned long irq_energest = 0;

      /* Re-enable interrupts and go to sleep atomically. */
      ENERGEST_OFF(ENERGEST_TYPE_CPU);
      ENERGEST_ON(ENERGEST_TYPE_LPM);
      /* We only want to measure the processing done in IRQs when we
         are asleep, so we discard the processing time done when we
         were awake. */
      energest_type_set(ENERGEST_TYPE_IRQ, irq_energest);
      watchdog_stop();
      _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This
                                              statement will block
                                              until the CPU is
                                              woken up by an
                                              interrupt that sets
                                              the wake up flag. */

      /* We get the current processing time for interrupts that was
         done during the LPM and store it for next time around.  */
      dint();
      irq_energest = energest_type_time(ENERGEST_TYPE_IRQ);
      eint();
      watchdog_start();
      ENERGEST_OFF(ENERGEST_TYPE_LPM);
      ENERGEST_ON(ENERGEST_TYPE_CPU);
    }
  }
}
Esempio n. 25
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initialize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  // Led initialization
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n",boardDescription->name);

  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  //etimer_process should be started before ctimer init
  process_start(&etimer_process, NULL);
  //ctimer and rtimer should be initialized before netstack to enable RDC (cxmac, contikimac, lpp)   
  ctimer_init();
  rtimer_init();
  netstack_init();
#if !UIP_CONF_IPV6
  ST_RadioEnableAutoAck(FALSE); // Because frames are not 802.15.4 compatible. 
  ST_RadioEnableAddressFiltering(FALSE);
#endif

  set_rime_addr();
  
  procinit_init();    

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);
  
  autostart_start(autostart_processes);
  
  
  watchdog_start();
  
  while(1){
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    //watchdog_stop();    
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    //watchdog_start();
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}
Esempio n. 26
0
/*---------------------------------------------------------------------------*/
int
main(int argc, char **argv)
{
  /*
   * Initalize hardware.
   */

  msp430_cpu_init();
  clock_init();
  leds_init();

  leds_on(LEDS_RED);

  clock_wait(2);

  uart1_init(115200); /* Must come before first printf */

#if WITH_UIP
  slip_arch_init(115200);
#endif /* WITH_UIP */

  clock_wait(1);

  leds_on(LEDS_GREEN);
  //ds2411_init();

  /* XXX hack: Fix it so that the 802.15.4 MAC address is compatible
     with an Ethernet MAC address - byte 0 (byte 2 in the DS ID)
     cannot be odd. */
  //ds2411_id[2] &= 0xfe;

  leds_on(LEDS_BLUE);
  //xmem_init();

  leds_off(LEDS_RED);
  rtimer_init();
  /*
   * Hardware initialization done!
   */

  node_id = NODE_ID;

  /* Restore node id if such has been stored in external mem */
  //node_id_restore();

  /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */
#ifdef IEEE_802154_MAC_ADDRESS
  {
    uint8_t ieee[] = IEEE_802154_MAC_ADDRESS;
    //memcpy(ds2411_id, ieee, sizeof(uip_lladdr.addr));
    //ds2411_id[7] = node_id & 0xff;
  }
#endif

  //random_init(ds2411_id[0] + node_id);

  leds_off(LEDS_BLUE);
  /*
   * Initialize Contiki and our processes.
   */
  process_init();
  process_start(&etimer_process, NULL);

  ctimer_init();

  init_platform();

  set_rime_addr();

  cc2520_init();
  {
    uint8_t longaddr[8];
    uint16_t shortaddr;

    shortaddr = (rimeaddr_node_addr.u8[0] << 8) +
      rimeaddr_node_addr.u8[1];
    memset(longaddr, 0, sizeof(longaddr));
    rimeaddr_copy((rimeaddr_t *)&longaddr, &rimeaddr_node_addr);

    printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ",
           longaddr[0], longaddr[1], longaddr[2], longaddr[3],
           longaddr[4], longaddr[5], longaddr[6], longaddr[7]);

    cc2520_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
  }
  cc2520_set_channel(RF_CHANNEL);

  printf(CONTIKI_VERSION_STRING " started. ");
  if(node_id > 0) {
    printf("Node id is set to %u.\n", node_id);
  } else {
    printf("Node id is not set.\n");
  }

#if WITH_UIP6
  /* memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr)); */
  memcpy(&uip_lladdr.addr, rimeaddr_node_addr.u8,
         UIP_LLADDR_LEN > RIMEADDR_SIZE ? RIMEADDR_SIZE : UIP_LLADDR_LEN);

  /* Setup nullmac-like MAC for 802.15.4 */
/*   sicslowpan_init(sicslowmac_init(&cc2520_driver)); */
/*   printf(" %s channel %u\n", sicslowmac_driver.name, RF_CHANNEL); */

  /* Setup X-MAC for 802.15.4 */
  queuebuf_init();
  NETSTACK_RDC.init();
  NETSTACK_MAC.init();
  NETSTACK_NETWORK.init();

  printf("%s %s, channel check rate %lu Hz, radio channel %u\n",
         NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                         NETSTACK_RDC.channel_check_interval()),
         RF_CHANNEL);

  process_start(&tcpip_process, NULL);

  printf("Tentative link-local IPv6 address ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }

  if(!UIP_CONF_IPV6_RPL) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    printf("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }

#else /* WITH_UIP6 */

  NETSTACK_RDC.init();
  NETSTACK_MAC.init();
  NETSTACK_NETWORK.init();

  printf("%s %s, channel check rate %lu Hz, radio channel %u\n",
         NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1:
                         NETSTACK_RDC.channel_check_interval()),
         RF_CHANNEL);
#endif /* WITH_UIP6 */

#if !WITH_UIP && !WITH_UIP6
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif

  leds_off(LEDS_GREEN);

#if TIMESYNCH_CONF_ENABLED
  timesynch_init();
  timesynch_set_authority_level((rimeaddr_node_addr.u8[0] << 4) + 16);
#endif /* TIMESYNCH_CONF_ENABLED */

#if WITH_UIP
  process_start(&tcpip_process, NULL);
  process_start(&uip_fw_process, NULL);	/* Start IP output */
  process_start(&slip_process, NULL);

  slip_set_input_callback(set_gateway);

  {
    uip_ipaddr_t hostaddr, netmask;

    uip_init();

    uip_ipaddr(&hostaddr, 172,16,
	       rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]);
    uip_ipaddr(&netmask, 255,255,0,0);
    uip_ipaddr_copy(&meshif.ipaddr, &hostaddr);

    uip_sethostaddr(&hostaddr);
    uip_setnetmask(&netmask);
    uip_over_mesh_set_net(&hostaddr, &netmask);
    /*    uip_fw_register(&slipif);*/
    uip_over_mesh_set_gateway_netif(&slipif);
    uip_fw_default(&meshif);
    uip_over_mesh_init(UIP_OVER_MESH_CHANNEL);
    printf("uIP started with IP address %d.%d.%d.%d\n",
           uip_ipaddr_to_quad(&hostaddr));
  }
#endif /* WITH_UIP */

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  watchdog_start();
  /* Stop the watchdog */
  watchdog_stop();

#if !PROCESS_CONF_NO_PROCESS_NAMES
  print_processes(autostart_processes);
#else /* !PROCESS_CONF_NO_PROCESS_NAMES */
  putchar('\n'); /* include putchar() */
#endif /* !PROCESS_CONF_NO_PROCESS_NAMES */
  autostart_start(autostart_processes);

  /*
   * This is the scheduler loop.
   */
  while(1) {

    int r;
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);

    /*
     * Idle processing.
     */
    int s = splhigh();		/* Disable interrupts. */
    /* uart1_active is for avoiding LPM3 when still sending or receiving */
    if(process_nevents() != 0 || uart1_active()) {
      splx(s);                  /* Re-enable interrupts. */
    } else {
      static unsigned long irq_energest = 0;

      /* Re-enable interrupts and go to sleep atomically. */
      ENERGEST_OFF(ENERGEST_TYPE_CPU);
      ENERGEST_ON(ENERGEST_TYPE_LPM);
      /* We only want to measure the processing done in IRQs when we
	 are asleep, so we discard the processing time done when we
	 were awake. */
      energest_type_set(ENERGEST_TYPE_IRQ, irq_energest);
      watchdog_stop();
      _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This
                                              statement will block
                                              until the CPU is
                                              woken up by an
                                              interrupt that sets
                                              the wake up flag. */

      /* We get the current processing time for interrupts that was
         done during the LPM and store it for next time around.  */
      dint();
      irq_energest = energest_type_time(ENERGEST_TYPE_IRQ);
      eint();
      watchdog_start();
      ENERGEST_OFF(ENERGEST_TYPE_LPM);
      ENERGEST_ON(ENERGEST_TYPE_CPU);
    }
  }
}
Esempio n. 27
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initialize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  // Led initialization
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n",boardDescription->name);

  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  /* rtimer and ctimer should be initialized before radio duty cycling layers*/
  rtimer_init();
  /* etimer_process should be initialized before ctimer */
  process_start(&etimer_process, NULL);   
  ctimer_init();
  
  rtimer_init();
  netstack_init();
  set_rime_addr();

  printf("%s %s, channel check rate %lu Hz\n",
         NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                                  NETSTACK_RDC.channel_check_interval()));
  printf("802.15.4 PAN ID 0x%x, EUI-%d:",
      IEEE802154_CONF_PANID, UIP_CONF_LL_802154?64:16);
  uip_debug_lladdr_print(&rimeaddr_node_addr);
  printf(", radio channel %u\n", RF_CHANNEL);

  procinit_init();    

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);
  
  autostart_start(autostart_processes);
   
  watchdog_start();
  
  while(1){
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    //watchdog_stop();    
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    //watchdog_start();
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}