void udd_ep_abort(udd_ep_id_t ep) { irqflags_t flags; udd_ep_job_t *ptr_job; ep &= USB_EP_ADDR_MASK; // Disable interrupt of endpoint flags = cpu_irq_save(); udd_disable_endpoint_interrupt(ep); cpu_irq_restore(flags); // Stop transfer udd_enable_busy_bank0(ep); // Job complete then call callback ptr_job = &udd_ep_job[ep - 1]; if (!ptr_job->busy) { return; } ptr_job->busy = false; if (NULL != ptr_job->call_trans) { if (Is_udd_endpoint_in(ep)) { ep |= USB_EP_DIR_IN; } // It can be a Transfer or stall callback ptr_job->call_trans(UDD_EP_TRANSFER_ABORT, ptr_job->nb_trans, ep); } }
bool udd_ep_alloc(udd_ep_id_t ep, uint8_t bmAttributes, uint16_t MaxEndpointSize) { uint8_t ep_addr = ep & USB_EP_ADDR_MASK; if (Is_udd_endpoint_enabled(ep_addr)) { return false; } // Check if endpoint size is 8,16,32,64,128,256,512 or 1023 Assert(MaxEndpointSize < 1024); Assert((MaxEndpointSize == 1023) || !(MaxEndpointSize & (MaxEndpointSize - 1))); Assert(MaxEndpointSize >= 8); // Check endpoint type Assert(((bmAttributes & USB_EP_TYPE_MASK) == USB_EP_TYPE_ISOCHRONOUS) || ((bmAttributes & USB_EP_TYPE_MASK) == USB_EP_TYPE_BULK) || ((bmAttributes & USB_EP_TYPE_MASK) == USB_EP_TYPE_INTERRUPT)); udd_configure_endpoint(ep_addr, bmAttributes, ((ep & USB_EP_DIR_IN) ? 1 : 0), MaxEndpointSize, AVR32_USBC_UECFG0_EPBK_SINGLE); udd_enable_busy_bank0(ep_addr); udd_enable_endpoint(ep_addr); #if (defined USB_DISABLE_NYET_FOR_OUT_ENDPOINT) // Disable the NYET feature for OUT endpoint. Using OUT multipacket, each // OUT packet are always NYET. if (!(ep & USB_EP_DIR_IN)) { udd_disable_nyet(ep_addr); } #endif return true; }
void udd_ep_abort(udd_ep_id_t ep) { ep &= USB_EP_ADDR_MASK; // Stop transfer udd_enable_busy_bank0(ep); // Abort job on endpoint udd_ep_finish_job(ep, true); }
static void udd_ep_trans_done(udd_ep_id_t ep) { udd_ep_job_t *ptr_job; uint16_t ep_size, nb_trans; uint16_t next_trans; udd_ep_id_t ep_num; irqflags_t flags; ep_num = ep & USB_EP_ADDR_MASK; ep_size = udd_get_endpoint_size(ep_num); // Get job corresponding at endpoint ptr_job = &udd_ep_job[ep_num - 1]; // Disable interrupt of endpoint flags = cpu_irq_save(); udd_disable_endpoint_interrupt(ep_num); cpu_irq_restore(flags); if (!ptr_job->busy) { return; // No job is running, then ignore it (system error) } if (USB_EP_DIR_IN == (ep & USB_EP_DIR_IN)) { // Transfer complete on IN nb_trans = udd_udesc_get_buf0_size(ep_num); // Lock emission of new IN packet udd_enable_busy_bank0(ep_num); // Ack interrupt udd_ack_in_send(ep_num); if (0 == nb_trans) { if (0 == udd_nb_busy_bank(ep_num)) { // All byte are transfered than take nb byte requested nb_trans = udd_udesc_get_buf0_ctn(ep_num); } } // Update number of data transfered ptr_job->nb_trans += nb_trans; // Need to send other data if ((ptr_job->nb_trans != ptr_job->buf_size) || ptr_job->b_shortpacket) { next_trans = ptr_job->buf_size - ptr_job->nb_trans; if (UDD_ENDPOINT_MAX_TRANS < next_trans) { // The USB hardware support a maximum // transfer size of UDD_ENDPOINT_MAX_TRANS Bytes next_trans = UDD_ENDPOINT_MAX_TRANS - (UDD_ENDPOINT_MAX_TRANS % ep_size); udd_udesc_set_buf0_autozlp(ep_num, false); } else { // Need ZLP, if requested and last packet is not a short packet udd_udesc_set_buf0_autozlp(ep_num, ptr_job->b_shortpacket); ptr_job->b_shortpacket = false; // No need to request another ZLP } udd_udesc_set_buf0_ctn(ep_num, next_trans); udd_udesc_rst_buf0_size(ep_num); // Link the user buffer directly on USB hardware DMA udd_udesc_set_buf0_addr(ep_num, &ptr_job->buf[ptr_job->nb_trans]); // Start transfer udd_ack_fifocon(ep_num); udd_disable_busy_bank0(ep_num); // Enable interrupt flags = cpu_irq_save(); udd_enable_in_send_interrupt(ep_num); udd_enable_endpoint_interrupt(ep_num); cpu_irq_restore(flags); return; } } else { // Transfer complete on OUT nb_trans = udd_udesc_get_buf0_ctn(ep_num); // Lock reception of new OUT packet udd_enable_busy_bank0(ep_num); // Ack interrupt udd_ack_out_received(ep_num); udd_ack_fifocon(ep_num); // Can be necessary to copy data receive from cache buffer to user buffer if (ptr_job->b_use_out_cache_buffer) { memcpy(&ptr_job->buf[ptr_job->nb_trans], udd_ep_out_cache_buffer[ep_num - 1], ptr_job->buf_size % ep_size); } // Update number of data transfered ptr_job->nb_trans += nb_trans; if (ptr_job->nb_trans > ptr_job->buf_size) { ptr_job->nb_trans = ptr_job->buf_size; } // If all previous data requested are received and user buffer not full // then need to receive other data if ((nb_trans == udd_udesc_get_buf0_size(ep_num)) && (ptr_job->nb_trans != ptr_job->buf_size)) { next_trans = ptr_job->buf_size - ptr_job->nb_trans; if (UDD_ENDPOINT_MAX_TRANS < next_trans) { // The USB hardware support a maximum transfer size // of UDD_ENDPOINT_MAX_TRANS Bytes next_trans = UDD_ENDPOINT_MAX_TRANS - (UDD_ENDPOINT_MAX_TRANS % ep_size); } else { next_trans -= next_trans % ep_size; } udd_udesc_rst_buf0_ctn(ep_num); if (next_trans < ep_size) { // Use the cache buffer for Bulk or Interrupt size endpoint ptr_job->b_use_out_cache_buffer = true; udd_udesc_set_buf0_addr(ep_num, udd_ep_out_cache_buffer[ep_num-1]); udd_udesc_set_buf0_size(ep_num, ep_size); } else { // Link the user buffer directly on USB hardware DMA udd_udesc_set_buf0_addr(ep_num, &ptr_job->buf[ptr_job->nb_trans]); udd_udesc_set_buf0_size(ep_num, next_trans); } // Start transfer udd_disable_busy_bank0(ep_num); // Enable interrupt flags = cpu_irq_save(); udd_enable_out_received_interrupt(ep_num); udd_enable_endpoint_interrupt(ep_num); cpu_irq_restore(flags); return; } } // Job complete then call callback ptr_job->busy = false; if (NULL != ptr_job->call_trans) { ptr_job->call_trans(UDD_EP_TRANSFER_OK, ptr_job->nb_trans, ep); } return; }
static void udd_ep_finish_job(udd_ep_id_t ep, bool b_abort) { udd_ep_job_t *ptr_job; uint16_t ep_size; irqflags_t flags; // Get job corresponding at endpoint ptr_job = &udd_ep_job[ep - 1]; // Test if a pending transfer is running. If not, disabled interrupt. if (!ptr_job->busy) { flags = cpu_irq_save(); udd_disable_endpoint_interrupt(ep); cpu_irq_restore(flags); return; } if (Is_udd_endpoint_in(ep)) { // Update number of data transfered ptr_job->nb_trans = udd_udesc_get_buf0_size(ep); if (0 == ptr_job->nb_trans) { if (0 == udd_nb_busy_bank(ep)) { // All byte are transfered than take nb byte requested ptr_job->nb_trans = udd_udesc_get_buf0_ctn(ep); } } } else { // Transfer complete on OUT ep_size = udd_format_endpoint_size(ep); if (ptr_job->b_use_out_cache_buffer) { // Copy data receiv from cache buffer to user buffer memcpy(&ptr_job->buf[ptr_job->nb_trans], udd_ep_out_cache_buffer[ep - 1], ptr_job->buf_size % ep_size); ptr_job->nb_trans += udd_udesc_get_buf0_ctn(ep); } else { ptr_job->nb_trans = udd_udesc_get_buf0_ctn(ep); // If all previous data requested are received // and user buffer not full if ((ptr_job->nb_trans == udd_udesc_get_buf0_size(ep)) && (ptr_job->nb_trans != ptr_job->buf_size)) { // Use the cache buffer to receiv last data // which can be more larger than user buffer remaining ptr_job->b_use_out_cache_buffer = true; udd_udesc_rst_buf0_ctn(ep); udd_udesc_set_buf0_addr(ep, udd_ep_out_cache_buffer[ep - 1]); udd_udesc_set_buf0_size(ep, ep_size); // Free buffer to accept another data to reception udd_ack_out_received(ep); udd_ack_fifocon(ep); return; } } // Free buffer but not accept another data to reception udd_ack_out_received(ep); udd_enable_busy_bank0(ep); udd_ack_fifocon(ep); } // Call callback to signal end of transfer flags = cpu_irq_save(); udd_disable_endpoint_interrupt(ep); cpu_irq_restore(flags); ptr_job->busy = false; if (NULL == ptr_job->call_trans) return; // No callback linked to job ptr_job->call_trans((b_abort) ? UDD_EP_TRANSFER_ABORT : UDD_EP_TRANSFER_OK, ptr_job->nb_trans); }