Esempio n. 1
0
unsigned ufs_new_fragments (struct inode * inode, u32 * p, unsigned fragment,
	unsigned goal, unsigned count, int * err )
{
	struct super_block * sb;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	struct buffer_head * bh;
	unsigned cgno, oldcount, newcount, tmp, request, i, result;
	unsigned swab;
	
	UFSD(("ENTER, ino %lu, fragment %u, goal %u, count %u\n", inode->i_ino, fragment, goal, count))
	
	sb = inode->i_sb;
	swab = sb->u.ufs_sb.s_swab;
	uspi = sb->u.ufs_sb.s_uspi;
	usb1 = ubh_get_usb_first(USPI_UBH);
	*err = -ENOSPC;

	lock_super (sb);
	
	tmp = SWAB32(*p);
	if (count + ufs_fragnum(fragment) > uspi->s_fpb) {
		ufs_warning (sb, "ufs_new_fragments", "internal warning"
			" fragment %u, count %u", fragment, count);
		count = uspi->s_fpb - ufs_fragnum(fragment); 
	}
	oldcount = ufs_fragnum (fragment);
	newcount = oldcount + count;

	/*
	 * Somebody else has just allocated our fragments
	 */
	if (oldcount) {
		if (!tmp) {
			ufs_error (sb, "ufs_new_fragments", "internal error, "
				"fragment %u, tmp %u\n", fragment, tmp);
			return (unsigned)-1;
		}
		if (fragment < inode->u.ufs_i.i_lastfrag) {
			UFSD(("EXIT (ALREADY ALLOCATED)\n"))
			unlock_super (sb);
			return 0;
		}
	}
	else {
		if (tmp) {
			UFSD(("EXIT (ALREADY ALLOCATED)\n"))
			unlock_super(sb);
			return 0;
		}
	}
	
	/*
	 * There is not enough space for user on the device
	 */
	if (!fsuser() && ufs_freespace(usb1, UFS_MINFREE) <= 0) {
		unlock_super (sb);
		UFSD(("EXIT (FAILED)\n"))
		return 0;
	} 
Esempio n. 2
0
static int ufs_block_to_path(struct inode *inode, long i_block, int offsets[4])
{
	struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
	int ptrs = uspi->s_apb;
	int ptrs_bits = uspi->s_apbshift;
	const long direct_blocks = UFS_NDADDR,
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;

	if (i_block < 0) {
		ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
		offsets[n++] = UFS_IND_BLOCK;
		offsets[n++] = i_block;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
		offsets[n++] = UFS_DIND_BLOCK;
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
Esempio n. 3
0
static int ufs_fill_super(struct super_block *sb, void *data, int silent)
{
	struct ufs_sb_info * sbi;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	struct ufs_super_block_second * usb2;
	struct ufs_super_block_third * usb3;
	struct ufs_buffer_head * ubh;	
	struct inode *inode;
	unsigned block_size, super_block_size;
	unsigned flags;
	unsigned super_block_offset;
	unsigned maxsymlen;
	int ret = -EINVAL;

	uspi = NULL;
	ubh = NULL;
	flags = 0;
	
	UFSD("ENTER\n");

#ifndef CONFIG_UFS_FS_WRITE
	if (!(sb->s_flags & MS_RDONLY)) {
		pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
		return -EROFS;
	}
#endif
		
	sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
	if (!sbi)
		goto failed_nomem;
	sb->s_fs_info = sbi;
	sbi->sb = sb;

	UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
	
	mutex_init(&sbi->s_lock);
	spin_lock_init(&sbi->work_lock);
	INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs);
	/*
	 * Set default mount options
	 * Parse mount options
	 */
	sbi->s_mount_opt = 0;
	ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
	if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
		pr_err("wrong mount options\n");
		goto failed;
	}
	if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
		if (!silent)
			pr_err("You didn't specify the type of your ufs filesystem\n\n"
			"mount -t ufs -o ufstype="
			"sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
			">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
			"default is ufstype=old\n");
		ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
	}

	uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL);
	sbi->s_uspi = uspi;
	if (!uspi)
		goto failed;
	uspi->s_dirblksize = UFS_SECTOR_SIZE;
	super_block_offset=UFS_SBLOCK;

	/* Keep 2Gig file limit. Some UFS variants need to override 
	   this but as I don't know which I'll let those in the know loosen
	   the rules */
	switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
	case UFS_MOUNT_UFSTYPE_44BSD:
		UFSD("ufstype=44bsd\n");
		uspi->s_fsize = block_size = 512;
		uspi->s_fmask = ~(512 - 1);
		uspi->s_fshift = 9;
		uspi->s_sbsize = super_block_size = 1536;
		uspi->s_sbbase = 0;
		flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
		break;
	case UFS_MOUNT_UFSTYPE_UFS2:
		UFSD("ufstype=ufs2\n");
		super_block_offset=SBLOCK_UFS2;
		uspi->s_fsize = block_size = 512;
		uspi->s_fmask = ~(512 - 1);
		uspi->s_fshift = 9;
		uspi->s_sbsize = super_block_size = 1536;
		uspi->s_sbbase =  0;
		flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
		break;
		
	case UFS_MOUNT_UFSTYPE_SUN:
		UFSD("ufstype=sun\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_maxsymlinklen = 0; /* Not supported on disk */
		flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
		break;

	case UFS_MOUNT_UFSTYPE_SUNOS:
		UFSD("ufstype=sunos\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = 2048;
		super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_maxsymlinklen = 0; /* Not supported on disk */
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN;
		break;

	case UFS_MOUNT_UFSTYPE_SUNx86:
		UFSD("ufstype=sunx86\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_maxsymlinklen = 0; /* Not supported on disk */
		flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
		break;

	case UFS_MOUNT_UFSTYPE_OLD:
		UFSD("ufstype=old\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=old is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_NEXTSTEP:
		UFSD("ufstype=nextstep\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_dirblksize = 1024;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=nextstep is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
		UFSD("ufstype=nextstep-cd\n");
		uspi->s_fsize = block_size = 2048;
		uspi->s_fmask = ~(2048 - 1);
		uspi->s_fshift = 11;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_dirblksize = 1024;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=nextstep-cd is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_OPENSTEP:
		UFSD("ufstype=openstep\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		uspi->s_dirblksize = 1024;
		flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=openstep is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
		}
		break;
	
	case UFS_MOUNT_UFSTYPE_HP:
		UFSD("ufstype=hp\n");
		uspi->s_fsize = block_size = 1024;
		uspi->s_fmask = ~(1024 - 1);
		uspi->s_fshift = 10;
		uspi->s_sbsize = super_block_size = 2048;
		uspi->s_sbbase = 0;
		flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
		if (!(sb->s_flags & MS_RDONLY)) {
			if (!silent)
				pr_info("ufstype=hp is supported read-only\n");
			sb->s_flags |= MS_RDONLY;
 		}
 		break;
	default:
		if (!silent)
			pr_err("unknown ufstype\n");
		goto failed;
	}
	
again:	
	if (!sb_set_blocksize(sb, block_size)) {
		pr_err("failed to set blocksize\n");
		goto failed;
	}

	/*
	 * read ufs super block from device
	 */

	ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
	
	if (!ubh) 
            goto failed;

	usb1 = ubh_get_usb_first(uspi);
	usb2 = ubh_get_usb_second(uspi);
	usb3 = ubh_get_usb_third(uspi);

	/* Sort out mod used on SunOS 4.1.3 for fs_state */
	uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
	if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) &&
	    (uspi->s_postblformat != UFS_42POSTBLFMT)) {
		flags &= ~UFS_ST_MASK;
		flags |=  UFS_ST_SUN;
	}

	/*
	 * Check ufs magic number
	 */
	sbi->s_bytesex = BYTESEX_LE;
	switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
		case UFS_MAGIC:
		case UFS_MAGIC_BW:
		case UFS2_MAGIC:
		case UFS_MAGIC_LFN:
	        case UFS_MAGIC_FEA:
	        case UFS_MAGIC_4GB:
			goto magic_found;
	}
	sbi->s_bytesex = BYTESEX_BE;
	switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
		case UFS_MAGIC:
		case UFS_MAGIC_BW:
		case UFS2_MAGIC:
		case UFS_MAGIC_LFN:
	        case UFS_MAGIC_FEA:
	        case UFS_MAGIC_4GB:
			goto magic_found;
	}

	if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP) 
	  || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD) 
	  || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP)) 
	  && uspi->s_sbbase < 256) {
		ubh_brelse_uspi(uspi);
		ubh = NULL;
		uspi->s_sbbase += 8;
		goto again;
	}
	if (!silent)
		pr_err("%s(): bad magic number\n", __func__);
	goto failed;

magic_found:
	/*
	 * Check block and fragment sizes
	 */
	uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
	uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
	uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
	uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
	uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);

	if (!is_power_of_2(uspi->s_fsize)) {
		pr_err("%s(): fragment size %u is not a power of 2\n",
		       __func__, uspi->s_fsize);
		goto failed;
	}
	if (uspi->s_fsize < 512) {
		pr_err("%s(): fragment size %u is too small\n",
		       __func__, uspi->s_fsize);
		goto failed;
	}
	if (uspi->s_fsize > 4096) {
		pr_err("%s(): fragment size %u is too large\n",
		       __func__, uspi->s_fsize);
		goto failed;
	}
	if (!is_power_of_2(uspi->s_bsize)) {
		pr_err("%s(): block size %u is not a power of 2\n",
		       __func__, uspi->s_bsize);
		goto failed;
	}
	if (uspi->s_bsize < 4096) {
		pr_err("%s(): block size %u is too small\n",
		       __func__, uspi->s_bsize);
		goto failed;
	}
	if (uspi->s_bsize / uspi->s_fsize > 8) {
		pr_err("%s(): too many fragments per block (%u)\n",
		       __func__, uspi->s_bsize / uspi->s_fsize);
		goto failed;
	}
	if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
		ubh_brelse_uspi(uspi);
		ubh = NULL;
		block_size = uspi->s_fsize;
		super_block_size = uspi->s_sbsize;
		UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
		goto again;
	}

	sbi->s_flags = flags;/*after that line some functions use s_flags*/
	ufs_print_super_stuff(sb, usb1, usb2, usb3);

	/*
	 * Check, if file system was correctly unmounted.
	 * If not, make it read only.
	 */
	if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
	  ((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
	  (((flags & UFS_ST_MASK) == UFS_ST_SUN ||
	    (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
	  (flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
	  (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
		switch(usb1->fs_clean) {
		case UFS_FSCLEAN:
			UFSD("fs is clean\n");
			break;
		case UFS_FSSTABLE:
			UFSD("fs is stable\n");
			break;
		case UFS_FSLOG:
			UFSD("fs is logging fs\n");
			break;
		case UFS_FSOSF1:
			UFSD("fs is DEC OSF/1\n");
			break;
		case UFS_FSACTIVE:
			pr_err("%s(): fs is active\n", __func__);
			sb->s_flags |= MS_RDONLY;
			break;
		case UFS_FSBAD:
			pr_err("%s(): fs is bad\n", __func__);
			sb->s_flags |= MS_RDONLY;
			break;
		default:
			pr_err("%s(): can't grok fs_clean 0x%x\n",
			       __func__, usb1->fs_clean);
			sb->s_flags |= MS_RDONLY;
			break;
		}
	} else {
		pr_err("%s(): fs needs fsck\n", __func__);
		sb->s_flags |= MS_RDONLY;
	}

	/*
	 * Read ufs_super_block into internal data structures
	 */
	sb->s_op = &ufs_super_ops;
	sb->s_export_op = &ufs_export_ops;

	sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);

	uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
	uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
	uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
	uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
	uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
	uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);

	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
		uspi->s_u2_size  = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
		uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
	} else {
		uspi->s_size  =  fs32_to_cpu(sb, usb1->fs_size);
		uspi->s_dsize =  fs32_to_cpu(sb, usb1->fs_dsize);
	}

	uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
	/* s_bsize already set */
	/* s_fsize already set */
	uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
	uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
	uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
	uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
	uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
	uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
	UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
		uspi->s_fshift);
	uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
	uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
	/* s_sbsize already set */
	uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
	uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
	uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
	uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
	uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
	uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
	uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
	uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);

	if (uspi->fs_magic == UFS2_MAGIC)
		uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr);
	else
		uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);

	uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
	uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
	uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
	uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
	uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
	uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
	uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
	uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
	uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
	uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
	uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
	uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
	uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
	uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);

	/*
	 * Compute another frequently used values
	 */
	uspi->s_fpbmask = uspi->s_fpb - 1;
	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
		uspi->s_apbshift = uspi->s_bshift - 3;
	else
		uspi->s_apbshift = uspi->s_bshift - 2;

	uspi->s_2apbshift = uspi->s_apbshift * 2;
	uspi->s_3apbshift = uspi->s_apbshift * 3;
	uspi->s_apb = 1 << uspi->s_apbshift;
	uspi->s_2apb = 1 << uspi->s_2apbshift;
	uspi->s_3apb = 1 << uspi->s_3apbshift;
	uspi->s_apbmask = uspi->s_apb - 1;
	uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
	uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
	uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
	uspi->s_bpf = uspi->s_fsize << 3;
	uspi->s_bpfshift = uspi->s_fshift + 3;
	uspi->s_bpfmask = uspi->s_bpf - 1;
	if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD ||
	    (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2)
		uspi->s_maxsymlinklen =
		    fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);

	if (uspi->fs_magic == UFS2_MAGIC)
		maxsymlen = 2 * 4 * (UFS_NDADDR + UFS_NINDIR);
	else
		maxsymlen = 4 * (UFS_NDADDR + UFS_NINDIR);
	if (uspi->s_maxsymlinklen > maxsymlen) {
		ufs_warning(sb, __func__, "ufs_read_super: excessive maximum "
			    "fast symlink size (%u)\n", uspi->s_maxsymlinklen);
		uspi->s_maxsymlinklen = maxsymlen;
	}
	sb->s_max_links = UFS_LINK_MAX;

	inode = ufs_iget(sb, UFS_ROOTINO);
	if (IS_ERR(inode)) {
		ret = PTR_ERR(inode);
		goto failed;
	}
	sb->s_root = d_make_root(inode);
	if (!sb->s_root) {
		ret = -ENOMEM;
		goto failed;
	}

	ufs_setup_cstotal(sb);
	/*
	 * Read cylinder group structures
	 */
	if (!(sb->s_flags & MS_RDONLY))
		if (!ufs_read_cylinder_structures(sb))
			goto failed;

	UFSD("EXIT\n");
	return 0;

failed:
	if (ubh)
		ubh_brelse_uspi (uspi);
	kfree (uspi);
	kfree(sbi);
	sb->s_fs_info = NULL;
	UFSD("EXIT (FAILED)\n");
	return ret;

failed_nomem:
	UFSD("EXIT (NOMEM)\n");
	return -ENOMEM;
}
Esempio n. 4
0
u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
			   u64 goal, unsigned count, int *err,
			   struct page *locked_page)
{
	struct super_block * sb;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	unsigned cgno, oldcount, newcount;
	u64 tmp, request, result;
	
	UFSD("ENTER, ino %lu, fragment %llu, goal %llu, count %u\n",
	     inode->i_ino, (unsigned long long)fragment,
	     (unsigned long long)goal, count);
	
	sb = inode->i_sb;
	uspi = UFS_SB(sb)->s_uspi;
	usb1 = ubh_get_usb_first(uspi);
	*err = -ENOSPC;

	lock_super (sb);
	tmp = ufs_data_ptr_to_cpu(sb, p);

	if (count + ufs_fragnum(fragment) > uspi->s_fpb) {
		ufs_warning(sb, "ufs_new_fragments", "internal warning"
			    " fragment %llu, count %u",
			    (unsigned long long)fragment, count);
		count = uspi->s_fpb - ufs_fragnum(fragment); 
	}
	oldcount = ufs_fragnum (fragment);
	newcount = oldcount + count;

	/*
	 * Somebody else has just allocated our fragments
	 */
	if (oldcount) {
		if (!tmp) {
			ufs_error(sb, "ufs_new_fragments", "internal error, "
				  "fragment %llu, tmp %llu\n",
				  (unsigned long long)fragment,
				  (unsigned long long)tmp);
			unlock_super(sb);
			return INVBLOCK;
		}
		if (fragment < UFS_I(inode)->i_lastfrag) {
			UFSD("EXIT (ALREADY ALLOCATED)\n");
			unlock_super (sb);
			return 0;
		}
	}
	else {
		if (tmp) {
			UFSD("EXIT (ALREADY ALLOCATED)\n");
			unlock_super(sb);
			return 0;
		}
	}

	/*
	 * There is not enough space for user on the device
	 */
	if (!capable(CAP_SYS_RESOURCE) && ufs_freespace(uspi, UFS_MINFREE) <= 0) {
		unlock_super (sb);
		UFSD("EXIT (FAILED)\n");
		return 0;
	}

	if (goal >= uspi->s_size) 
		goal = 0;
	if (goal == 0) 
		cgno = ufs_inotocg (inode->i_ino);
	else
		cgno = ufs_dtog(uspi, goal);
	 
	/*
	 * allocate new fragment
	 */
	if (oldcount == 0) {
		result = ufs_alloc_fragments (inode, cgno, goal, count, err);
		if (result) {
			ufs_cpu_to_data_ptr(sb, p, result);
			*err = 0;
			UFS_I(inode)->i_lastfrag =
				max_t(u32, UFS_I(inode)->i_lastfrag,
				      fragment + count);
			ufs_clear_frags(inode, result + oldcount,
					newcount - oldcount, locked_page != NULL);
		}
		unlock_super(sb);
		UFSD("EXIT, result %llu\n", (unsigned long long)result);
		return result;
	}

	/*
	 * resize block
	 */
	result = ufs_add_fragments (inode, tmp, oldcount, newcount, err);
	if (result) {
		*err = 0;
		UFS_I(inode)->i_lastfrag = max_t(u32, UFS_I(inode)->i_lastfrag, fragment + count);
		ufs_clear_frags(inode, result + oldcount, newcount - oldcount,
				locked_page != NULL);
		unlock_super(sb);
		UFSD("EXIT, result %llu\n", (unsigned long long)result);
		return result;
	}

	/*
	 * allocate new block and move data
	 */
	switch (fs32_to_cpu(sb, usb1->fs_optim)) {
	    case UFS_OPTSPACE:
		request = newcount;
		if (uspi->s_minfree < 5 || uspi->cs_total.cs_nffree
		    > uspi->s_dsize * uspi->s_minfree / (2 * 100))
			break;
		usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME);
		break;
	    default:
		usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME);
	
	    case UFS_OPTTIME:
		request = uspi->s_fpb;
		if (uspi->cs_total.cs_nffree < uspi->s_dsize *
		    (uspi->s_minfree - 2) / 100)
			break;
		usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTTIME);
		break;
	}
	result = ufs_alloc_fragments (inode, cgno, goal, request, err);
	if (result) {
		ufs_clear_frags(inode, result + oldcount, newcount - oldcount,
				locked_page != NULL);
		ufs_change_blocknr(inode, fragment - oldcount, oldcount,
				   uspi->s_sbbase + tmp,
				   uspi->s_sbbase + result, locked_page);
		ufs_cpu_to_data_ptr(sb, p, result);
		*err = 0;
		UFS_I(inode)->i_lastfrag = max_t(u32, UFS_I(inode)->i_lastfrag, fragment + count);
		unlock_super(sb);
		if (newcount < request)
			ufs_free_fragments (inode, result + newcount, request - newcount);
		ufs_free_fragments (inode, tmp, oldcount);
		UFSD("EXIT, result %llu\n", (unsigned long long)result);
		return result;
	}

	unlock_super(sb);
	UFSD("EXIT (FAILED)\n");
	return 0;
}		
Esempio n. 5
0
File: ialloc.c Progetto: 274914765/C
/*
 * NOTE! When we get the inode, we're the only people
 * that have access to it, and as such there are no
 * race conditions we have to worry about. The inode
 * is not on the hash-lists, and it cannot be reached
 * through the filesystem because the directory entry
 * has been deleted earlier.
 *
 * HOWEVER: we must make sure that we get no aliases,
 * which means that we have to call "clear_inode()"
 * _before_ we mark the inode not in use in the inode
 * bitmaps. Otherwise a newly created file might use
 * the same inode number (not actually the same pointer
 * though), and then we'd have two inodes sharing the
 * same inode number and space on the harddisk.
 */
void ufs_free_inode (struct inode * inode)
{
    struct super_block * sb;
    struct ufs_sb_private_info * uspi;
    struct ufs_super_block_first * usb1;
    struct ufs_cg_private_info * ucpi;
    struct ufs_cylinder_group * ucg;
    int is_directory;
    unsigned ino, cg, bit;
    
    UFSD("ENTER, ino %lu\n", inode->i_ino);

    sb = inode->i_sb;
    uspi = UFS_SB(sb)->s_uspi;
    usb1 = ubh_get_usb_first(uspi);
    
    ino = inode->i_ino;

    lock_super (sb);

    if (!((ino > 1) && (ino < (uspi->s_ncg * uspi->s_ipg )))) {
        ufs_warning(sb, "ufs_free_inode", "reserved inode or nonexistent inode %u\n", ino);
        unlock_super (sb);
        return;
    }
    
    cg = ufs_inotocg (ino);
    bit = ufs_inotocgoff (ino);
    ucpi = ufs_load_cylinder (sb, cg);
    if (!ucpi) {
        unlock_super (sb);
        return;
    }
    ucg = ubh_get_ucg(UCPI_UBH(ucpi));
    if (!ufs_cg_chkmagic(sb, ucg))
        ufs_panic (sb, "ufs_free_fragments", "internal error, bad cg magic number");

    ucg->cg_time = cpu_to_fs32(sb, get_seconds());

    is_directory = S_ISDIR(inode->i_mode);

    DQUOT_FREE_INODE(inode);
    DQUOT_DROP(inode);

    clear_inode (inode);

    if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit))
        ufs_error(sb, "ufs_free_inode", "bit already cleared for inode %u", ino);
    else {
        ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit);
        if (ino < ucpi->c_irotor)
            ucpi->c_irotor = ino;
        fs32_add(sb, &ucg->cg_cs.cs_nifree, 1);
        uspi->cs_total.cs_nifree++;
        fs32_add(sb, &UFS_SB(sb)->fs_cs(cg).cs_nifree, 1);

        if (is_directory) {
            fs32_sub(sb, &ucg->cg_cs.cs_ndir, 1);
            uspi->cs_total.cs_ndir--;
            fs32_sub(sb, &UFS_SB(sb)->fs_cs(cg).cs_ndir, 1);
        }
    }

    ubh_mark_buffer_dirty (USPI_UBH(uspi));
    ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
    if (sb->s_flags & MS_SYNCHRONOUS) {
        ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
        ubh_wait_on_buffer (UCPI_UBH(ucpi));
    }
    
    sb->s_dirt = 1;
    unlock_super (sb);
    UFSD("EXIT\n");
}
Esempio n. 6
0
File: ialloc.c Progetto: 274914765/C
/*
 * There are two policies for allocating an inode.  If the new inode is
 * a directory, then a forward search is made for a block group with both
 * free space and a low directory-to-inode ratio; if that fails, then of
 * the groups with above-average free space, that group with the fewest
 * directories already is chosen.
 *
 * For other inodes, search forward from the parent directory's block
 * group to find a free inode.
 */
struct inode * ufs_new_inode(struct inode * dir, int mode)
{
    struct super_block * sb;
    struct ufs_sb_info * sbi;
    struct ufs_sb_private_info * uspi;
    struct ufs_super_block_first * usb1;
    struct ufs_cg_private_info * ucpi;
    struct ufs_cylinder_group * ucg;
    struct inode * inode;
    unsigned cg, bit, i, j, start;
    struct ufs_inode_info *ufsi;
    int err = -ENOSPC;

    UFSD("ENTER\n");
    
    /* Cannot create files in a deleted directory */
    if (!dir || !dir->i_nlink)
        return ERR_PTR(-EPERM);
    sb = dir->i_sb;
    inode = new_inode(sb);
    if (!inode)
        return ERR_PTR(-ENOMEM);
    ufsi = UFS_I(inode);
    sbi = UFS_SB(sb);
    uspi = sbi->s_uspi;
    usb1 = ubh_get_usb_first(uspi);

    lock_super (sb);

    /*
     * Try to place the inode in its parent directory
     */
    i = ufs_inotocg(dir->i_ino);
    if (sbi->fs_cs(i).cs_nifree) {
        cg = i;
        goto cg_found;
    }

    /*
     * Use a quadratic hash to find a group with a free inode
     */
    for ( j = 1; j < uspi->s_ncg; j <<= 1 ) {
        i += j;
        if (i >= uspi->s_ncg)
            i -= uspi->s_ncg;
        if (sbi->fs_cs(i).cs_nifree) {
            cg = i;
            goto cg_found;
        }
    }

    /*
     * That failed: try linear search for a free inode
     */
    i = ufs_inotocg(dir->i_ino) + 1;
    for (j = 2; j < uspi->s_ncg; j++) {
        i++;
        if (i >= uspi->s_ncg)
            i = 0;
        if (sbi->fs_cs(i).cs_nifree) {
            cg = i;
            goto cg_found;
        }
    }

    goto failed;

cg_found:
    ucpi = ufs_load_cylinder (sb, cg);
    if (!ucpi) {
        err = -EIO;
        goto failed;
    }
    ucg = ubh_get_ucg(UCPI_UBH(ucpi));
    if (!ufs_cg_chkmagic(sb, ucg)) 
        ufs_panic (sb, "ufs_new_inode", "internal error, bad cg magic number");

    start = ucpi->c_irotor;
    bit = ubh_find_next_zero_bit (UCPI_UBH(ucpi), ucpi->c_iusedoff, uspi->s_ipg, start);
    if (!(bit < uspi->s_ipg)) {
        bit = ubh_find_first_zero_bit (UCPI_UBH(ucpi), ucpi->c_iusedoff, start);
        if (!(bit < start)) {
            ufs_error (sb, "ufs_new_inode",
                "cylinder group %u corrupted - error in inode bitmap\n", cg);
            err = -EIO;
            goto failed;
        }
    }
    UFSD("start = %u, bit = %u, ipg = %u\n", start, bit, uspi->s_ipg);
    if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit))
        ubh_setbit (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit);
    else {
        ufs_panic (sb, "ufs_new_inode", "internal error");
        err = -EIO;
        goto failed;
    }

    if (uspi->fs_magic == UFS2_MAGIC) {
        u32 initediblk = fs32_to_cpu(sb, ucg->cg_u.cg_u2.cg_initediblk);

        if (bit + uspi->s_inopb > initediblk &&
            initediblk < fs32_to_cpu(sb, ucg->cg_u.cg_u2.cg_niblk))
            ufs2_init_inodes_chunk(sb, ucpi, ucg);
    }

    fs32_sub(sb, &ucg->cg_cs.cs_nifree, 1);
    uspi->cs_total.cs_nifree--;
    fs32_sub(sb, &sbi->fs_cs(cg).cs_nifree, 1);
    
    if (S_ISDIR(mode)) {
        fs32_add(sb, &ucg->cg_cs.cs_ndir, 1);
        uspi->cs_total.cs_ndir++;
        fs32_add(sb, &sbi->fs_cs(cg).cs_ndir, 1);
    }
    ubh_mark_buffer_dirty (USPI_UBH(uspi));
    ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
    if (sb->s_flags & MS_SYNCHRONOUS) {
        ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
        ubh_wait_on_buffer (UCPI_UBH(ucpi));
    }
    sb->s_dirt = 1;

    inode->i_ino = cg * uspi->s_ipg + bit;
    inode->i_mode = mode;
    inode->i_uid = current->fsuid;
    if (dir->i_mode & S_ISGID) {
        inode->i_gid = dir->i_gid;
        if (S_ISDIR(mode))
            inode->i_mode |= S_ISGID;
    } else
        inode->i_gid = current->fsgid;

    inode->i_blocks = 0;
    inode->i_generation = 0;
    inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
    ufsi->i_flags = UFS_I(dir)->i_flags;
    ufsi->i_lastfrag = 0;
    ufsi->i_shadow = 0;
    ufsi->i_osync = 0;
    ufsi->i_oeftflag = 0;
    ufsi->i_dir_start_lookup = 0;
    memset(&ufsi->i_u1, 0, sizeof(ufsi->i_u1));
    insert_inode_hash(inode);
    mark_inode_dirty(inode);

    if (uspi->fs_magic == UFS2_MAGIC) {
        struct buffer_head *bh;
        struct ufs2_inode *ufs2_inode;

        /*
         * setup birth date, we do it here because of there is no sense
         * to hold it in struct ufs_inode_info, and lose 64 bit
         */
        bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
        if (!bh) {
            ufs_warning(sb, "ufs_read_inode",
                    "unable to read inode %lu\n",
                    inode->i_ino);
            err = -EIO;
            goto fail_remove_inode;
        }
        lock_buffer(bh);
        ufs2_inode = (struct ufs2_inode *)bh->b_data;
        ufs2_inode += ufs_inotofsbo(inode->i_ino);
        ufs2_inode->ui_birthtime = cpu_to_fs64(sb, CURRENT_TIME.tv_sec);
        ufs2_inode->ui_birthnsec = cpu_to_fs32(sb, CURRENT_TIME.tv_nsec);
        mark_buffer_dirty(bh);
        unlock_buffer(bh);
        if (sb->s_flags & MS_SYNCHRONOUS)
            sync_dirty_buffer(bh);
        brelse(bh);
    }

    unlock_super (sb);

    if (DQUOT_ALLOC_INODE(inode)) {
        DQUOT_DROP(inode);
        err = -EDQUOT;
        goto fail_without_unlock;
    }

    UFSD("allocating inode %lu\n", inode->i_ino);
    UFSD("EXIT\n");
    return inode;

fail_remove_inode:
    unlock_super(sb);
fail_without_unlock:
    inode->i_flags |= S_NOQUOTA;
    inode->i_nlink = 0;
    iput(inode);
    UFSD("EXIT (FAILED): err %d\n", err);
    return ERR_PTR(err);
failed:
    unlock_super (sb);
    make_bad_inode(inode);
    iput (inode);
    UFSD("EXIT (FAILED): err %d\n", err);
    return ERR_PTR(err);
}