//! Set the parameters of an ispc-side DirectionalLight object extern "C" void DirectionalLight_set(void* super, const Vec3fa& direction, const Vec3fa& radiance, float cosAngle) { DirectionalLight* self = (DirectionalLight*)super; self->frame = frame(direction); self->radiance = radiance; self->cosAngle = cosAngle; self->pdf = cosAngle < COS_ANGLE_MAX ? uniformSampleConePDF(cosAngle) : inf; }
Light_SampleRes PointLight_sample(const Light* super, const DifferentialGeometry& dg, const Vec2f& s) { const PointLight* self = (PointLight*)super; Light_SampleRes res; // extant light vector from the hit point const Vec3fa dir = self->position - dg.P; const float dist2 = dot(dir, dir); const float invdist = rsqrt(dist2); // normalized light vector res.dir = dir * invdist; res.dist = dist2 * invdist; res.pdf = inf; // per default we always take this res // convert from power to radiance by attenuating by distance^2 res.weight = self->power * sqr(invdist); const float sinTheta = self->radius * invdist; if ((self->radius > 0.f) & (sinTheta > 0.005f)) { // res surface of sphere as seen by hit point -> cone of directions // for very small cones treat as point light, because float precision is not good enough if (sinTheta < 1.f) { const float cosTheta = sqrt(1.f - sinTheta * sinTheta); const Vec3fa localDir = uniformSampleCone(cosTheta, s); res.dir = frame(res.dir) * localDir; res.pdf = uniformSampleConePDF(cosTheta); const float c = localDir.z; res.dist = c*res.dist - sqrt(sqr(self->radius) - (1.f - c*c) * dist2); // TODO scale radiance by actual distance } else { // inside sphere const Vec3fa localDir = cosineSampleHemisphere(s); res.dir = frame(dg.Ns) * localDir; res.pdf = cosineSampleHemispherePDF(localDir); // TODO: res.weight = self->power * rcp(sqr(self->radius)); res.dist = self->radius; } } return res; }
Light_EvalRes PointLight_eval(const Light* super, const DifferentialGeometry& dg, const Vec3fa& dir) { const PointLight* self = (PointLight*)super; Light_EvalRes res; res.value = Vec3fa(0.f); res.dist = inf; res.pdf = 0.f; if (self->radius > 0.f) { const Vec3fa A = self->position - dg.P; const float a = dot(dir, dir); const float b = 2.f * dot(dir, A); const float centerDist2 = dot(A, A); const float c = centerDist2 - sqr(self->radius); const float radical = sqr(b) - 4.f*a*c; if (radical > 0.f) { const float t_near = (b - sqrt(radical)) / (2.f*a); const float t_far = (b + sqrt(radical)) / (2.f*a); if (t_far > 0.0f) { // TODO: handle interior case res.dist = t_near; const float sinTheta2 = sqr(self->radius) * rcp(centerDist2); const float cosTheta = sqrt(1.f - sinTheta2); res.pdf = uniformSampleConePDF(cosTheta); const float invdist = rcp(t_near); res.value = self->power * res.pdf * sqr(invdist); } } } return res; }