Esempio n. 1
0
void up_assert_code(int errorcode)
#endif
{
#if CONFIG_TASK_NAME_SIZE > 0
  _TCB *rtcb = (_TCB*)g_readytorun.head;
#endif

  up_ledon(LED_ASSERTION);

#ifdef CONFIG_HAVE_FILENAME
#if CONFIG_TASK_NAME_SIZE > 0
  lldbg("Assertion failed at file:%s line: %d task: %s error code: %d\n",
        filename, lineno, rtcb->name, errorcode);
#else
  lldbg("Assertion failed at file:%s line: %d error code: %d\n",
        filename, lineno, errorcode);
#endif
#else
#if CONFIG_TASK_NAME_SIZE > 0
  lldbg("Assertion failed: task: %s error code: %d\n", rtcb->name, errorcode);
#else
  lldbg("Assertion failed: error code: %d\n", errorcode);
#endif
#endif

  up_stackdump();
  up_registerdump();
 _up_assert(errorcode);
}
Esempio n. 2
0
void up_assert(void)
#endif
{
#if CONFIG_TASK_NAME_SIZE > 0
  struct tcb_s *rtcb = this_task();
#endif

  board_autoled_on(LED_ASSERTION);

#ifdef CONFIG_HAVE_FILENAME
#if CONFIG_TASK_NAME_SIZE > 0
  lldbg("Assertion failed at file:%s line: %d task: %s\n",
        filename, lineno, rtcb->name);
#else
  lldbg("Assertion failed at file:%s line: %d\n",
        filename, lineno);
#endif
#else
#if CONFIG_TASK_NAME_SIZE > 0
  lldbg("Assertion failed: task: %s\n", rtcb->name);
#else
  lldbg("Assertion failed\n");
#endif
#endif

  up_stackdump();
  up_registerdump();

#ifdef CONFIG_ARCH_USBDUMP
  /* Dump USB trace data */

  (void)usbtrace_enumerate(assert_tracecallback, NULL);
#endif

#ifdef CONFIG_BOARD_CRASHDUMP
  board_crashdump(up_getsp(), this_task(), filename, lineno);
#endif

  _up_assert(EXIT_FAILURE);
}
Esempio n. 3
0
int up_swint0(int irq, FAR void *context)
{
  uint32_t *regs = (uint32_t*)context;
  uint32_t cause;

  DEBUGASSERT(regs && regs == current_regs);

  /* Software interrupt 0 is invoked with REG_A0 (REG_R4) = system call
   * command and REG_A1-3 and REG_T0-2 (REG_R5-10) = variable number of
   * arguments depending on the system call.
   */

#ifdef CONFIG_DEBUG_SYSCALL
  swidbg("Entry: regs: %p cmd: %d\n", regs, regs[REG_R4]);
  up_registerdump(regs);
#endif

  /* Handle the SWInt according to the command in $4 */

  switch (regs[REG_R4])
    {
      /* R4=SYS_restore_context: This a restore context command:
       *
       *   void up_fullcontextrestore(uint32_t *restoreregs) noreturn_function;
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_restore_context
       *   R5 = restoreregs
       *
       * In this case, we simply need to set current_regs to restore register
       * area referenced in the saved R1. context == current_regs is the normal
       * exception return.  By setting current_regs = context[R1], we force
       * the return to the saved context referenced in R1.
       */

      case SYS_restore_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0);
          current_regs = (uint32_t*)regs[REG_A1];
        }
        break;

      /* R4=SYS_switch_context: This a switch context command:
       *
       *   void up_switchcontext(uint32_t *saveregs, uint32_t *restoreregs);
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_switch_context
       *   R5 = saveregs
       *   R6 = restoreregs
       *
       * In this case, we save the context registers to the save register
       * area reference by the saved contents of R5 and then set
       * current_regs to to the save register area referenced by the saved
       * contents of R6.
       */

      case SYS_switch_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0 && regs[REG_A2] != 0);
          up_copystate((uint32_t*)regs[REG_A1], regs);
          current_regs = (uint32_t*)regs[REG_A2];
        }
        break;

      /* R0=SYS_syscall_return: This a switch context command:
       *
       *   void up_sycall_return(void);
       *
       * At this point, the following values are saved in context:
       *
       *   R0 = SYS_syscall_return
       *
       * We need to restore the saved return address and return in
       * unprivileged thread mode.
       */

#ifdef CONFIG_BUILD_KERNEL
      case SYS_syscall_return:
        {
          struct tcb_s *rtcb = sched_self();
          int index = (int)rtcb->xcp.nsyscalls - 1;

          /* Make sure that there is a saved syscall return address. */

          DEBUGASSERT(index >= 0);

          /* Setup to return to the saved syscall return address in
           * the original mode.
           */

          current_regs[REG_EPC] = rtcb->xcp.syscall[index].sysreturn;
#error "Missing logic -- need to restore the original mode"
          rtcb->xcp.nsyscalls   = index;
        }
        break;
#endif

      /* This is not an architecture-specify system call.  If NuttX is built
       * as a standalone kernel with a system call interface, then all of the
       * additional system calls must be handled as in the default case.
       */

      default:
        {
#ifdef CONFIG_BUILD_KERNEL
          FAR struct tcb_s *rtcb = sched_self();
          int index = rtcb->xcp.nsyscalls;

          /* Verify that the SYS call number is within range */

          DEBUGASSERT(current_regs[REG_A0] < SYS_maxsyscall);

          /* Make sure that we got here that there is a no saved syscall
           * return address.  We cannot yet handle nested system calls.
           */

          DEBUGASSERT(index < CONFIG_SYS_NNEST);

          /* Setup to return to dispatch_syscall in privileged mode. */

          rtcb->xcpsyscall[index].sysreturn = regs[REG_EPC];
#error "Missing logic -- Need to save mode"
          rtcb->xcp.nsyscalls  = index + 1;

          regs[REG_EPC] = (uint32_t)dispatch_syscall;
#error "Missing logic -- Need to set privileged mode"

          /* Offset R0 to account for the reserved values */

          current_regs[REG_R0] -= CONFIG_SYS_RESERVED;
#else
          slldbg("ERROR: Bad SYS call: %d\n", regs[REG_A0]);
#endif
        }
        break;
    }

  /* Report what happened.  That might difficult in the case of a context switch */

#ifdef CONFIG_DEBUG_SYSCALL
  if (regs != current_regs)
    {
      swidbg("SWInt Return: Context switch!\n");
      up_registerdump((const uint32_t*)current_regs);
    }
  else
    {
      swidbg("SWInt Return: %d\n", regs[REG_V0]);
    }
#endif

  /* Clear the pending software interrupt 0 in the PIC32 interrupt block */

  up_clrpend_irq(PIC32MX_IRQSRC_CS0);

  /* And reset the software interrupt bit in the MIPS CAUSE register */

  cause  = cp0_getcause();
  cause &= ~CP0_CAUSE_IP0;
  cp0_putcause(cause);

  return OK;
}
Esempio n. 4
0
int up_swint0(int irq, FAR void *context)
{
  uint32_t *regs = (uint32_t*)context;

  DEBUGASSERT(regs && regs == current_regs);

  /* Software interrupt 0 is invoked with REG_A0 (REG_R4) = system call
   * command and REG_A1-3 and REG_T0-2 (REG_R5-10) = variable number of
   * arguments depending on the system call.
   */

#ifdef DEBUG_SWINT0
  swidbg("Entry: regs: %p cmd: %d\n", regs, regs[REG_R4]);
  up_registerdump(regs);
#endif

  /* Handle the SWInt according to the command in $4 */

  switch (regs[REG_R4])
    {
      /* R4=SYS_restore_context: This a restore context command:
       *
       *   void up_fullcontextrestore(uint32_t *restoreregs) __attribute__ ((noreturn));
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_restore_context
       *   R5 = restoreregs
       *
       * In this case, we simply need to set current_regs to restore register
       * area referenced in the saved R1. context == current_regs is the normal
       * exception return.  By setting current_regs = context[R1], we force
       * the return to the saved context referenced in R1.
       */

      case SYS_restore_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0);
          current_regs = (uint32_t*)regs[REG_A1];
        }
        break;

      /* R4=SYS_switch_context: This a switch context command:
       *
       *   void up_switchcontext(uint32_t *saveregs, uint32_t *restoreregs);
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_switch_context
       *   R5 = saveregs
       *   R6 = restoreregs
       *
       * In this case, we save the context registers to the save register
       * area reference by the saved contents of R5 and then set
       * current_regs to to the save register area referenced by the saved
       * contents of R6.
       */

      case SYS_switch_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0 && regs[REG_A2] != 0);
          memcpy((uint32_t*)regs[REG_A1], regs, XCPTCONTEXT_SIZE);
          current_regs = (uint32_t*)regs[REG_A2];
        }
        break;

      /* This is not an architecture-specify system call.  If NuttX is built
       * as a standalone kernel with a system call interface, then all of the
       * additional system calls must be handled as in the default case.
       */

      default:
#ifdef CONFIG_NUTTX_KERNEL
        dispatch_syscall(regs);
#else
        slldbg("ERROR: Bad SYS call: %d\n", regs[REG_A0]);
#endif
        break;
    }

  /* Report what happened.  That might difficult in the case of a context switch */

#ifdef DEBUG_SWINT0
  if (regs != current_regs)
    {
      swidbg("SWInt Return: Context switch!\n");
      up_registerdump(current_regs);
    }
  else
    {
      swidbg("SWInt Return: %d\n", regs[REG_V0]);
    }
#endif

  return OK;
}
Esempio n. 5
0
static void up_dumpstate(void)
{
  struct tcb_s *rtcb = this_task();
  uint16_t sp = up_getsp();
  uint16_t ustackbase;
  uint16_t ustacksize;
#if CONFIG_ARCH_INTERRUPTSTACK > 3
  uint16_t istackbase;
  uint16_t istacksize;
#endif

  /* Get the limits on the user stack memory */

  if (rtcb->pid == 0)
    {
      ustackbase = g_idle_topstack - 4;
      ustacksize = CONFIG_IDLETHREAD_STACKSIZE;
    }
  else
    {
      ustackbase = (uint16_t)rtcb->adj_stack_ptr;
      ustacksize = (uint16_t)rtcb->adj_stack_size;
    }

  /* Get the limits on the interrupt stack memory */

#if CONFIG_ARCH_INTERRUPTSTACK > 3
  istackbase = (uint16_t)&g_intstackbase;
  istacksize = (CONFIG_ARCH_INTERRUPTSTACK & ~3) - 4;

  /* Show interrupt stack info */

  lldbg("sp:     %04x\n", sp);
  lldbg("IRQ stack:\n");
  lldbg("  base: %04x\n", istackbase);
  lldbg("  size: %04x\n", istacksize);

  /* Does the current stack pointer lie within the interrupt
   * stack?
   */

  if (sp <= istackbase && sp > istackbase - istacksize)
    {
      /* Yes.. dump the interrupt stack */

      up_stackdump(sp, istackbase);

      /* Extract the user stack pointer which should lie
       * at the base of the interrupt stack.
       */

      sp = g_intstackbase;
      lldbg("sp:     %04x\n", sp);
    }

  /* Show user stack info */

  lldbg("User stack:\n");
  lldbg("  base: %04x\n", ustackbase);
  lldbg("  size: %04x\n", ustacksize);
#else
  lldbg("sp:         %04x\n", sp);
  lldbg("stack base: %04x\n", ustackbase);
  lldbg("stack size: %04x\n", ustacksize);
#endif

  /* Dump the user stack if the stack pointer lies within the allocated user
   * stack memory.
   */

  if (sp > ustackbase || sp <= ustackbase - ustacksize)
    {
#if !defined(CONFIG_ARCH_INTERRUPTSTACK) || CONFIG_ARCH_INTERRUPTSTACK < 4
      lldbg("ERROR: Stack pointer is not within allocated stack\n");
#endif
    }
  else
    {
      up_stackdump(sp, ustackbase);
    }

  /* Then dump the registers (if available) */

  up_registerdump();

#ifdef CONFIG_ARCH_USBDUMP
  /* Dump USB trace data */

  (void)usbtrace_enumerate(assert_tracecallback, NULL);
#endif
}
Esempio n. 6
0
int lm32_swint(int irq, FAR void *context)
{
  uint32_t *regs = (uint32_t *)context;

  DEBUGASSERT(g_current_regs == NULL);
  g_current_regs = regs;
 
  /* Software interrupt 0 is invoked with REG_A0 (REG_X10) = system call
   * command and REG_A1-6 = variable number of
   * arguments depending on the system call.
   */

#ifdef CONFIG_DEBUG_SYSCALL_INFO
  svcinfo("Entry: regs: %p cmd: %d\n", regs, regs[REG_A0]);
  up_registerdump(regs);
#endif

  /* Handle the SWInt according to the command in $a0 */

  switch (regs[REG_A0])
    {
      /* A0=SYS_restore_context: This a restore context command:
       *
       *   void up_fullcontextrestore(uint32_t *restoreregs) noreturn_function;
       *
       * At this point, the following values are saved in context:
       *
       *   A0 = SYS_restore_context
       *   A1 = restoreregs
       *
       * In this case, we simply need to set g_current_regs to restore register
       * area referenced in the saved R1. context == g_current_regs is the normal
       * exception return.  By setting g_current_regs = context[R1], we force
       * the return to the saved context referenced in $a1.
       */

      case SYS_restore_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0);
          g_current_regs = (uint32_t *)regs[REG_A1];
        }
        break;

      /* A0=SYS_switch_context: This a switch context command:
       *
       *   void up_switchcontext(uint32_t *saveregs, uint32_t *restoreregs);
       *
       * At this point, the following values are saved in context:
       *
       *   A0 = SYS_switch_context
       *   A1 = saveregs
       *   A2 = restoreregs
       *
       * In this case, we save the context registers to the save register
       * area reference by the saved contents of R5 and then set
       * g_current_regs to to the save register area referenced by the saved
       * contents of R6.
       */

      case SYS_switch_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0 && regs[REG_A2] != 0);
          lm32_copystate((uint32_t *)regs[REG_A1], regs);
          g_current_regs = (uint32_t *)regs[REG_A2];
        }
        break;

      /* A0=SYS_syscall_return: This a switch context command:
       *
       *   void up_sycall_return(void);
       *
       * At this point, the following values are saved in context:
       *
       *   A0 = SYS_syscall_return
       *
       * We need to restore the saved return address and return in
       * unprivileged thread mode.
       */

#ifdef CONFIG_BUILD_KERNEL
      case SYS_syscall_return:
        {
          struct tcb_s *rtcb = sched_self();
          int index = (int)rtcb->xcp.nsyscalls - 1;

          /* Make sure that there is a saved syscall return address. */

          DEBUGASSERT(index >= 0);

          /* Setup to return to the saved syscall return address in
           * the original mode.
           */

          g_current_regs[REG_EPC] = rtcb->xcp.syscall[index].sysreturn;
#error "Missing logic -- need to restore the original mode"
          rtcb->xcp.nsyscalls   = index;
        }
        break;
#endif

      /* This is not an architecture-specify system call.  If NuttX is built
       * as a standalone kernel with a system call interface, then all of the
       * additional system calls must be handled as in the default case.
       */

      default:
        {
#ifdef CONFIG_BUILD_KERNEL
          FAR struct tcb_s *rtcb = sched_self();
          int index = rtcb->xcp.nsyscalls;

          /* Verify that the SYS call number is within range */

          DEBUGASSERT(g_current_regs[REG_A0] < SYS_maxsyscall);

          /* Make sure that we got here that there is a no saved syscall
           * return address.  We cannot yet handle nested system calls.
           */

          DEBUGASSERT(index < CONFIG_SYS_NNEST);

          /* Setup to return to dispatch_syscall in privileged mode. */

          rtcb->xcpsyscall[index].sysreturn = regs[REG_EPC];
#error "Missing logic -- Need to save mode"
          rtcb->xcp.nsyscalls  = index + 1;

          regs[REG_EPC] = (uint32_t)dispatch_syscall;
#error "Missing logic -- Need to set privileged mode"

          /* Offset R0 to account for the reserved values */

          g_current_regs[REG_A0] -= CONFIG_SYS_RESERVED;
#else
          svcerr("ERROR: Bad SYS call: %d\n", regs[REG_A0]);
#endif
        }
        break;
    }

  /* Report what happened.  That might difficult in the case of a context switch */

#ifdef CONFIG_DEBUG_SYSCALL_INFO
  if (regs != g_current_regs)
    {
      svcinfo("SWInt Return: Context switch!\n");
      up_registerdump((const uint32_t *)g_current_regs);
    }
  else
    {
      svcinfo("SWInt Return: %d\n", regs[REG_A0]);
    }
#endif


#if defined(CONFIG_ARCH_FPU) || defined(CONFIG_ARCH_ADDRENV)
  /* Check for a context switch.  If a context switch occurred, then
   * g_current_regs will have a different value than it did on entry.  If an
   * interrupt level context switch has occurred, then restore the floating
   * point state and the establish the correct address environment before
   * returning from the interrupt.
   */

  if (regs != g_current_regs)
    {
#ifdef CONFIG_ARCH_FPU
      /* Restore floating point registers */

      up_restorefpu((uint32_t *)g_current_regs);
#endif

#ifdef CONFIG_ARCH_ADDRENV
      /* Make sure that the address environment for the previously
       * running task is closed down gracefully (data caches dump,
       * MMU flushed) and set up the address environment for the new
       * thread at the head of the ready-to-run list.
       */

      (void)group_addrenv(NULL);
#endif
    }
#endif

  return OK;
}