static uint32_t getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { UChar32 *u32; UChar *u; uint32_t value; int32_t u16Length, ratio; UErrorCode errorCode; /* write the Unicode result code point or string index */ if(m->uLen==1) { u16Length=U16_LENGTH(m->u); value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); } else { /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ /* get the result code point string and its 16-bit string length */ u32=UCM_GET_CODE_POINTS(table, m); errorCode=U_ZERO_ERROR; u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { exit(errorCode); } /* allocate it and put its length and index into the value */ value= (((uint32_t)m->uLen+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| ((uint32_t)utm_countItems(extData->toUUChars)); u=utm_allocN(extData->toUUChars, u16Length); /* write the result 16-bit string */ errorCode=U_ZERO_ERROR; u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { exit(errorCode); } } if(m->f==0) { value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; } /* update statistics */ if(m->bLen>extData->maxInBytes) { extData->maxInBytes=m->bLen; } if(u16Length>extData->maxOutUChars) { extData->maxOutUChars=u16Length; } ratio=(u16Length+(m->bLen-1))/m->bLen; if(ratio>extData->maxUCharsPerByte) { extData->maxUCharsPerByte=ratio; } return value; }
Normalizer2DataBuilder::~Normalizer2DataBuilder() { utrie2_close(normTrie); int32_t normsLength=utm_countItems(normMem); for(int32_t i=1; i<normsLength; ++i) { delete norms[i].mapping; delete norms[i].rawMapping; delete norms[i].compositions; } utm_close(normMem); utrie2_close(norm16Trie); }
/* * works like generateToUTable(), except that the * output section consists of two arrays, one for input UChars and one * for result values * * also, fromUTable sections are always stored in a compact form for * access via binary search */ static UBool generateFromUTable(CnvExtData *extData, UCMTable *table, int32_t start, int32_t limit, int32_t unitIndex, uint32_t defaultValue) { UCMapping *mappings, *m; int32_t *map; int32_t i, j, uniqueCount, count, subStart, subLimit; UChar *uchars; UChar32 low, high, prev; UChar *sectionUChars; uint32_t *sectionValues; mappings=table->mappings; map=table->reverseMap; /* step 1: examine the input units; set low, high, uniqueCount */ m=mappings+map[start]; uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); low=uchars[unitIndex]; uniqueCount=1; prev=high=low; for(i=start+1; i<limit; ++i) { m=mappings+map[i]; uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); high=uchars[unitIndex]; if(high!=prev) { prev=high; ++uniqueCount; } } /* step 2: allocate the section; set count, section */ /* the fromUTable always stores for access via binary search */ count=uniqueCount; /* allocate the section: 1 entry for the header + count for the items */ sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); /* write the section header */ *sectionUChars++=(UChar)count; *sectionValues++=defaultValue; /* step 3: write temporary section table with subsection starts */ prev=low-1; /* just before low to prevent empty subsections before low */ j=0; /* section table index */ for(i=start; i<limit; ++i) { m=mappings+map[i]; uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); high=uchars[unitIndex]; if(high!=prev) { /* start of a new subsection for unit high */ prev=high; /* write the entry with the subsection start */ sectionUChars[j]=(UChar)high; sectionValues[j]=(uint32_t)i; ++j; } } /* assert(j==count) */ /* step 4: recurse and write results */ subLimit=(int32_t)(sectionValues[0]); for(j=0; j<count; ++j) { subStart=subLimit; subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; /* see if there is exactly one input unit sequence of length unitIndex+1 */ defaultValue=0; m=mappings+map[subStart]; if(m->uLen==unitIndex+1) { /* do not include this in generateToUTable() */ ++subStart; if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { /* print error for multiple same-input-sequence mappings */ fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); ucm_printMapping(table, m, stderr); ucm_printMapping(table, mappings+map[subStart], stderr); return FALSE; } defaultValue=getFromUBytesValue(extData, table, m); } if(subStart==subLimit) { /* write the result for the input sequence ending here */ sectionValues[j]=defaultValue; } else { /* write the index to the subsection table */ sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); /* recurse */ if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { return FALSE; } } } return TRUE; }
static uint32_t getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { uint8_t *bytes, *resultBytes; uint32_t value; int32_t u16Length, ratio; if(m->f==2) { /* * no mapping, <subchar1> preferred * * no need to count in statistics because the subchars are already * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, * and this non-mapping does not count for maxInUChars which are always * trivially at least two if counting unmappable supplementary code points */ return UCNV_EXT_FROM_U_SUBCHAR1; } bytes=UCM_GET_BYTES(table, m); value=0; switch(m->bLen) { /* 1..3: store the bytes in the value word */ case 3: value=((uint32_t)*bytes++)<<16; case 2: value|=((uint32_t)*bytes++)<<8; case 1: value|=*bytes; break; default: /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ /* store the bytes in fromUBytes[] and the index in the value word */ value=(uint32_t)utm_countItems(extData->fromUBytes); resultBytes=utm_allocN(extData->fromUBytes, m->bLen); uprv_memcpy(resultBytes, bytes, m->bLen); break; } value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; if(m->f==0) { value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; } /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ if(m->uLen==1) { u16Length=U16_LENGTH(m->u); } else { u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); } /* update statistics */ if(u16Length>extData->maxInUChars) { extData->maxInUChars=u16Length; } if(m->bLen>extData->maxOutBytes) { extData->maxOutBytes=m->bLen; } ratio=(m->bLen+(u16Length-1))/u16Length; if(ratio>extData->maxBytesPerUChar) { extData->maxBytesPerUChar=ratio; } return value; }
/* * Recursive toUTable generator core function. * Preconditions: * - start<limit (There is at least one mapping.) * - The mappings are sorted lexically. (Access is through the reverseMap.) * - All mappings between start and limit have input sequences that share * the same prefix of unitIndex length, and therefore all of these sequences * are at least unitIndex+1 long. * - There are only relevant mappings available through the reverseMap, * see reduceToUMappings(). * * One function invocation generates one section table. * * Steps: * 1. Count the number of unique unit values and get the low/high unit values * that occur at unitIndex. * 2. Allocate the section table with possible optimization for linear access. * 3. Write temporary version of the section table with start indexes of * subsections, each corresponding to one unit value at unitIndex. * 4. Iterate through the table once more, and depending on the subsection length: * 0: write 0 as a result value (unused byte in linear-access section table) * >0: if there is one mapping with an input unit sequence of unitIndex+1 * then defaultValue=compute the mapping result for this whole sequence * else defaultValue=0 * * recurse into the subsection */ static UBool generateToUTable(CnvExtData *extData, UCMTable *table, int32_t start, int32_t limit, int32_t unitIndex, uint32_t defaultValue) { UCMapping *mappings, *m; int32_t *map; int32_t i, j, uniqueCount, count, subStart, subLimit; uint8_t *bytes; int32_t low, high, prev; uint32_t *section; mappings=table->mappings; map=table->reverseMap; /* step 1: examine the input units; set low, high, uniqueCount */ m=mappings+map[start]; bytes=UCM_GET_BYTES(table, m); low=bytes[unitIndex]; uniqueCount=1; prev=high=low; for(i=start+1; i<limit; ++i) { m=mappings+map[i]; bytes=UCM_GET_BYTES(table, m); high=bytes[unitIndex]; if(high!=prev) { prev=high; ++uniqueCount; } } /* step 2: allocate the section; set count, section */ count=(high-low)+1; if(unitIndex==0 || uniqueCount>=(3*count)/4) { /* * for the root table and for fairly full tables: * allocate for direct, linear array access * by keeping count, to write an entry for each unit value * from low to high */ } else { count=uniqueCount; } /* allocate the section: 1 entry for the header + count for the items */ section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); /* write the section header */ *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; /* step 3: write temporary section table with subsection starts */ prev=low-1; /* just before low to prevent empty subsections before low */ j=0; /* section table index */ for(i=start; i<limit; ++i) { m=mappings+map[i]; bytes=UCM_GET_BYTES(table, m); high=bytes[unitIndex]; if(high!=prev) { /* start of a new subsection for unit high */ if(count>uniqueCount) { /* write empty subsections for unused units in a linear table */ while(++prev<high) { section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; } } else { prev=high; } /* write the entry with the subsection start */ section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; } } /* assert(j==count) */ /* step 4: recurse and write results */ subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); for(j=0; j<count; ++j) { subStart=subLimit; subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; /* remove the subStart temporary value */ section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; if(subStart==subLimit) { /* leave the value zero: empty subsection for unused unit in a linear table */ continue; } /* see if there is exactly one input unit sequence of length unitIndex+1 */ defaultValue=0; m=mappings+map[subStart]; if(m->bLen==unitIndex+1) { /* do not include this in generateToUTable() */ ++subStart; if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { /* print error for multiple same-input-sequence mappings */ fprintf(stderr, "error: multiple mappings from same bytes\n"); ucm_printMapping(table, m, stderr); ucm_printMapping(table, mappings+map[subStart], stderr); return FALSE; } defaultValue=getToUnicodeValue(extData, table, m); } if(subStart==subLimit) { /* write the result for the input sequence ending here */ section[j]|=defaultValue; } else { /* write the index to the subsection table */ section[j]|=(uint32_t)utm_countItems(extData->toUTable); /* recurse */ if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { return FALSE; } } } return TRUE; }
static uint32_t CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData, int32_t tableType) { CnvExtData *extData=(CnvExtData *)cnvData; int32_t length, top, headerSize; int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; if(tableType&TABLE_BASE) { headerSize=0; } else { _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; /* write the header and base table name for an extension-only table */ length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; while(length&3) { /* add padding */ extData->ucm->baseName[length++]=0; } headerSize=sizeof(header)+length; /* fill the header */ header.version[0]=4; header.version[1]=2; header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); /* write the header and the base table name */ udata_writeBlock(pData, &header, sizeof(header)); udata_writeBlock(pData, extData->ucm->baseName, length); } /* fill indexes[] - offsets/indexes are in units of the target array */ top=0; indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; top+=length*4; indexes[UCNV_EXT_TO_U_INDEX]=top; indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); top+=length*4; indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); top+=length*2; indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; length=utm_countItems(extData->fromUTableUChars); top+=length*2; if(top&3) { /* add padding */ *((UChar *)utm_alloc(extData->fromUTableUChars))=0; *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; ++length; top+=2; } indexes[UCNV_EXT_FROM_U_LENGTH]=length; indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; top+=length*4; indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; length=utm_countItems(extData->fromUBytes); top+=length; if(top&1) { /* add padding */ *((uint8_t *)utm_alloc(extData->fromUBytes))=0; ++length; ++top; } indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; top+=length*2; indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; length=extData->stage3Top; top+=length*2; if(top&3) { /* add padding */ extData->stage3[extData->stage3Top++]=0; ++length; top+=2; } indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; top+=length*4; indexes[UCNV_EXT_SIZE]=top; /* statistics */ indexes[UCNV_EXT_COUNT_BYTES]= (extData->maxInBytes<<16)| (extData->maxOutBytes<<8)| extData->maxBytesPerUChar; indexes[UCNV_EXT_COUNT_UCHARS]= (extData->maxInUChars<<16)| (extData->maxOutUChars<<8)| extData->maxUCharsPerByte; indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; /* write the extension data */ udata_writeBlock(pData, indexes, sizeof(indexes)); udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); #if 0 { int32_t i, j; length=extData->stage1Top; printf("\nstage1[%x]:\n", length); for(i=0; i<length; ++i) { if(extData->stage1[i]!=length) { printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); } } j=length; length=extData->stage2Top; printf("\nstage2[%x]:\n", length); for(i=0; i<length; ++j, ++i) { if(extData->stage2[i]!=0) { printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); } } length=extData->stage3Top; printf("\nstage3[%x]:\n", length); for(i=0; i<length; ++i) { if(extData->stage3[i]!=0) { printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); } } length=extData->stage3bTop; printf("\nstage3b[%x]:\n", length); for(i=0; i<length; ++i) { if(extData->stage3b[i]!=0) { printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); } } } #endif if(VERBOSE) { printf("size of extension data: %ld\n", (long)top); } /* return the number of bytes that should have been written */ return (uint32_t)(headerSize+top); }