Esempio n. 1
0
void StagingTexture2DBuffer::CopyFromImage(VkCommandBuffer command_buffer, VkImage image,
                                           VkImageAspectFlags src_aspect, u32 x, u32 y, u32 width,
                                           u32 height, u32 level, u32 layer)
{
  // Issue the image->buffer copy.
  VkBufferImageCopy image_copy = {
      0,                                              // VkDeviceSize             bufferOffset
      m_width,                                        // uint32_t                 bufferRowLength
      0,                                              // uint32_t                 bufferImageHeight
      {src_aspect, level, layer, 1},                  // VkImageSubresourceLayers imageSubresource
      {static_cast<s32>(x), static_cast<s32>(y), 0},  // VkOffset3D               imageOffset
      {width, height, 1}                              // VkExtent3D               imageExtent
  };
  vkCmdCopyImageToBuffer(command_buffer, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_buffer, 1,
                         &image_copy);

  // Ensure the write has completed.
  VkDeviceSize copy_size = m_row_stride * height;
  Util::BufferMemoryBarrier(command_buffer, m_buffer, VK_ACCESS_TRANSFER_WRITE_BIT,
                            VK_ACCESS_HOST_READ_BIT, 0, copy_size, VK_PIPELINE_STAGE_TRANSFER_BIT,
                            VK_PIPELINE_STAGE_HOST_BIT);

  // If we're still mapped, invalidate the mapped range
  if (m_map_pointer && !m_coherent)
  {
    VkMappedMemoryRange range = {VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, nullptr, m_memory,
                                 m_map_offset, m_map_size};
    vkInvalidateMappedMemoryRanges(g_vulkan_context->GetDevice(), 1, &range);
  }
}
Esempio n. 2
0
void Image::copyImageToBuffer(const VkCommandBuffer cmdBuffer, IBufferSP& targetBuffer, const VkBufferImageCopy& bufferImageCopy)
{
	if (!targetBuffer.get())
	{
		return;
	}

    VkImageLayout sourceImageLayout = getImageLayout(bufferImageCopy.imageSubresource.mipLevel, bufferImageCopy.imageSubresource.baseArrayLayer);
    VkAccessFlags sourceAccessMask = getAccessMask(bufferImageCopy.imageSubresource.mipLevel, bufferImageCopy.imageSubresource.baseArrayLayer);
    VkAccessFlags targetAccessMask = targetBuffer->getAccessMask();

    // Prepare source image for copy.

    VkImageSubresourceRange imageSubresourceRange = {bufferImageCopy.imageSubresource.aspectMask, bufferImageCopy.imageSubresource.mipLevel, 1, bufferImageCopy.imageSubresource.baseArrayLayer, bufferImageCopy.imageSubresource.layerCount};

    cmdPipelineBarrier(cmdBuffer, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, imageSubresourceRange);

    // Prepare target buffer for copy.

    targetBuffer->cmdPipelineBarrier(cmdBuffer, VK_ACCESS_TRANSFER_WRITE_BIT);

	// Copy image by command.

	vkCmdCopyImageToBuffer(cmdBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, targetBuffer->getBuffer(), 1, &bufferImageCopy);

    // Revert back.

	targetBuffer->cmdPipelineBarrier(cmdBuffer, targetAccessMask);

    // Revert back.

    cmdPipelineBarrier(cmdBuffer, sourceAccessMask, sourceImageLayout, imageSubresourceRange);
}
Esempio n. 3
0
void StagingTexture2D::CopyFromImage(VkCommandBuffer command_buffer, VkImage image,
  VkImageAspectFlags src_aspect, u32 x, u32 y, u32 width,
  u32 height, u32 level, u32 layer)
{
  u32 block_width = Util::GetBlockWidth(m_format);
  u32 block_x = (x + block_width - 1) / block_width;
  u32 block_y = (y + block_width - 1) / block_width;
  // Issue the image->buffer copy.
  VkBufferImageCopy image_copy = {
      block_y * m_row_stride + block_x * m_texel_size,// VkDeviceSize             bufferOffset
      m_width,                                        // uint32_t                 bufferRowLength
      0,                                              // uint32_t                 bufferImageHeight
      {src_aspect, level, layer, 1},                  // VkImageSubresourceLayers imageSubresource
      {static_cast<s32>(x), static_cast<s32>(y), 0},  // VkOffset3D               imageOffset
      {width, height, 1}                              // VkExtent3D               imageExtent
  };
  vkCmdCopyImageToBuffer(command_buffer, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_buffer, 1,
    &image_copy);

  // Flush CPU and GPU caches if not coherent mapping.
  VkDeviceSize buffer_flush_offset = y * m_row_stride;
  VkDeviceSize buffer_flush_size = height * m_row_stride;
  FlushGPUCache(command_buffer, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
    buffer_flush_offset, buffer_flush_size);
  InvalidateCPUCache(buffer_flush_offset, buffer_flush_size);
}
bool NvGLFWContextVK::readFramebufferRGBX32(uint8_t *dest, int32_t& w, int32_t& h) {
	NvVkRenderTarget& rt = *mainRenderTarget();

	w = rt.width();
	h = rt.height();

	if (!dest)
		return true;

	VkFormat format = rt.targetFormat();

	if (format == VK_FORMAT_R8G8B8A8_UNORM) {
		uint32_t size = 4 * w * h;

		VkBufferImageCopy region;
		region.bufferOffset = 0;
		region.bufferRowLength = 0;
		region.bufferImageHeight = 0;
		region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		region.imageSubresource.baseArrayLayer = 0;
		region.imageSubresource.layerCount = 1;
		region.imageSubresource.mipLevel = 0;
		region.imageOffset = { 0, 0, 0 };
		region.imageExtent = { (uint32_t)w, (uint32_t)h, 1 };

		NvVkBuffer dstBuffer;
		VkResult result = createAndFillBuffer(size, VK_BUFFER_USAGE_FLAG_BITS_MAX_ENUM, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, dstBuffer);
		
		VkCommandBuffer cmd = beginTempCmdBuffer();

		vkCmdCopyImageToBuffer(cmd,
			rt.image(),
			VK_IMAGE_LAYOUT_GENERAL,
			dstBuffer.buffer,
			1, &region);

		result = doneWithTempCmdBufferSubmit(cmd);

		vkDeviceWaitIdle(device());

		uint8_t* ptr = NULL;
		result = vkMapMemory(device(), dstBuffer.mem, 0, size, 0, (void**)&ptr);

		uint32_t rowSize = w * 4;
		ptr += rowSize * (h - 1);

		for (int32_t i = 0; i < h; i++) {
			memcpy(dest, ptr, rowSize);
			dest += rowSize;
			ptr -= rowSize;
		}

		return true;
	}

	return false;
}
Esempio n. 5
0
	void VulkanImage::copy(VulkanTransferBuffer* cb, VulkanBuffer* destination, const VkExtent3D& extent,
						   const VkImageSubresourceLayers& range, VkImageLayout layout)
	{
		VkBufferImageCopy region;
		region.bufferRowLength = destination->getRowPitch();
		region.bufferImageHeight = destination->getSliceHeight();
		region.bufferOffset = 0;
		region.imageOffset.x = 0;
		region.imageOffset.y = 0;
		region.imageOffset.z = 0;
		region.imageExtent = extent;
		region.imageSubresource = range;

		vkCmdCopyImageToBuffer(cb->getCB()->getHandle(), mImage, layout, destination->getHandle(), 1, &region);
	}
Esempio n. 6
0
    std::vector<uint8> CopyContext::readTextureSubresource(const Texture* pTexture, uint32_t subresourceIndex)
    {
        mCommandsPending = true;
        VkBufferImageCopy vkCopy;
        Buffer::SharedPtr pStaging;
        size_t dataSize;
        initTexAccessParams(pTexture, subresourceIndex, vkCopy, pStaging, nullptr, dataSize);

        // Execute the copy
        resourceBarrier(pTexture, Resource::State::CopySource);
        resourceBarrier(pStaging.get(), Resource::State::CopyDest);
        vkCmdCopyImageToBuffer(mpLowLevelData->getCommandList(), pTexture->getApiHandle(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, pStaging->getApiHandle(), 1, &vkCopy);

        flush(true);

        // Map and read the results
        std::vector<uint8> result(dataSize);
        uint8* pData = reinterpret_cast<uint8*>(pStaging->map(Buffer::MapType::Read));
        memcpy_s(result.data(), result.size(), pData, dataSize);

        return result;
    }
Esempio n. 7
0
int main(void) {
    VkInstance instance;
    {
        const char debug_ext[] = "VK_EXT_debug_report";
        const char* extensions[] = {debug_ext,};

        const char validation_layer[] = "VK_LAYER_LUNARG_standard_validation";
        const char* layers[] = {validation_layer,};

        VkInstanceCreateInfo create_info = {
            .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .pApplicationInfo = NULL,
            .enabledLayerCount = NELEMS(layers),
            .ppEnabledLayerNames = layers,
            .enabledExtensionCount = NELEMS(extensions),
            .ppEnabledExtensionNames = extensions,
        };
        assert(vkCreateInstance(&create_info, NULL, &instance) == VK_SUCCESS);
    }

    VkDebugReportCallbackEXT debug_callback;
    {
        VkDebugReportCallbackCreateInfoEXT create_info = {
            .sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT,
            .pNext = NULL,
            .flags = (VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT |
                      VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT),
            .pfnCallback = &debugReportCallback,
            .pUserData = NULL,
        };

        PFN_vkCreateDebugReportCallbackEXT createDebugReportCallback =
            (PFN_vkCreateDebugReportCallbackEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugReportCallbackEXT");
        assert(createDebugReportCallback);
        assert(createDebugReportCallback(instance, &create_info, NULL, &debug_callback) == VK_SUCCESS);
    }

    VkPhysicalDevice phy_device;
    {
        uint32_t num_devices;
        assert(vkEnumeratePhysicalDevices(instance, &num_devices, NULL) == VK_SUCCESS);
        assert(num_devices >= 1);
        VkPhysicalDevice * phy_devices = malloc(sizeof(*phy_devices) * num_devices);
        assert(vkEnumeratePhysicalDevices(instance, &num_devices, phy_devices) == VK_SUCCESS);
        phy_device = phy_devices[0];
        free(phy_devices);
    }

    VkPhysicalDeviceMemoryProperties memory_properties;
    vkGetPhysicalDeviceMemoryProperties(phy_device, &memory_properties);

    VkDevice device;
    {
        float queue_priorities[] = {1.0};
        const char validation_layer[] = "VK_LAYER_LUNARG_standard_validation";
        const char* layers[] = {validation_layer,};

        uint32_t nqueues;
        matchingQueues(phy_device, VK_QUEUE_GRAPHICS_BIT, &nqueues, NULL);
        assert(nqueues > 0);
        uint32_t * queue_family_idxs = malloc(sizeof(*queue_family_idxs) * nqueues);
        matchingQueues(phy_device, VK_QUEUE_GRAPHICS_BIT, &nqueues, queue_family_idxs);

        VkDeviceQueueCreateInfo queue_info = {
            .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .queueFamilyIndex = queue_family_idxs[0],
            .queueCount = 1,
            .pQueuePriorities = queue_priorities,
        };
        free(queue_family_idxs);

        VkPhysicalDeviceFeatures features = {
            .geometryShader = VK_TRUE,
            .fillModeNonSolid = VK_TRUE,
        };

        VkDeviceCreateInfo create_info = {
            .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .queueCreateInfoCount = 1,
            .pQueueCreateInfos = &queue_info,
            .enabledLayerCount = NELEMS(layers),
            .ppEnabledLayerNames = layers,
            .enabledExtensionCount = 0,
            .ppEnabledExtensionNames = NULL,
            .pEnabledFeatures = &features,
        };

        assert(vkCreateDevice(phy_device, &create_info, NULL, &device) == VK_SUCCESS);
    }

    VkQueue queue;
    vkGetDeviceQueue(device, 0, 0, &queue);

    VkCommandPool cmd_pool;
    {
        VkCommandPoolCreateInfo create_info = {
            .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
            .pNext = NULL,
            .flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
            .queueFamilyIndex = 0,
        };
        assert(vkCreateCommandPool(device, &create_info, NULL, &cmd_pool) == VK_SUCCESS);
    }

    VkRenderPass render_pass;
    {
        VkAttachmentDescription attachments[] = {{
                .flags = 0,
                .format = VK_FORMAT_R8G8B8A8_UNORM,
                .samples = VK_SAMPLE_COUNT_8_BIT,
                .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
                .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
                .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
                .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
                .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
                .finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
            }, {
                .flags = 0,
                .format = VK_FORMAT_D16_UNORM,
                .samples = VK_SAMPLE_COUNT_8_BIT,
                .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
                .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
                .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
                .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
                .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
                .finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
            }, {
                .flags = 0,
                .format = VK_FORMAT_R8G8B8A8_UNORM,
                .samples = VK_SAMPLE_COUNT_1_BIT,
                .loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
                .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
                .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
                .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
                .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
                .finalLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
            }};
        VkAttachmentReference attachment_refs[NELEMS(attachments)] = {{
                .attachment = 0,
                .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
            }, {
                .attachment = 1,
                .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
            }, {
                .attachment = 2,
                .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
            }};
        VkSubpassDescription subpasses[1] = {{
                .flags = 0,
                .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
                .inputAttachmentCount = 0,
                .pInputAttachments = NULL,
                .colorAttachmentCount = 1,
                .pColorAttachments = &attachment_refs[0],
                .pResolveAttachments = &attachment_refs[2],
                .pDepthStencilAttachment = &attachment_refs[1],
                .preserveAttachmentCount = 0,
                .pPreserveAttachments = NULL,
            }};
        VkSubpassDependency dependencies[] = {{
                .srcSubpass = 0,
                .dstSubpass = VK_SUBPASS_EXTERNAL,
                .srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
                .dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT,
                .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
                .dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
                .dependencyFlags = 0,
            }};
        VkRenderPassCreateInfo create_info = {
            .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .attachmentCount = NELEMS(attachments),
            .pAttachments = attachments,
            .subpassCount = NELEMS(subpasses),
            .pSubpasses = subpasses,
            .dependencyCount = NELEMS(dependencies),
            .pDependencies = dependencies,
        };
        assert(vkCreateRenderPass(device, &create_info, NULL, &render_pass) == VK_SUCCESS);
    }

    VkImage images[3];
    VkDeviceMemory image_memories[NELEMS(images)];
    VkImageView views[NELEMS(images)];
    createFrameImage(memory_properties, device, render_size,
                     VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_8_BIT,
                     VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_ASPECT_COLOR_BIT,
                     &images[0], &image_memories[0], &views[0]);
    createFrameImage(memory_properties, device, render_size,
                     VK_FORMAT_D16_UNORM, VK_SAMPLE_COUNT_8_BIT,
                     VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_ASPECT_DEPTH_BIT,
                     &images[1], &image_memories[1], &views[1]);
    createFrameImage(memory_properties, device, render_size,
                     VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT,
                     VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
                     VK_IMAGE_ASPECT_COLOR_BIT,
                     &images[2], &image_memories[2], &views[2]);

    VkBuffer verts_buffer;
    VkDeviceMemory verts_memory;
    createBuffer(memory_properties, device, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, sizeof(verts), verts, &verts_buffer, &verts_memory);

    VkBuffer index_buffer;
    VkDeviceMemory index_memory;
    createBuffer(memory_properties, device, VK_BUFFER_USAGE_INDEX_BUFFER_BIT, sizeof(indices), indices, &index_buffer, &index_memory);

    VkBuffer image_buffer;
    VkDeviceMemory image_buffer_memory;
    createBuffer(memory_properties, device, VK_BUFFER_USAGE_TRANSFER_DST_BIT, render_size.height * render_size.width * 4, NULL, &image_buffer, &image_buffer_memory);

    VkFramebuffer framebuffer;
    createFramebuffer(device, render_size, 3, views, render_pass, &framebuffer);

    VkShaderModule shaders[5];
    {
        char* filenames[NELEMS(shaders)] = {"cube.vert.spv", "cube.geom.spv", "cube.frag.spv", "wireframe.geom.spv", "color.frag.spv"};
        for (size_t i = 0; i < NELEMS(shaders); i++){
            size_t code_size;
            uint32_t * code;
            assert((code_size = loadModule(filenames[i], &code)) != 0);

            VkShaderModuleCreateInfo create_info = {
                .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
                .pNext = NULL,
                .flags = 0,
                .codeSize = code_size,
                .pCode = code,
            };
            assert(vkCreateShaderModule(device, &create_info, NULL, &shaders[i]) == VK_SUCCESS);
            free(code);
        }
    }

    VkPipelineLayout pipeline_layout;
    {
        VkPushConstantRange push_range = {
            .stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
            .offset = 0,
            .size = 4,
        };
        VkPipelineLayoutCreateInfo create_info = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .setLayoutCount = 0,
            .pSetLayouts = NULL,
            .pushConstantRangeCount = 1,
            .pPushConstantRanges = &push_range,
        };
        assert(vkCreatePipelineLayout(device, &create_info, NULL, &pipeline_layout) == VK_SUCCESS);
    }

    VkPipeline pipelines[2];
    {
        VkPipelineShaderStageCreateInfo stages[3] = {{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                .pNext = NULL,
                .flags = 0,
                .stage = VK_SHADER_STAGE_VERTEX_BIT,
                .module = shaders[0],
                .pName = "main",
                .pSpecializationInfo = NULL,
            },{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                .pNext = NULL,
                .flags = 0,
                .stage = VK_SHADER_STAGE_GEOMETRY_BIT,
                .module = shaders[1],
                .pName = "main",
                .pSpecializationInfo = NULL,
            },{
                .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                .pNext = NULL,
                .flags = 0,
                .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
                .module = shaders[2],
                .pName = "main",
                .pSpecializationInfo = NULL,
            }};
        VkVertexInputBindingDescription vtx_binding = {
            .binding = 0,
            .stride = sizeof(struct Vertex),
            .inputRate = VK_VERTEX_INPUT_RATE_VERTEX,
        };
        VkVertexInputAttributeDescription vtx_attr = {
            .location = 0,
            .binding = 0,
            .format = VK_FORMAT_R32G32B32_SFLOAT,
            .offset = offsetof(struct Vertex, pos),
        };
        VkPipelineVertexInputStateCreateInfo vtx_state = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .vertexBindingDescriptionCount = 1,
            .pVertexBindingDescriptions = &vtx_binding,
            .vertexAttributeDescriptionCount = 1,
            .pVertexAttributeDescriptions = &vtx_attr,
        };
        VkPipelineInputAssemblyStateCreateInfo ia_state = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
            .primitiveRestartEnable = VK_TRUE,
        };
        VkViewport viewport = {
            .x = 0,
            .y = 0,
            .width = render_size.width,
            .height = render_size.height,
            .minDepth = 0.0,
            .maxDepth = 1.0,
        };
        VkRect2D scissor= {
            .offset = {.x = 0, .y = 0,},
            .extent = render_size,
        };
        VkPipelineViewportStateCreateInfo viewport_state = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .viewportCount = 1,
            .pViewports = &viewport,
            .scissorCount = 1,
            .pScissors = &scissor,
        };
        VkPipelineRasterizationStateCreateInfo rasterization_state = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .depthClampEnable = VK_FALSE,
            .rasterizerDiscardEnable = VK_FALSE,
            .polygonMode = VK_POLYGON_MODE_FILL,
            .cullMode = VK_CULL_MODE_NONE,
            .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
            .depthBiasEnable = VK_FALSE,
            .lineWidth = 1.0,
        };
        VkPipelineMultisampleStateCreateInfo multisample_state = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .rasterizationSamples = VK_SAMPLE_COUNT_8_BIT,
            .sampleShadingEnable = VK_FALSE,
            .minSampleShading = 0.0,
            .pSampleMask = NULL,
            .alphaToCoverageEnable = VK_FALSE,
            .alphaToOneEnable = VK_FALSE,
        };
        VkPipelineDepthStencilStateCreateInfo depth_stencil_state = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .depthTestEnable = VK_TRUE,
            .depthWriteEnable = VK_TRUE,
            .depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL,
            .depthBoundsTestEnable = VK_FALSE,
            .stencilTestEnable = VK_FALSE,
            .front = {},
            .back = {},
            .minDepthBounds = 0.0,
            .maxDepthBounds = 1.0,
        };
        VkPipelineColorBlendAttachmentState color_blend_attachment = {
            .blendEnable = VK_FALSE,
            .colorWriteMask = ( VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT
                                | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT),
        };
        VkPipelineColorBlendStateCreateInfo color_blend_state = {
            .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .logicOpEnable = VK_FALSE, //.logicOp = 0,
            .attachmentCount = 1,
            .pAttachments = &color_blend_attachment,
            .blendConstants = {},
        };

        VkGraphicsPipelineCreateInfo create_info = {
            .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
            .pNext = NULL,
            .flags = 0,
            .stageCount = NELEMS(stages),
            .pStages = stages,
            .pVertexInputState = &vtx_state,
            .pInputAssemblyState = &ia_state,
            .pTessellationState = NULL,
            .pViewportState = &viewport_state,
            .pRasterizationState = &rasterization_state,
            .pMultisampleState = &multisample_state,
            .pDepthStencilState = &depth_stencil_state,
            .pColorBlendState = &color_blend_state,
            .pDynamicState = NULL,
            .layout = pipeline_layout,
            .renderPass = render_pass,
            .subpass = 0,
            .basePipelineHandle = VK_NULL_HANDLE,
            .basePipelineIndex = 0,
        };
        assert(vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &create_info, NULL, &pipelines[0]) == VK_SUCCESS);
        stages[1].module = shaders[3];
        stages[2].module = shaders[4];
        rasterization_state.polygonMode = VK_POLYGON_MODE_LINE;
        assert(vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &create_info, NULL, &pipelines[1]) == VK_SUCCESS);
    }

    VkCommandBuffer draw_buffers[2];
    {
        VkCommandBufferAllocateInfo allocate_info = {
            .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
            .pNext = NULL,
            .commandPool = cmd_pool,
            .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
            .commandBufferCount = NELEMS(draw_buffers),
        };
        assert(vkAllocateCommandBuffers(device, &allocate_info, draw_buffers) == VK_SUCCESS);
    }

    {
        VkCommandBufferBeginInfo begin_info = {
            .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
            .pNext = NULL,
            .flags = 0,
            .pInheritanceInfo = NULL,
        };

        VkClearValue clear_values[] = {{
                .color.float32 = {0.0, 0.0, 0.0, 1.0},
            }, {
                .depthStencil = {.depth = 1.0},
            }};
        VkRenderPassBeginInfo renderpass_begin_info = {
            .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
            .pNext = NULL,
            .renderPass = render_pass,
            .framebuffer = framebuffer,
            .renderArea = {
                .offset = {.x = 0, .y = 0},
                .extent = render_size,
            },
            .clearValueCount = NELEMS(clear_values),
            .pClearValues = clear_values,
        };
        for (size_t i = 0; i < NELEMS(draw_buffers); i++){
            assert(vkBeginCommandBuffer(draw_buffers[i], &begin_info) == VK_SUCCESS);
            uint32_t persp = i == 0;
            vkCmdPushConstants(draw_buffers[i], pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(persp), &persp);
            vkCmdBeginRenderPass(draw_buffers[i], &renderpass_begin_info, VK_SUBPASS_CONTENTS_INLINE);
            VkDeviceSize offset = 0;
            vkCmdBindVertexBuffers(draw_buffers[i], 0, 1, &verts_buffer, &offset);
            vkCmdBindIndexBuffer(draw_buffers[i], index_buffer, 0, VK_INDEX_TYPE_UINT32);
            for (size_t j = 0; j < NELEMS(pipelines); j++) {
                vkCmdBindPipeline(draw_buffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines[j]);
                vkCmdDrawIndexed(draw_buffers[i], 20, 27, 0, 0, 0);
            }
            vkCmdEndRenderPass(draw_buffers[i]);
        }

        VkBufferImageCopy copy = {
            .bufferOffset = 0,
            .bufferRowLength = 0, // Tightly packed
            .bufferImageHeight = 0, // Tightly packed
            .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
            .imageOffset = {0, 0, 0},
            .imageExtent = {.width = render_size.width,
                            .height = render_size.height,
                            .depth = 1},
        };
        VkBufferMemoryBarrier transfer_barrier = {
            .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
            .pNext = 0,
            .srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
            .dstAccessMask = VK_ACCESS_HOST_READ_BIT,
            .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
            .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
            .buffer = image_buffer,
            .offset = 0,
            .size = VK_WHOLE_SIZE,
        };
        for (size_t i = 0; i < NELEMS(draw_buffers); i++){
            vkCmdCopyImageToBuffer(draw_buffers[i], images[2], VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, image_buffer, 1, &copy);

            vkCmdPipelineBarrier(draw_buffers[i], VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0, 0, NULL, 1, &transfer_barrier, 0, NULL);
            assert(vkEndCommandBuffer(draw_buffers[i]) == VK_SUCCESS);
        }
    }

    VkFence fence;
    {
        VkFenceCreateInfo create_info = {
            .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
            .pNext = 0,
            .flags = 0,
        };
        assert(vkCreateFence(device, &create_info, NULL, &fence) == VK_SUCCESS);
    }

    {
        char * filenames[] = {"cube_persp.tif", "cube_ortho.tif"};
        char * image_data;
        assert(vkMapMemory(device, image_buffer_memory, 0, VK_WHOLE_SIZE, 0, (void **) &image_data) == VK_SUCCESS);
        VkMappedMemoryRange image_flush = {
            .sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, .pNext = NULL,
            .memory = image_buffer_memory,
            .offset = 0,
            .size = VK_WHOLE_SIZE,
        };

        VkSubmitInfo submit_info = {
            .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
            .pNext = NULL,
            .waitSemaphoreCount = 0,
            .pWaitSemaphores = NULL,
            .pWaitDstStageMask = NULL,
            .commandBufferCount = 1,
            .pCommandBuffers = NULL,
            .signalSemaphoreCount = 0,
            .pSignalSemaphores = NULL,
        };

        for (size_t i = 0; i < NELEMS(filenames); i++){
            submit_info.pCommandBuffers = &draw_buffers[i];
            assert(vkResetFences(device, 1, &fence) == VK_SUCCESS);
            assert(vkQueueSubmit(queue, 1, &submit_info, fence) == VK_SUCCESS);
            assert(vkWaitForFences(device, 1, &fence, VK_TRUE, UINT64_MAX) == VK_SUCCESS);
            assert(vkInvalidateMappedMemoryRanges(device, 1, &image_flush) == VK_SUCCESS);
            assert(writeTiff(filenames[i], image_data, render_size, nchannels) == 0);
        }

        vkUnmapMemory(device, image_buffer_memory);
    }

    assert(vkQueueWaitIdle(queue) == VK_SUCCESS);
    vkDestroyFence(device, fence, NULL);

    vkDestroyFramebuffer(device, framebuffer, NULL);
    for (size_t i = 0; i < NELEMS(images); i++){
        vkDestroyImage(device, images[i], NULL);
        vkDestroyImageView(device, views[i], NULL);
        vkFreeMemory(device, image_memories[i], NULL);
    }

    vkDestroyBuffer(device, image_buffer, NULL);
    vkFreeMemory(device, image_buffer_memory, NULL);

    vkDestroyBuffer(device, verts_buffer, NULL);
    vkFreeMemory(device, verts_memory, NULL);

    vkDestroyBuffer(device, index_buffer, NULL);
    vkFreeMemory(device, index_memory, NULL);

    for (size_t i = 0; i < NELEMS(pipelines); i++){
        vkDestroyPipeline(device, pipelines[i], NULL);
    }
    vkDestroyPipelineLayout(device, pipeline_layout, NULL);
    for(size_t i = 0; i < NELEMS(shaders); i++)
        vkDestroyShaderModule(device, shaders[i], NULL);

    vkDestroyRenderPass(device, render_pass, NULL);
    vkFreeCommandBuffers(device, cmd_pool, NELEMS(draw_buffers), draw_buffers);
    vkDestroyCommandPool(device, cmd_pool, NULL);
    vkDestroyDevice(device, NULL);
    {
        PFN_vkDestroyDebugReportCallbackEXT destroyDebugReportCallback =
            (PFN_vkDestroyDebugReportCallbackEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugReportCallbackEXT");
        assert(destroyDebugReportCallback);
        destroyDebugReportCallback(instance, debug_callback, NULL);
    }
    vkDestroyInstance(instance, NULL);
    return 0;
}