Esempio n. 1
0
static	int	init_dma(pci_bus_cookie *cookie)
{
	addr_t	temp;
	uint8	val = in8(cookie->io_port + BM_STATUS_REG );
	TRACE(("entering init_dma status = %d\n",val));
	if (!( val &( BM_SR_MASK_DRV1 | BM_SR_MASK_DRV0 )))
	{
      		TRACE(("BM_STATUS is wrong %d\n",val));
      		return -1;
      	}

	cookie->prd_region_id = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "ide_prd_buf", (void **)&cookie->prd_buf_address,
							REGION_ADDR_ANY_ADDRESS, 4096, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);


   	cookie->stat_reg = in8( cookie->io_port +  + BM_STATUS_REG );
   	cookie->stat_reg = cookie->stat_reg & 0xe0;

	memset(cookie->prd_buf_address, 0, 4096);

	vm_get_page_mapping(vm_get_kernel_aspace_id(), (addr_t)cookie->prd_buf_address, &cookie->prd_phy_address);
	cookie->raw_buffer = (uint8*)0x80000;
	vm_map_physical_memory(vm_get_kernel_aspace_id(), "test", (void *)&cookie->mapped_address, REGION_ADDR_ANY_ADDRESS,0x10000, LOCK_RW|LOCK_KERNEL, (addr_t)cookie->raw_buffer);
	TRACE(("mapped address is %X\n",cookie->mapped_address));
      	return 0;
}
Esempio n. 2
0
static int vesa_ioctl(dev_cookie cookie, int op, void *buf, size_t len)
{
	int err = 0;

	if(!vesa.enabled)
		return ERR_NOT_FOUND;

	switch(op) {
		case IOCTL_DEVFS_GET_FRAMEBUFFER_INFO:
			if(is_kernel_address(buf))
				err = ERR_VM_BAD_USER_MEMORY;
			else
				err = user_memcpy(buf, &vesa.fb_info, sizeof(vesa.fb_info));
			break;
		case IOCTL_DEVFS_MAP_FRAMEBUFFER: {
			aspace_id aid = vm_get_current_user_aspace_id();
			region_id rid;
			void *address;

			if(is_kernel_address(buf)) {
				err = ERR_VM_BAD_USER_MEMORY;
				goto out;
			}

			// map the framebuffer into the user's address space
			rid = vm_map_physical_memory(aid, "vesa_fb", &address, REGION_ADDR_ANY_ADDRESS,
				vesa.phys_memory.size, LOCK_RW, vesa.phys_memory.start);
			if(rid < 0) {
				err = rid;
				goto out;
			}

			// copy the new pointer back to the user
			err = user_memcpy(buf, &address, sizeof(address));
			if(err < 0) {
				vm_delete_region(aid, rid);
				goto out;
			}

			// return the region id as the return code
			err = rid;

			break;
		}
		default:
			err = ERR_INVALID_ARGS;
	}

out:
	return err;
}
Esempio n. 3
0
int arch_vm_init_endvm(kernel_args *ka)
{
	region_id id;
	void *ptr;

	dprintf("arch_vm_init_endvm: entry\n");

	// map 0 - 0xa0000 directly
	id = vm_map_physical_memory(vm_get_kernel_aspace_id(), "dma_region", &ptr,
		REGION_ADDR_ANY_ADDRESS, 0xa0000, LOCK_RW|LOCK_KERNEL, 0x0);
	if(id < 0) {
		panic("arch_vm_init_endvm: unable to map dma region\n");
		return ERR_NO_MEMORY;
	}
	return 0;
}
Esempio n. 4
0
status_t
arch_vm_init_end(kernel_args *args)
{
	TRACE(("arch_vm_init_end(): %lu virtual ranges to keep:\n",
		args->arch_args.num_virtual_ranges_to_keep));

	for (int i = 0; i < (int)args->arch_args.num_virtual_ranges_to_keep; i++) {
		addr_range &range = args->arch_args.virtual_ranges_to_keep[i];

		TRACE(("  start: %p, size: 0x%lx\n", (void*)range.start, range.size));

#if 0
		// skip ranges outside the kernel address space
		if (!IS_KERNEL_ADDRESS(range.start)) {
			TRACE(("    no kernel address, skipping...\n"));
			continue;
		}

		phys_addr_t physicalAddress;
		void *address = (void*)range.start;
		if (vm_get_page_mapping(VMAddressSpace::KernelID(), range.start,
				&physicalAddress) != B_OK)
			panic("arch_vm_init_end(): No page mapping for %p\n", address);
		area_id area = vm_map_physical_memory(VMAddressSpace::KernelID(),
			"boot loader reserved area", &address,
			B_EXACT_ADDRESS, range.size,
			B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
			physicalAddress, true);
		if (area < 0) {
			panic("arch_vm_init_end(): Failed to create area for boot loader "
				"reserved area: %p - %p\n", (void*)range.start,
				(void*)(range.start + range.size));
		}
#endif
	}

#if 0
	// Throw away any address space mappings we've inherited from the boot
	// loader and have not yet turned into an area.
	vm_free_unused_boot_loader_range(0, 0xffffffff - B_PAGE_SIZE + 1);
#endif

	return B_OK;
}
Esempio n. 5
0
int rhine_init(rhine *r)
{
	bigtime_t time;
	int err = -1;
	addr_t temp;
	int i;

	dprintf("rhine_init: r %p\n", r);

	r->region = vm_map_physical_memory(vm_get_kernel_aspace_id(), "rhine_region", (void **)&r->virt_base,
		REGION_ADDR_ANY_ADDRESS, r->phys_size, LOCK_KERNEL|LOCK_RW, r->phys_base);
	if(r->region < 0) {
		dprintf("rhine_init: error creating memory mapped region\n");
		err = -1;
		goto err;
	}
	dprintf("rhine mapped at address 0x%lx\n", r->virt_base);

	/* create regions for tx and rx descriptors */
	r->rxdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_rxdesc", (void **)&r->rxdesc,
		REGION_ADDR_ANY_ADDRESS, RXDESC_COUNT * sizeof(struct rhine_rx_desc), REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->rxdesc_phys = vtophys(r->rxdesc);
	dprintf("rhine: rx descriptors at %p, phys 0x%x\n", r->rxdesc, r->rxdesc_phys);
	r->txdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_txdesc", (void **)&r->txdesc,
		REGION_ADDR_ANY_ADDRESS, TXDESC_COUNT * sizeof(struct rhine_tx_desc), REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->txdesc_phys = vtophys(r->txdesc);
	dprintf("rhine: tx descriptors at %p, phys 0x%x\n", r->txdesc, r->txdesc_phys);
	r->reg_spinlock = 0;

	/* stick all rx and tx buffers in a circular buffer */
	for (i=0; i < RXDESC_COUNT; i++) {
		RXDESC(r, i).status = 0;
		RXDESC(r, i).framelen = 0;
		RXDESC(r, i).buflen = 0;
		RXDESC(r, i).ptr = 0;
		if (i == RXDESC_COUNT-1)
			RXDESC(r, i).next = RXDESC_PHYS(r, 0);
		else
			RXDESC(r, i).next = RXDESC_PHYS(r, i + 1);
	}
	// XXX do same for tx


	r->rx_head = r->rx_tail = 0;

	/* reset the chip */
	time = system_time();
	RHINE_WRITE_16(r, RHINE_CR0, 0x8000); // reset the chip
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			break;
		}
	} while(RHINE_READ_16(r, RHINE_CR0) & 0x8000);

	if (RHINE_READ_16(r, RHINE_CR0) & 0x8000) {
		dprintf("chip didn't reset, trying alternate method\n");
		RHINE_SETBITS_8(r, RHINE_MISC_CR1, 0x40);
		thread_snooze(10000);
	}

	/* read in the mac address */
	RHINE_WRITE_8(r, RHINE_EECSR, RHINE_READ_8(r, RHINE_EECSR) | (1<<5));
	r->mac_addr[0] = RHINE_READ_8(r, RHINE_PAR0); 
	r->mac_addr[1] = RHINE_READ_8(r, RHINE_PAR1);
   	r->mac_addr[2] = RHINE_READ_8(r, RHINE_PAR2);
	r->mac_addr[3] = RHINE_READ_8(r, RHINE_PAR3);
   	r->mac_addr[4] = RHINE_READ_8(r, RHINE_PAR4);
   	r->mac_addr[5] = RHINE_READ_8(r, RHINE_PAR5);
  	dprintf("rhine: mac addr %x:%x:%x:%x:%x:%x\n",
  		r->mac_addr[0], r->mac_addr[1], r->mac_addr[2],
  		r->mac_addr[3], r->mac_addr[4], r->mac_addr[5]);

	/* set up the rx state */
	/* 64 byte fifo threshold, all physical/broadcast/multicast/small/error packets accepted */
	RHINE_WRITE_8(r, RHINE_RCR, (0<<5) | (1<<4) | (1<<3) | (1<<2) | (1<<1) | (1<<0));
	RHINE_WRITE_32(r, RHINE_RDA0, RXDESC_PHYS(r, r->rx_head));

	/* set up tx state */
	/* 64 byte fifo, default backup, default loopback mode */
	RHINE_WRITE_8(r, RHINE_TCR, 0);

	/* mask all interrupts */
	RHINE_WRITE_16(r, RHINE_IMR0, 0);

	/* clear all pending interrupts */
	RHINE_WRITE_16(r, RHINE_ISR0, 0xffff);
	
	/* set up the interrupt handler */
	int_set_io_interrupt_handler(r->irq, &rhine_int, r, "rhine");

	{
		static uint8 buf[2048];
		RXDESC(r, r->rx_tail).ptr = vtophys(buf);
		RXDESC(r, r->rx_tail).buflen = sizeof(buf);
		RXDESC(r, r->rx_tail).status = 0;
		RXDESC(r, r->rx_tail).framelen = RHINE_RX_OWNER;
		r->rx_tail++;

		RHINE_WRITE_16(r, RHINE_CR0, (1<<1) | (1<<3) | (1<<6));
	}

	/* unmask all interrupts */
	RHINE_WRITE_16(r, RHINE_IMR0, 0xffff);	

#if 0
	// try to reset the device
 	time = system_time();
	RTL_WRITE_8(r, RT_CHIPCMD, RT_CMD_RESET);
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			err = -1;
			goto err1;
		}
	} while((RTL_READ_8(r, RT_CHIPCMD) & RT_CMD_RESET));

	// create a rx and tx buf
	r->rxbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_rxbuf", (void **)&r->rxbuf,
		REGION_ADDR_ANY_ADDRESS, 64*1024 + 16, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->txbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_txbuf", (void **)&r->txbuf,
		REGION_ADDR_ANY_ADDRESS, 8*1024, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);

	// set up the transmission buf and sem
	r->tx_sem = sem_create(4, "rhine_txsem");
	mutex_init(&r->lock, "rhine");
	r->txbn = 0;
	r->last_txbn = 0;
	r->rx_sem = sem_create(0, "rhine_rxsem");
	r->reg_spinlock = 0;

	// set up the interrupt handler
	int_set_io_interrupt_handler(r->irq, &rhine_int, r, "rhine");

	// read the mac address
	r->mac_addr[0] = RTL_READ_8(r, RT_IDR0);
	r->mac_addr[1] = RTL_READ_8(r, RT_IDR0 + 1);
	r->mac_addr[2] = RTL_READ_8(r, RT_IDR0 + 2);
	r->mac_addr[3] = RTL_READ_8(r, RT_IDR0 + 3);
  	r->mac_addr[4] = RTL_READ_8(r, RT_IDR0 + 4);
  	r->mac_addr[5] = RTL_READ_8(r, RT_IDR0 + 5);

  	dprintf("rhine: mac addr %x:%x:%x:%x:%x:%x\n",
  		r->mac_addr[0], r->mac_addr[1], r->mac_addr[2],
  		r->mac_addr[3], r->mac_addr[4], r->mac_addr[5]);

	// enable writing to the config registers
	RTL_WRITE_8(r, RT_CFG9346, 0xc0);

	// reset config 1
	RTL_WRITE_8(r, RT_CONFIG1, 0);

	// Enable receive and transmit functions
	RTL_WRITE_8(r, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	// Set Rx FIFO threashold to 256, Rx size to 64k+16, 256 byte DMA burst
	RTL_WRITE_32(r, RT_RXCONFIG, 0x00009c00);

	// Set Tx 256 byte DMA burst
	RTL_WRITE_32(r, RT_TXCONFIG, 0x03000400);

	// Turn off lan-wake and set the driver-loaded bit
	RTL_WRITE_8(r, RT_CONFIG1, (RTL_READ_8(r, RT_CONFIG1) & ~0x30) | 0x20);

	// Enable FIFO auto-clear
	RTL_WRITE_8(r, RT_CONFIG4, RTL_READ_8(r, RT_CONFIG4) | 0x80);

	// go back to normal mode
	RTL_WRITE_8(r, RT_CFG9346, 0);

	// Setup RX buffers
	*(int *)r->rxbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), r->rxbuf, &temp);
	dprintf("rx buffer will be at 0x%lx\n", temp);
	RTL_WRITE_32(r, RT_RXBUF, temp);

	// Setup TX buffers
	dprintf("tx buffer (virtual) is at 0x%lx\n", r->txbuf);
	*(int *)r->txbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), r->txbuf, &temp);
	RTL_WRITE_32(r, RT_TXADDR0, temp);
	RTL_WRITE_32(r, RT_TXADDR1, temp + 2*1024);
	dprintf("first half of txbuf at 0x%lx\n", temp);
	*(int *)(r->txbuf + 4*1024) = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), r->txbuf + 4*1024, &temp);
	RTL_WRITE_32(r, RT_TXADDR2, temp);
	RTL_WRITE_32(r, RT_TXADDR3, temp + 2*1024);
	dprintf("second half of txbuf at 0x%lx\n", temp);

/*
	RTL_WRITE_32(r, RT_TXSTATUS0, RTL_READ_32(r, RT_TXSTATUS0) | 0xfffff000);
	RTL_WRITE_32(r, RT_TXSTATUS1, RTL_READ_32(r, RT_TXSTATUS1) | 0xfffff000);
	RTL_WRITE_32(r, RT_TXSTATUS2, RTL_READ_32(r, RT_TXSTATUS2) | 0xfffff000);
	RTL_WRITE_32(r, RT_TXSTATUS3, RTL_READ_32(r, RT_TXSTATUS3) | 0xfffff000);
*/
	// Reset RXMISSED counter
	RTL_WRITE_32(r, RT_RXMISSED, 0);

	// Enable receiving broadcast and physical match packets
//	RTL_WRITE_32(r, RT_RXCONFIG, RTL_READ_32(r, RT_RXCONFIG) | 0x0000000a);
	RTL_WRITE_32(r, RT_RXCONFIG, RTL_READ_32(r, RT_RXCONFIG) | 0x0000000f);

	// Filter out all multicast packets
	RTL_WRITE_32(r, RT_MAR0, 0);
	RTL_WRITE_32(r, RT_MAR0 + 4, 0);

	// Disable all multi-interrupts
	RTL_WRITE_16(r, RT_MULTIINTR, 0);

	RTL_WRITE_16(r, RT_INTRMASK, MYRT_INTS);
//	RTL_WRITE_16(r, RT_INTRMASK, 0x807f);

	// Enable RX/TX once more
	RTL_WRITE_8(r, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	RTL_WRITE_8(r, RT_CFG9346, 0);
#endif

	return 0;

err1:
	vm_delete_region(vm_get_kernel_aspace_id(), r->region);
err:
	return err;
}
Esempio n. 6
0
int rtl8169_init(rtl8169 *r)
{
	bigtime_t time;
	int err = -1;
	addr_t temp;
	int i;

	SHOW_FLOW(2, "rtl8169_init: r %p\n", r);

	r->region = vm_map_physical_memory(vm_get_kernel_aspace_id(), "rtl8169_region", (void **)&r->virt_base,
		REGION_ADDR_ANY_ADDRESS, r->phys_size, LOCK_KERNEL|LOCK_RW, r->phys_base);
	if(r->region < 0) {
		SHOW_ERROR0(1, "rtl8169_init: error creating memory mapped region\n");
		err = -1;
		goto err;
	}
	SHOW_INFO(2, "rtl8169 mapped at address 0x%lx\n", r->virt_base);

	/* create regions for tx and rx descriptors */
	r->rxdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_rxdesc", (void **)&r->rxdesc,
		REGION_ADDR_ANY_ADDRESS, NUM_RX_DESCRIPTORS * DESCRIPTOR_LEN, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->rxdesc_phys = vtophys(r->rxdesc);
	SHOW_INFO(2, "rtl8169: rx descriptors at %p, phys 0x%x\n", r->rxdesc, r->rxdesc_phys);
	r->txdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_txdesc", (void **)&r->txdesc,
		REGION_ADDR_ANY_ADDRESS, NUM_TX_DESCRIPTORS * DESCRIPTOR_LEN, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->txdesc_phys = vtophys(r->txdesc);
	SHOW_INFO(2, "rtl8169: tx descriptors at %p, phys 0x%x\n", r->txdesc, r->txdesc_phys);
	r->reg_spinlock = 0;

	/* create a large tx and rx buffer for the descriptors to point to */
	r->rxbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_rxbuf", (void **)&r->rxbuf,
			REGION_ADDR_ANY_ADDRESS, NUM_RX_DESCRIPTORS * BUFSIZE_PER_FRAME, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);
	r->txbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_txbuf", (void **)&r->txbuf,
			REGION_ADDR_ANY_ADDRESS, NUM_TX_DESCRIPTORS * BUFSIZE_PER_FRAME, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);

	/* create a receive sem */
	r->rx_sem = sem_create(0, "rtl8169 rx_sem");

	/* transmit sem */
	r->tx_sem = sem_create(1, "rtl8169 tx_sem");

	/* reset the chip */
	time = system_time();
	RTL_WRITE_8(r, REG_CR, (1<<4)); // reset the chip, disable tx/rx
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			break;
		}
	} while(RTL_READ_8(r, REG_CR) & (1<<4));

	/* read in the mac address */
	r->mac_addr[0] = RTL_READ_8(r, REG_IDR0); 
	r->mac_addr[1] = RTL_READ_8(r, REG_IDR1);
   	r->mac_addr[2] = RTL_READ_8(r, REG_IDR2);
	r->mac_addr[3] = RTL_READ_8(r, REG_IDR3);
   	r->mac_addr[4] = RTL_READ_8(r, REG_IDR4);
   	r->mac_addr[5] = RTL_READ_8(r, REG_IDR5);
  	SHOW_INFO(2, "rtl8169: mac addr %x:%x:%x:%x:%x:%x\n",
  		r->mac_addr[0], r->mac_addr[1], r->mac_addr[2],
  		r->mac_addr[3], r->mac_addr[4], r->mac_addr[5]);

	/* some voodoo from BSD driver */
	RTL_WRITE_16(r, REG_CCR, RTL_READ_16(r, REG_CCR));
	RTL_SETBITS_16(r, REG_CCR, 0x3);

	/* mask all interrupts */
	RTL_WRITE_16(r, REG_IMR, 0);

	/* set up the tx/rx descriptors */
	rtl8169_setup_descriptors(r);

	/* enable tx/rx */
	RTL_SETBITS_8(r, REG_CR, (1<<3)|(1<<2));

	/* set up the rx state */
	/* 1024 byte dma threshold, 1024 dma max burst, CRC calc 8 byte+, accept all packets */
	RTL_WRITE_32(r, REG_RCR, (1<<16) | (6<<13) | (6<<8) | (0xf << 0)); 
	RTL_SETBITS_16(r, REG_CCR, (1<<5)); // rx checksum enable
	RTL_WRITE_16(r, REG_RMS, 1518); // rx mtu

	/* set up the tx state */
	RTL_WRITE_32(r, REG_TCR, (RTL_READ_32(r, REG_TCR) & ~0x1ff) | (6<<8)); // 1024 max burst dma
	RTL_WRITE_8(r, REG_MTPS, 0x3f); // max tx packet size (must be careful to not actually transmit more than mtu)

	/* set up the interrupt handler */
	int_set_io_interrupt_handler(r->irq, &rtl8169_int, r, "rtl8169");

	/* clear all pending interrupts */
	RTL_WRITE_16(r, REG_ISR, 0xffff);
	
	/* unmask interesting interrupts */
	RTL_WRITE_16(r, REG_IMR, IMR_SYSERR | IMR_LINKCHG | IMR_TER | IMR_TOK | IMR_RER | IMR_ROK | IMR_RXOVL);

	return 0;

err1:
	vm_delete_region(vm_get_kernel_aspace_id(), r->region);
err:
	return err;
}
Esempio n. 7
0
static int find_and_map(void)
{
	int err;
	pci_module_hooks *pci;
	pci_info pinfo;
	aspace_id kai = vm_get_kernel_aspace_id();
	int i;
	bool foundit;

	if(module_get(PCI_BUS_MODULE_NAME, 0, (void **)&pci) < 0) {
		dprintf("vmware: no pci bus found..\n");
		err = ERR_NOT_FOUND;
		goto error0;
	}

	foundit = false;
	for(i = 0; pci->get_nth_pci_info(i, &pinfo) >= NO_ERROR; i++) {
		dprintf("vmware: looking at 0x%x:0x%x\n", pinfo.vendor_id, pinfo.device_id);
		if(pinfo.vendor_id == PCI_VENDOR_ID_VMWARE &&
			(pinfo.device_id == PCI_DEVICE_ID_VMWARE_SVGA2 || pinfo.device_id == PCI_DEVICE_ID_VMWARE_SVGA)) {
			foundit = true;
			break;
		}
	}
	if(!foundit) {
		dprintf("vmware: didn't find device on pci bus\n");
		err = ERR_NOT_FOUND;
		goto error0;
	}

	switch(pinfo.device_id) {
		case PCI_DEVICE_ID_VMWARE_SVGA:
			dprintf("vmware SVGA device detected at pci %d:%d:%d\n", pinfo.bus, pinfo.device, pinfo.function);
			vcons.index_port = SVGA_LEGACY_BASE_PORT + SVGA_INDEX_PORT * 4;
			vcons.value_port = SVGA_LEGACY_BASE_PORT + SVGA_VALUE_PORT * 4;
			break;
		case PCI_DEVICE_ID_VMWARE_SVGA2:
			dprintf("vmware SVGA2 device detected at pci %d:%d:%d\n", pinfo.bus, pinfo.device, pinfo.function);
			vcons.index_port = pinfo.u.h0.base_registers[0] + SVGA_INDEX_PORT;
			vcons.value_port = pinfo.u.h0.base_registers[0] + SVGA_VALUE_PORT;
			break;
	}
	vcons.fb_phys_base = pinfo.u.h0.base_registers[1];
	vcons.fb_size = MIN(pinfo.u.h0.base_register_sizes[1], SVGA_FB_MAX_SIZE);
	vcons.fifo_phys_base = pinfo.u.h0.base_registers[2];
	vcons.fifo_size = MIN(pinfo.u.h0.base_register_sizes[2], SVGA_MEM_SIZE);

	dprintf("vmware: index port 0x%x, value port 0x%x\n", vcons.index_port, vcons.value_port);
	dprintf("vmware: phys base 0x%x, size 0x%X\n", vcons.fb_phys_base, vcons.fb_size);
	dprintf("vmware: fifo phys base 0x%x, fifo size 0x%X\n", vcons.fifo_phys_base, vcons.fifo_size);

	vcons.fb_region = vm_map_physical_memory(kai, "vmw:fb", (void **)&vcons.fb_base, REGION_ADDR_ANY_ADDRESS, vcons.fb_size, LOCK_KERNEL | LOCK_RW, vcons.fb_phys_base);
	if (vcons.fb_region < 0)
	{
		err = vcons.fb_region;
		dprintf("Error mapping frame buffer: %x\n", err);
		goto error0;
	}
	vcons.fifo_region = vm_map_physical_memory(kai, "vmw:fifo", (void **)&vcons.fifo_base, REGION_ADDR_ANY_ADDRESS, vcons.fifo_size, LOCK_KERNEL | LOCK_RW, vcons.fifo_phys_base);
	if (vcons.fifo_region < 0)
	{
		err = vcons.fifo_region;
		dprintf("Error mapping vmw::fifo: %x\n", err);
		goto error1;
	}

	// XXX this makes the emulation unhappy (crashes vmware)
//	out_reg(SVGA_REG_ID, SVGA_ID_2);
//	vcons.svga_id = in_reg(SVGA_REG_ID);
//	dprintf("vmware: svga version %d\n", vcons.svga_id);
	
	vcons.bits_per_pixel = in_reg(SVGA_REG_BITS_PER_PIXEL);
	dprintf("vmware: bpp %d\n", vcons.bits_per_pixel);

	err = NO_ERROR;
	goto error0;

	// unmap vcons.fifo_region
	vm_delete_region(kai, vcons.fifo_region);
error1:
	// unmap vcons.fb_region
	vm_delete_region(kai, vcons.fb_region);
error0:
	return err;
}
Esempio n. 8
0
int rtl8139_init(rtl8139 *rtl)
{
	bigtime_t time;
	int err = -1;
	addr_t temp;

	dprintf("rtl8139_init: rtl %p\n", rtl);

	rtl->region = vm_map_physical_memory(vm_get_kernel_aspace_id(), "rtl8139_region", (void **)&rtl->virt_base,
		REGION_ADDR_ANY_ADDRESS, rtl->phys_size, LOCK_KERNEL|LOCK_RW, rtl->phys_base);
	if(rtl->region < 0) {
		dprintf("rtl8139_init: error creating memory mapped region\n");
		err = -1;
		goto err;
	}
	dprintf("rtl8139 mapped at address 0x%lx\n", rtl->virt_base);

	// try to reset the device
 	time = system_time();
	RTL_WRITE_8(rtl, RT_CHIPCMD, RT_CMD_RESET);
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			err = -1;
			goto err1;
		}
	} while((RTL_READ_8(rtl, RT_CHIPCMD) & RT_CMD_RESET));

	// create a rx and tx buf
	rtl->rxbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8139_rxbuf", (void **)&rtl->rxbuf,
		REGION_ADDR_ANY_ADDRESS, 64*1024 + 16, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	rtl->txbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8139_txbuf", (void **)&rtl->txbuf,
		REGION_ADDR_ANY_ADDRESS, 8*1024, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);

	// set up the transmission buf and sem
	rtl->tx_sem = sem_create(4, "rtl8139_txsem");
	mutex_init(&rtl->lock, "rtl8139");
	rtl->txbn = 0;
	rtl->last_txbn = 0;
	rtl->rx_sem = sem_create(0, "rtl8139_rxsem");
	rtl->reg_spinlock = 0;

	// set up the interrupt handler
	int_set_io_interrupt_handler(rtl->irq, &rtl8139_int, rtl, "rtl8139");

	// read the mac address
	rtl->mac_addr[0] = RTL_READ_8(rtl, RT_IDR0);
	rtl->mac_addr[1] = RTL_READ_8(rtl, RT_IDR0 + 1);
	rtl->mac_addr[2] = RTL_READ_8(rtl, RT_IDR0 + 2);
	rtl->mac_addr[3] = RTL_READ_8(rtl, RT_IDR0 + 3);
  	rtl->mac_addr[4] = RTL_READ_8(rtl, RT_IDR0 + 4);
  	rtl->mac_addr[5] = RTL_READ_8(rtl, RT_IDR0 + 5);

  	dprintf("rtl8139: mac addr %x:%x:%x:%x:%x:%x\n",
  		rtl->mac_addr[0], rtl->mac_addr[1], rtl->mac_addr[2],
  		rtl->mac_addr[3], rtl->mac_addr[4], rtl->mac_addr[5]);

	// enable writing to the config registers
	RTL_WRITE_8(rtl, RT_CFG9346, 0xc0);

	// reset config 1
	RTL_WRITE_8(rtl, RT_CONFIG1, 0);

	// Enable receive and transmit functions
	RTL_WRITE_8(rtl, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	// Set Rx FIFO threashold to 256, Rx size to 64k+16, 256 byte DMA burst
	RTL_WRITE_32(rtl, RT_RXCONFIG, 0x00009c00);

	// Set Tx 256 byte DMA burst
	RTL_WRITE_32(rtl, RT_TXCONFIG, 0x03000400);

	// Turn off lan-wake and set the driver-loaded bit
	RTL_WRITE_8(rtl, RT_CONFIG1, (RTL_READ_8(rtl, RT_CONFIG1) & ~0x30) | 0x20);

	// Enable FIFO auto-clear
	RTL_WRITE_8(rtl, RT_CONFIG4, RTL_READ_8(rtl, RT_CONFIG4) | 0x80);

	// go back to normal mode
	RTL_WRITE_8(rtl, RT_CFG9346, 0);

	// Setup RX buffers
	*(int *)rtl->rxbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), rtl->rxbuf, &temp);
	dprintf("rx buffer will be at 0x%lx\n", temp);
	RTL_WRITE_32(rtl, RT_RXBUF, temp);

	// Setup TX buffers
	dprintf("tx buffer (virtual) is at 0x%lx\n", rtl->txbuf);
	*(int *)rtl->txbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), rtl->txbuf, &temp);
	RTL_WRITE_32(rtl, RT_TXADDR0, temp);
	RTL_WRITE_32(rtl, RT_TXADDR1, temp + 2*1024);
	dprintf("first half of txbuf at 0x%lx\n", temp);
	*(int *)(rtl->txbuf + 4*1024) = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), rtl->txbuf + 4*1024, &temp);
	RTL_WRITE_32(rtl, RT_TXADDR2, temp);
	RTL_WRITE_32(rtl, RT_TXADDR3, temp + 2*1024);
	dprintf("second half of txbuf at 0x%lx\n", temp);

/*
	RTL_WRITE_32(rtl, RT_TXSTATUS0, RTL_READ_32(rtl, RT_TXSTATUS0) | 0xfffff000);
	RTL_WRITE_32(rtl, RT_TXSTATUS1, RTL_READ_32(rtl, RT_TXSTATUS1) | 0xfffff000);
	RTL_WRITE_32(rtl, RT_TXSTATUS2, RTL_READ_32(rtl, RT_TXSTATUS2) | 0xfffff000);
	RTL_WRITE_32(rtl, RT_TXSTATUS3, RTL_READ_32(rtl, RT_TXSTATUS3) | 0xfffff000);
*/
	// Reset RXMISSED counter
	RTL_WRITE_32(rtl, RT_RXMISSED, 0);

	// Enable receiving broadcast and physical match packets
//	RTL_WRITE_32(rtl, RT_RXCONFIG, RTL_READ_32(rtl, RT_RXCONFIG) | 0x0000000a);
	RTL_WRITE_32(rtl, RT_RXCONFIG, RTL_READ_32(rtl, RT_RXCONFIG) | 0x0000000f);

	// Filter out all multicast packets
	RTL_WRITE_32(rtl, RT_MAR0, 0);
	RTL_WRITE_32(rtl, RT_MAR0 + 4, 0);

	// Disable all multi-interrupts
	RTL_WRITE_16(rtl, RT_MULTIINTR, 0);

	RTL_WRITE_16(rtl, RT_INTRMASK, MYRT_INTS);
//	RTL_WRITE_16(rtl, RT_INTRMASK, 0x807f);

	// Enable RX/TX once more
	RTL_WRITE_8(rtl, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	RTL_WRITE_8(rtl, RT_CFG9346, 0);

	return 0;

err1:
	vm_delete_region(vm_get_kernel_aspace_id(), rtl->region);
err:
	return err;
}