Esempio n. 1
0
static int rtR0MemObjFreeBSDPhysAllocHelper(vm_object_t pObject, u_long cPages,
                                            vm_paddr_t VmPhysAddrHigh, u_long uAlignment,
                                            bool fContiguous, bool fWire, int rcNoMem)
{
    if (fContiguous)
    {
        if (rtR0MemObjFreeBSDContigPhysAllocHelper(pObject, 0, cPages, VmPhysAddrHigh,
                                                   uAlignment, fWire) != NULL)
            return VINF_SUCCESS;
        return rcNoMem;
    }

    for (vm_pindex_t iPage = 0; iPage < cPages; iPage++)
    {
        vm_page_t pPage = rtR0MemObjFreeBSDContigPhysAllocHelper(pObject, iPage, 1, VmPhysAddrHigh,
                                                                 uAlignment, fWire);
        if (!pPage)
        {
            /* Free all allocated pages */
#if __FreeBSD_version >= 1000030
            VM_OBJECT_WLOCK(pObject);
#else
            VM_OBJECT_LOCK(pObject);
#endif
            while (iPage-- > 0)
            {
                pPage = vm_page_lookup(pObject, iPage);
#if __FreeBSD_version < 1000000
                vm_page_lock_queues();
#endif
                if (fWire)
                    vm_page_unwire(pPage, 0);
                vm_page_free(pPage);
#if __FreeBSD_version < 1000000
                vm_page_unlock_queues();
#endif
            }
#if __FreeBSD_version >= 1000030
            VM_OBJECT_WUNLOCK(pObject);
#else
            VM_OBJECT_UNLOCK(pObject);
#endif
            return rcNoMem;
        }
    }
    return VINF_SUCCESS;
}
Esempio n. 2
0
static void
socow_iodone(void *addr, void *args)
{	
	struct sf_buf *sf;
	vm_page_t pp;

	sf = args;
	pp = sf_buf_page(sf);
	sf_buf_free(sf);
	/* remove COW mapping  */
	vm_page_lock(pp);
	vm_page_cowclear(pp);
	vm_page_unwire(pp, 0);
	/*
	 * Check for the object going away on us. This can
	 * happen since we don't hold a reference to it.
	 * If so, we're responsible for freeing the page.
	 */
	if (pp->wire_count == 0 && pp->object == NULL)
		vm_page_free(pp);
	vm_page_unlock(pp);
	socow_stats.iodone++;
}
Esempio n. 3
0
int
vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
    int fault_flags, vm_page_t *m_hold)
{
	vm_prot_t prot;
	long ahead, behind;
	int alloc_req, era, faultcount, nera, reqpage, result;
	boolean_t growstack, is_first_object_locked, wired;
	int map_generation;
	vm_object_t next_object;
	vm_page_t marray[VM_FAULT_READ_MAX];
	int hardfault;
	struct faultstate fs;
	struct vnode *vp;
	int locked, error;

	hardfault = 0;
	growstack = TRUE;
	PCPU_INC(cnt.v_vm_faults);
	fs.vp = NULL;
	faultcount = reqpage = 0;

RetryFault:;

	/*
	 * Find the backing store object and offset into it to begin the
	 * search.
	 */
	fs.map = map;
	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
	    &fs.first_object, &fs.first_pindex, &prot, &wired);
	if (result != KERN_SUCCESS) {
		if (growstack && result == KERN_INVALID_ADDRESS &&
		    map != kernel_map) {
			result = vm_map_growstack(curproc, vaddr);
			if (result != KERN_SUCCESS)
				return (KERN_FAILURE);
			growstack = FALSE;
			goto RetryFault;
		}
		return (result);
	}

	map_generation = fs.map->timestamp;

	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
		panic("vm_fault: fault on nofault entry, addr: %lx",
		    (u_long)vaddr);
	}

	/*
	 * Make a reference to this object to prevent its disposal while we
	 * are messing with it.  Once we have the reference, the map is free
	 * to be diddled.  Since objects reference their shadows (and copies),
	 * they will stay around as well.
	 *
	 * Bump the paging-in-progress count to prevent size changes (e.g. 
	 * truncation operations) during I/O.  This must be done after
	 * obtaining the vnode lock in order to avoid possible deadlocks.
	 */
	VM_OBJECT_WLOCK(fs.first_object);
	vm_object_reference_locked(fs.first_object);
	vm_object_pip_add(fs.first_object, 1);

	fs.lookup_still_valid = TRUE;

	if (wired)
		fault_type = prot | (fault_type & VM_PROT_COPY);

	fs.first_m = NULL;

	/*
	 * Search for the page at object/offset.
	 */
	fs.object = fs.first_object;
	fs.pindex = fs.first_pindex;
	while (TRUE) {
		/*
		 * If the object is dead, we stop here
		 */
		if (fs.object->flags & OBJ_DEAD) {
			unlock_and_deallocate(&fs);
			return (KERN_PROTECTION_FAILURE);
		}

		/*
		 * See if page is resident
		 */
		fs.m = vm_page_lookup(fs.object, fs.pindex);
		if (fs.m != NULL) {
			/* 
			 * check for page-based copy on write.
			 * We check fs.object == fs.first_object so
			 * as to ensure the legacy COW mechanism is
			 * used when the page in question is part of
			 * a shadow object.  Otherwise, vm_page_cowfault()
			 * removes the page from the backing object, 
			 * which is not what we want.
			 */
			vm_page_lock(fs.m);
			if ((fs.m->cow) && 
			    (fault_type & VM_PROT_WRITE) &&
			    (fs.object == fs.first_object)) {
				vm_page_cowfault(fs.m);
				unlock_and_deallocate(&fs);
				goto RetryFault;
			}

			/*
			 * Wait/Retry if the page is busy.  We have to do this
			 * if the page is busy via either VPO_BUSY or 
			 * vm_page_t->busy because the vm_pager may be using
			 * vm_page_t->busy for pageouts ( and even pageins if
			 * it is the vnode pager ), and we could end up trying
			 * to pagein and pageout the same page simultaneously.
			 *
			 * We can theoretically allow the busy case on a read
			 * fault if the page is marked valid, but since such
			 * pages are typically already pmap'd, putting that
			 * special case in might be more effort then it is 
			 * worth.  We cannot under any circumstances mess
			 * around with a vm_page_t->busy page except, perhaps,
			 * to pmap it.
			 */
			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
				/*
				 * Reference the page before unlocking and
				 * sleeping so that the page daemon is less
				 * likely to reclaim it. 
				 */
				vm_page_aflag_set(fs.m, PGA_REFERENCED);
				vm_page_unlock(fs.m);
				if (fs.object != fs.first_object) {
					if (!VM_OBJECT_TRYWLOCK(
					    fs.first_object)) {
						VM_OBJECT_WUNLOCK(fs.object);
						VM_OBJECT_WLOCK(fs.first_object);
						VM_OBJECT_WLOCK(fs.object);
					}
					vm_page_lock(fs.first_m);
					vm_page_free(fs.first_m);
					vm_page_unlock(fs.first_m);
					vm_object_pip_wakeup(fs.first_object);
					VM_OBJECT_WUNLOCK(fs.first_object);
					fs.first_m = NULL;
				}
				unlock_map(&fs);
				if (fs.m == vm_page_lookup(fs.object,
				    fs.pindex)) {
					vm_page_sleep_if_busy(fs.m, TRUE,
					    "vmpfw");
				}
				vm_object_pip_wakeup(fs.object);
				VM_OBJECT_WUNLOCK(fs.object);
				PCPU_INC(cnt.v_intrans);
				vm_object_deallocate(fs.first_object);
				goto RetryFault;
			}
			vm_page_remque(fs.m);
			vm_page_unlock(fs.m);

			/*
			 * Mark page busy for other processes, and the 
			 * pagedaemon.  If it still isn't completely valid
			 * (readable), jump to readrest, else break-out ( we
			 * found the page ).
			 */
			vm_page_busy(fs.m);
			if (fs.m->valid != VM_PAGE_BITS_ALL)
				goto readrest;
			break;
		}

		/*
		 * Page is not resident, If this is the search termination
		 * or the pager might contain the page, allocate a new page.
		 */
		if (TRYPAGER || fs.object == fs.first_object) {
			if (fs.pindex >= fs.object->size) {
				unlock_and_deallocate(&fs);
				return (KERN_PROTECTION_FAILURE);
			}

			/*
			 * Allocate a new page for this object/offset pair.
			 *
			 * Unlocked read of the p_flag is harmless. At
			 * worst, the P_KILLED might be not observed
			 * there, and allocation can fail, causing
			 * restart and new reading of the p_flag.
			 */
			fs.m = NULL;
			if (!vm_page_count_severe() || P_KILLED(curproc)) {
#if VM_NRESERVLEVEL > 0
				if ((fs.object->flags & OBJ_COLORED) == 0) {
					fs.object->flags |= OBJ_COLORED;
					fs.object->pg_color = atop(vaddr) -
					    fs.pindex;
				}
#endif
				alloc_req = P_KILLED(curproc) ?
				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
				if (fs.object->type != OBJT_VNODE &&
				    fs.object->backing_object == NULL)
					alloc_req |= VM_ALLOC_ZERO;
				fs.m = vm_page_alloc(fs.object, fs.pindex,
				    alloc_req);
			}
			if (fs.m == NULL) {
				unlock_and_deallocate(&fs);
				VM_WAITPFAULT;
				goto RetryFault;
			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
				break;
		}

readrest:
		/*
		 * We have found a valid page or we have allocated a new page.
		 * The page thus may not be valid or may not be entirely 
		 * valid.
		 *
		 * Attempt to fault-in the page if there is a chance that the
		 * pager has it, and potentially fault in additional pages
		 * at the same time.
		 */
		if (TRYPAGER) {
			int rv;
			u_char behavior = vm_map_entry_behavior(fs.entry);

			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
			    P_KILLED(curproc)) {
				behind = 0;
				ahead = 0;
			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
				behind = 0;
				ahead = atop(fs.entry->end - vaddr) - 1;
				if (ahead > VM_FAULT_READ_AHEAD_MAX)
					ahead = VM_FAULT_READ_AHEAD_MAX;
				if (fs.pindex == fs.entry->next_read)
					vm_fault_cache_behind(&fs,
					    VM_FAULT_READ_MAX);
			} else {
				/*
				 * If this is a sequential page fault, then
				 * arithmetically increase the number of pages
				 * in the read-ahead window.  Otherwise, reset
				 * the read-ahead window to its smallest size.
				 */
				behind = atop(vaddr - fs.entry->start);
				if (behind > VM_FAULT_READ_BEHIND)
					behind = VM_FAULT_READ_BEHIND;
				ahead = atop(fs.entry->end - vaddr) - 1;
				era = fs.entry->read_ahead;
				if (fs.pindex == fs.entry->next_read) {
					nera = era + behind;
					if (nera > VM_FAULT_READ_AHEAD_MAX)
						nera = VM_FAULT_READ_AHEAD_MAX;
					behind = 0;
					if (ahead > nera)
						ahead = nera;
					if (era == VM_FAULT_READ_AHEAD_MAX)
						vm_fault_cache_behind(&fs,
						    VM_FAULT_CACHE_BEHIND);
				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
					ahead = VM_FAULT_READ_AHEAD_MIN;
				if (era != ahead)
					fs.entry->read_ahead = ahead;
			}

			/*
			 * Call the pager to retrieve the data, if any, after
			 * releasing the lock on the map.  We hold a ref on
			 * fs.object and the pages are VPO_BUSY'd.
			 */
			unlock_map(&fs);

			if (fs.object->type == OBJT_VNODE) {
				vp = fs.object->handle;
				if (vp == fs.vp)
					goto vnode_locked;
				else if (fs.vp != NULL) {
					vput(fs.vp);
					fs.vp = NULL;
				}
				locked = VOP_ISLOCKED(vp);

				if (locked != LK_EXCLUSIVE)
					locked = LK_SHARED;
				/* Do not sleep for vnode lock while fs.m is busy */
				error = vget(vp, locked | LK_CANRECURSE |
				    LK_NOWAIT, curthread);
				if (error != 0) {
					vhold(vp);
					release_page(&fs);
					unlock_and_deallocate(&fs);
					error = vget(vp, locked | LK_RETRY |
					    LK_CANRECURSE, curthread);
					vdrop(vp);
					fs.vp = vp;
					KASSERT(error == 0,
					    ("vm_fault: vget failed"));
					goto RetryFault;
				}
				fs.vp = vp;
			}
vnode_locked:
			KASSERT(fs.vp == NULL || !fs.map->system_map,
			    ("vm_fault: vnode-backed object mapped by system map"));

			/*
			 * now we find out if any other pages should be paged
			 * in at this time this routine checks to see if the
			 * pages surrounding this fault reside in the same
			 * object as the page for this fault.  If they do,
			 * then they are faulted in also into the object.  The
			 * array "marray" returned contains an array of
			 * vm_page_t structs where one of them is the
			 * vm_page_t passed to the routine.  The reqpage
			 * return value is the index into the marray for the
			 * vm_page_t passed to the routine.
			 *
			 * fs.m plus the additional pages are VPO_BUSY'd.
			 */
			faultcount = vm_fault_additional_pages(
			    fs.m, behind, ahead, marray, &reqpage);

			rv = faultcount ?
			    vm_pager_get_pages(fs.object, marray, faultcount,
				reqpage) : VM_PAGER_FAIL;

			if (rv == VM_PAGER_OK) {
				/*
				 * Found the page. Leave it busy while we play
				 * with it.
				 */

				/*
				 * Relookup in case pager changed page. Pager
				 * is responsible for disposition of old page
				 * if moved.
				 */
				fs.m = vm_page_lookup(fs.object, fs.pindex);
				if (!fs.m) {
					unlock_and_deallocate(&fs);
					goto RetryFault;
				}

				hardfault++;
				break; /* break to PAGE HAS BEEN FOUND */
			}
			/*
			 * Remove the bogus page (which does not exist at this
			 * object/offset); before doing so, we must get back
			 * our object lock to preserve our invariant.
			 *
			 * Also wake up any other process that may want to bring
			 * in this page.
			 *
			 * If this is the top-level object, we must leave the
			 * busy page to prevent another process from rushing
			 * past us, and inserting the page in that object at
			 * the same time that we are.
			 */
			if (rv == VM_PAGER_ERROR)
				printf("vm_fault: pager read error, pid %d (%s)\n",
				    curproc->p_pid, curproc->p_comm);
			/*
			 * Data outside the range of the pager or an I/O error
			 */
			/*
			 * XXX - the check for kernel_map is a kludge to work
			 * around having the machine panic on a kernel space
			 * fault w/ I/O error.
			 */
			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
				(rv == VM_PAGER_BAD)) {
				vm_page_lock(fs.m);
				vm_page_free(fs.m);
				vm_page_unlock(fs.m);
				fs.m = NULL;
				unlock_and_deallocate(&fs);
				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
			}
			if (fs.object != fs.first_object) {
				vm_page_lock(fs.m);
				vm_page_free(fs.m);
				vm_page_unlock(fs.m);
				fs.m = NULL;
				/*
				 * XXX - we cannot just fall out at this
				 * point, m has been freed and is invalid!
				 */
			}
		}

		/*
		 * We get here if the object has default pager (or unwiring) 
		 * or the pager doesn't have the page.
		 */
		if (fs.object == fs.first_object)
			fs.first_m = fs.m;

		/*
		 * Move on to the next object.  Lock the next object before
		 * unlocking the current one.
		 */
		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
		next_object = fs.object->backing_object;
		if (next_object == NULL) {
			/*
			 * If there's no object left, fill the page in the top
			 * object with zeros.
			 */
			if (fs.object != fs.first_object) {
				vm_object_pip_wakeup(fs.object);
				VM_OBJECT_WUNLOCK(fs.object);

				fs.object = fs.first_object;
				fs.pindex = fs.first_pindex;
				fs.m = fs.first_m;
				VM_OBJECT_WLOCK(fs.object);
			}
			fs.first_m = NULL;

			/*
			 * Zero the page if necessary and mark it valid.
			 */
			if ((fs.m->flags & PG_ZERO) == 0) {
				pmap_zero_page(fs.m);
			} else {
				PCPU_INC(cnt.v_ozfod);
			}
			PCPU_INC(cnt.v_zfod);
			fs.m->valid = VM_PAGE_BITS_ALL;
			break;	/* break to PAGE HAS BEEN FOUND */
		} else {
			KASSERT(fs.object != next_object,
			    ("object loop %p", next_object));
			VM_OBJECT_WLOCK(next_object);
			vm_object_pip_add(next_object, 1);
			if (fs.object != fs.first_object)
				vm_object_pip_wakeup(fs.object);
			VM_OBJECT_WUNLOCK(fs.object);
			fs.object = next_object;
		}
	}

	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
	    ("vm_fault: not busy after main loop"));

	/*
	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
	 * is held.]
	 */

	/*
	 * If the page is being written, but isn't already owned by the
	 * top-level object, we have to copy it into a new page owned by the
	 * top-level object.
	 */
	if (fs.object != fs.first_object) {
		/*
		 * We only really need to copy if we want to write it.
		 */
		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
			/*
			 * This allows pages to be virtually copied from a 
			 * backing_object into the first_object, where the 
			 * backing object has no other refs to it, and cannot
			 * gain any more refs.  Instead of a bcopy, we just 
			 * move the page from the backing object to the 
			 * first object.  Note that we must mark the page 
			 * dirty in the first object so that it will go out 
			 * to swap when needed.
			 */
			is_first_object_locked = FALSE;
			if (
				/*
				 * Only one shadow object
				 */
				(fs.object->shadow_count == 1) &&
				/*
				 * No COW refs, except us
				 */
				(fs.object->ref_count == 1) &&
				/*
				 * No one else can look this object up
				 */
				(fs.object->handle == NULL) &&
				/*
				 * No other ways to look the object up
				 */
				((fs.object->type == OBJT_DEFAULT) ||
				 (fs.object->type == OBJT_SWAP)) &&
			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
				/*
				 * We don't chase down the shadow chain
				 */
			    fs.object == fs.first_object->backing_object) {
				/*
				 * get rid of the unnecessary page
				 */
				vm_page_lock(fs.first_m);
				vm_page_free(fs.first_m);
				vm_page_unlock(fs.first_m);
				/*
				 * grab the page and put it into the 
				 * process'es object.  The page is 
				 * automatically made dirty.
				 */
				vm_page_lock(fs.m);
				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
				vm_page_unlock(fs.m);
				vm_page_busy(fs.m);
				fs.first_m = fs.m;
				fs.m = NULL;
				PCPU_INC(cnt.v_cow_optim);
			} else {
				/*
				 * Oh, well, lets copy it.
				 */
				pmap_copy_page(fs.m, fs.first_m);
				fs.first_m->valid = VM_PAGE_BITS_ALL;
				if (wired && (fault_flags &
				    VM_FAULT_CHANGE_WIRING) == 0) {
					vm_page_lock(fs.first_m);
					vm_page_wire(fs.first_m);
					vm_page_unlock(fs.first_m);
					
					vm_page_lock(fs.m);
					vm_page_unwire(fs.m, FALSE);
					vm_page_unlock(fs.m);
				}
				/*
				 * We no longer need the old page or object.
				 */
				release_page(&fs);
			}
			/*
			 * fs.object != fs.first_object due to above 
			 * conditional
			 */
			vm_object_pip_wakeup(fs.object);
			VM_OBJECT_WUNLOCK(fs.object);
			/*
			 * Only use the new page below...
			 */
			fs.object = fs.first_object;
			fs.pindex = fs.first_pindex;
			fs.m = fs.first_m;
			if (!is_first_object_locked)
				VM_OBJECT_WLOCK(fs.object);
			PCPU_INC(cnt.v_cow_faults);
			curthread->td_cow++;
		} else {
			prot &= ~VM_PROT_WRITE;
		}
	}

	/*
	 * We must verify that the maps have not changed since our last
	 * lookup.
	 */
	if (!fs.lookup_still_valid) {
		vm_object_t retry_object;
		vm_pindex_t retry_pindex;
		vm_prot_t retry_prot;

		if (!vm_map_trylock_read(fs.map)) {
			release_page(&fs);
			unlock_and_deallocate(&fs);
			goto RetryFault;
		}
		fs.lookup_still_valid = TRUE;
		if (fs.map->timestamp != map_generation) {
			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);

			/*
			 * If we don't need the page any longer, put it on the inactive
			 * list (the easiest thing to do here).  If no one needs it,
			 * pageout will grab it eventually.
			 */
			if (result != KERN_SUCCESS) {
				release_page(&fs);
				unlock_and_deallocate(&fs);

				/*
				 * If retry of map lookup would have blocked then
				 * retry fault from start.
				 */
				if (result == KERN_FAILURE)
					goto RetryFault;
				return (result);
			}
			if ((retry_object != fs.first_object) ||
			    (retry_pindex != fs.first_pindex)) {
				release_page(&fs);
				unlock_and_deallocate(&fs);
				goto RetryFault;
			}

			/*
			 * Check whether the protection has changed or the object has
			 * been copied while we left the map unlocked. Changing from
			 * read to write permission is OK - we leave the page
			 * write-protected, and catch the write fault. Changing from
			 * write to read permission means that we can't mark the page
			 * write-enabled after all.
			 */
			prot &= retry_prot;
		}
	}
	/*
	 * If the page was filled by a pager, update the map entry's
	 * last read offset.  Since the pager does not return the
	 * actual set of pages that it read, this update is based on
	 * the requested set.  Typically, the requested and actual
	 * sets are the same.
	 *
	 * XXX The following assignment modifies the map
	 * without holding a write lock on it.
	 */
	if (hardfault)
		fs.entry->next_read = fs.pindex + faultcount - reqpage;

	if ((prot & VM_PROT_WRITE) != 0 ||
	    (fault_flags & VM_FAULT_DIRTY) != 0) {
		vm_object_set_writeable_dirty(fs.object);

		/*
		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
		 * if the page is already dirty to prevent data written with
		 * the expectation of being synced from not being synced.
		 * Likewise if this entry does not request NOSYNC then make
		 * sure the page isn't marked NOSYNC.  Applications sharing
		 * data should use the same flags to avoid ping ponging.
		 */
		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
			if (fs.m->dirty == 0)
				fs.m->oflags |= VPO_NOSYNC;
		} else {
			fs.m->oflags &= ~VPO_NOSYNC;
		}

		/*
		 * If the fault is a write, we know that this page is being
		 * written NOW so dirty it explicitly to save on 
		 * pmap_is_modified() calls later.
		 *
		 * Also tell the backing pager, if any, that it should remove
		 * any swap backing since the page is now dirty.
		 */
		if (((fault_type & VM_PROT_WRITE) != 0 &&
		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
		    (fault_flags & VM_FAULT_DIRTY) != 0) {
			vm_page_dirty(fs.m);
			vm_pager_page_unswapped(fs.m);
		}
	}

	/*
	 * Page had better still be busy
	 */
	KASSERT(fs.m->oflags & VPO_BUSY,
		("vm_fault: page %p not busy!", fs.m));
	/*
	 * Page must be completely valid or it is not fit to
	 * map into user space.  vm_pager_get_pages() ensures this.
	 */
	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
	    ("vm_fault: page %p partially invalid", fs.m));
	VM_OBJECT_WUNLOCK(fs.object);

	/*
	 * Put this page into the physical map.  We had to do the unlock above
	 * because pmap_enter() may sleep.  We don't put the page
	 * back on the active queue until later so that the pageout daemon
	 * won't find it (yet).
	 */
	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
	VM_OBJECT_WLOCK(fs.object);
	vm_page_lock(fs.m);

	/*
	 * If the page is not wired down, then put it where the pageout daemon
	 * can find it.
	 */
	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
		if (wired)
			vm_page_wire(fs.m);
		else
			vm_page_unwire(fs.m, 1);
	} else
		vm_page_activate(fs.m);
	if (m_hold != NULL) {
		*m_hold = fs.m;
		vm_page_hold(fs.m);
	}
	vm_page_unlock(fs.m);
	vm_page_wakeup(fs.m);

	/*
	 * Unlock everything, and return
	 */
	unlock_and_deallocate(&fs);
	if (hardfault) {
		PCPU_INC(cnt.v_io_faults);
		curthread->td_ru.ru_majflt++;
	} else 
		curthread->td_ru.ru_minflt++;

	return (KERN_SUCCESS);
}
Esempio n. 4
0
/*
 *	Routine:
 *		vm_fault_copy_entry
 *	Function:
 *		Create new shadow object backing dst_entry with private copy of
 *		all underlying pages. When src_entry is equal to dst_entry,
 *		function implements COW for wired-down map entry. Otherwise,
 *		it forks wired entry into dst_map.
 *
 *	In/out conditions:
 *		The source and destination maps must be locked for write.
 *		The source map entry must be wired down (or be a sharing map
 *		entry corresponding to a main map entry that is wired down).
 */
void
vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
    vm_ooffset_t *fork_charge)
{
	vm_object_t backing_object, dst_object, object, src_object;
	vm_pindex_t dst_pindex, pindex, src_pindex;
	vm_prot_t access, prot;
	vm_offset_t vaddr;
	vm_page_t dst_m;
	vm_page_t src_m;
	boolean_t src_readonly, upgrade;

#ifdef	lint
	src_map++;
#endif	/* lint */

	upgrade = src_entry == dst_entry;

	src_object = src_entry->object.vm_object;
	src_pindex = OFF_TO_IDX(src_entry->offset);
	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;

	/*
	 * Create the top-level object for the destination entry. (Doesn't
	 * actually shadow anything - we copy the pages directly.)
	 */
	dst_object = vm_object_allocate(OBJT_DEFAULT,
	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
#if VM_NRESERVLEVEL > 0
	dst_object->flags |= OBJ_COLORED;
	dst_object->pg_color = atop(dst_entry->start);
#endif

	VM_OBJECT_WLOCK(dst_object);
	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
	    ("vm_fault_copy_entry: vm_object not NULL"));
	dst_entry->object.vm_object = dst_object;
	dst_entry->offset = 0;
	dst_object->charge = dst_entry->end - dst_entry->start;
	if (fork_charge != NULL) {
		KASSERT(dst_entry->cred == NULL,
		    ("vm_fault_copy_entry: leaked swp charge"));
		dst_object->cred = curthread->td_ucred;
		crhold(dst_object->cred);
		*fork_charge += dst_object->charge;
	} else {
		dst_object->cred = dst_entry->cred;
		dst_entry->cred = NULL;
	}
	access = prot = dst_entry->protection;
	/*
	 * If not an upgrade, then enter the mappings in the pmap as
	 * read and/or execute accesses.  Otherwise, enter them as
	 * write accesses.
	 *
	 * A writeable large page mapping is only created if all of
	 * the constituent small page mappings are modified. Marking
	 * PTEs as modified on inception allows promotion to happen
	 * without taking potentially large number of soft faults.
	 */
	if (!upgrade)
		access &= ~VM_PROT_WRITE;

	/*
	 * Loop through all of the virtual pages within the entry's
	 * range, copying each page from the source object to the
	 * destination object.  Since the source is wired, those pages
	 * must exist.  In contrast, the destination is pageable.
	 * Since the destination object does share any backing storage
	 * with the source object, all of its pages must be dirtied,
	 * regardless of whether they can be written.
	 */
	for (vaddr = dst_entry->start, dst_pindex = 0;
	    vaddr < dst_entry->end;
	    vaddr += PAGE_SIZE, dst_pindex++) {

		/*
		 * Allocate a page in the destination object.
		 */
		do {
			dst_m = vm_page_alloc(dst_object, dst_pindex,
			    VM_ALLOC_NORMAL);
			if (dst_m == NULL) {
				VM_OBJECT_WUNLOCK(dst_object);
				VM_WAIT;
				VM_OBJECT_WLOCK(dst_object);
			}
		} while (dst_m == NULL);

		/*
		 * Find the page in the source object, and copy it in.
		 * (Because the source is wired down, the page will be in
		 * memory.)
		 */
		VM_OBJECT_WLOCK(src_object);
		object = src_object;
		pindex = src_pindex + dst_pindex;
		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
		    src_readonly &&
		    (backing_object = object->backing_object) != NULL) {
			/*
			 * Allow fallback to backing objects if we are reading.
			 */
			VM_OBJECT_WLOCK(backing_object);
			pindex += OFF_TO_IDX(object->backing_object_offset);
			VM_OBJECT_WUNLOCK(object);
			object = backing_object;
		}
		if (src_m == NULL)
			panic("vm_fault_copy_wired: page missing");
		pmap_copy_page(src_m, dst_m);
		VM_OBJECT_WUNLOCK(object);
		dst_m->valid = VM_PAGE_BITS_ALL;
		dst_m->dirty = VM_PAGE_BITS_ALL;
		VM_OBJECT_WUNLOCK(dst_object);

		/*
		 * Enter it in the pmap. If a wired, copy-on-write
		 * mapping is being replaced by a write-enabled
		 * mapping, then wire that new mapping.
		 */
		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);

		/*
		 * Mark it no longer busy, and put it on the active list.
		 */
		VM_OBJECT_WLOCK(dst_object);
		
		if (upgrade) {
			vm_page_lock(src_m);
			vm_page_unwire(src_m, 0);
			vm_page_unlock(src_m);

			vm_page_lock(dst_m);
			vm_page_wire(dst_m);
			vm_page_unlock(dst_m);
		} else {
			vm_page_lock(dst_m);
			vm_page_activate(dst_m);
			vm_page_unlock(dst_m);
		}
		vm_page_wakeup(dst_m);
	}
	VM_OBJECT_WUNLOCK(dst_object);
	if (upgrade) {
		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
		vm_object_deallocate(src_object);
	}
}
Esempio n. 5
0
int
socow_setup(struct mbuf *m0, struct uio *uio)
{
	struct sf_buf *sf;
	vm_page_t pp;
	struct iovec *iov;
	struct vmspace *vmspace;
	struct vm_map *map;
	vm_offset_t offset, uva;

	socow_stats.attempted++;
	vmspace = curproc->p_vmspace;
	map = &vmspace->vm_map;
	uva = (vm_offset_t) uio->uio_iov->iov_base;
	offset = uva & PAGE_MASK;

	/*
	 * Verify that access to the given address is allowed from user-space.
	 */
	if (vm_fault_quick((caddr_t)uva, VM_PROT_READ) < 0)
		return (0);

       /* 
	* verify page is mapped & not already wired for i/o
	*/
	pp = pmap_extract_and_hold(map->pmap, uva, VM_PROT_READ);
	if (pp == NULL) {
		socow_stats.fail_not_mapped++;
		return(0);
	}

	/* 
	 * set up COW
	 */
	vm_page_lock(pp);
	if (vm_page_cowsetup(pp) != 0) {
		vm_page_unhold(pp);
		vm_page_unlock(pp);
		return (0);
	}

	/*
	 * wire the page for I/O
	 */
	vm_page_wire(pp);
	vm_page_unhold(pp);
	vm_page_unlock(pp);
	/*
	 * Allocate an sf buf
	 */
	sf = sf_buf_alloc(pp, SFB_CATCH);
	if (sf == NULL) {
		vm_page_lock(pp);
		vm_page_cowclear(pp);
		vm_page_unwire(pp, 0);
		/*
		 * Check for the object going away on us. This can
		 * happen since we don't hold a reference to it.
		 * If so, we're responsible for freeing the page.
		 */
		if (pp->wire_count == 0 && pp->object == NULL)
			vm_page_free(pp);
		vm_page_unlock(pp);
		socow_stats.fail_sf_buf++;
		return(0);
	}
	/* 
	 * attach to mbuf
	 */
	MEXTADD(m0, sf_buf_kva(sf), PAGE_SIZE, socow_iodone,
	    (void*)sf_buf_kva(sf), sf, M_RDONLY, EXT_SFBUF);
	m0->m_len = PAGE_SIZE - offset;
	m0->m_data = (caddr_t)sf_buf_kva(sf) + offset;
	socow_stats.success++;

	iov = uio->uio_iov;
	iov->iov_base = (char *)iov->iov_base + m0->m_len;
	iov->iov_len -= m0->m_len;
	uio->uio_resid -= m0->m_len;
	uio->uio_offset += m0->m_len;
	if (iov->iov_len == 0) {
		uio->uio_iov++;
		uio->uio_iovcnt--;
	}

	return(m0->m_len);
}
Esempio n. 6
0
static int
tmpfs_mappedwrite(vm_object_t vobj, vm_object_t tobj, size_t len, struct uio *uio)
{
	vm_pindex_t	idx;
	vm_page_t	vpg, tpg;
	vm_offset_t	offset;
	off_t		addr;
	size_t		tlen;
	int		error, rv;

	error = 0;
	
	addr = uio->uio_offset;
	idx = OFF_TO_IDX(addr);
	offset = addr & PAGE_MASK;
	tlen = MIN(PAGE_SIZE - offset, len);

	if ((vobj == NULL) ||
	    (vobj->resident_page_count == 0 && vobj->cache == NULL)) {
		vpg = NULL;
		goto nocache;
	}

	VM_OBJECT_LOCK(vobj);
lookupvpg:
	if (((vpg = vm_page_lookup(vobj, idx)) != NULL) &&
	    vm_page_is_valid(vpg, offset, tlen)) {
		if ((vpg->oflags & VPO_BUSY) != 0) {
			/*
			 * Reference the page before unlocking and sleeping so
			 * that the page daemon is less likely to reclaim it.  
			 */
			vm_page_reference(vpg);
			vm_page_sleep(vpg, "tmfsmw");
			goto lookupvpg;
		}
		vm_page_busy(vpg);
		vm_page_undirty(vpg);
		VM_OBJECT_UNLOCK(vobj);
		error = uiomove_fromphys(&vpg, offset, tlen, uio);
	} else {
		if (__predict_false(vobj->cache != NULL))
			vm_page_cache_free(vobj, idx, idx + 1);
		VM_OBJECT_UNLOCK(vobj);
		vpg = NULL;
	}
nocache:
	VM_OBJECT_LOCK(tobj);
	tpg = vm_page_grab(tobj, idx, VM_ALLOC_WIRED |
	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
	if (tpg->valid != VM_PAGE_BITS_ALL) {
		if (vm_pager_has_page(tobj, idx, NULL, NULL)) {
			rv = vm_pager_get_pages(tobj, &tpg, 1, 0);
			if (rv != VM_PAGER_OK) {
				vm_page_lock(tpg);
				vm_page_free(tpg);
				vm_page_unlock(tpg);
				error = EIO;
				goto out;
			}
		} else
			vm_page_zero_invalid(tpg, TRUE);
	}
	VM_OBJECT_UNLOCK(tobj);
	if (vpg == NULL)
		error = uiomove_fromphys(&tpg, offset, tlen, uio);
	else {
		KASSERT(vpg->valid == VM_PAGE_BITS_ALL, ("parts of vpg invalid"));
		pmap_copy_page(vpg, tpg);
	}
	VM_OBJECT_LOCK(tobj);
	if (error == 0) {
		KASSERT(tpg->valid == VM_PAGE_BITS_ALL,
		    ("parts of tpg invalid"));
		vm_page_dirty(tpg);
	}
	vm_page_lock(tpg);
	vm_page_unwire(tpg, TRUE);
	vm_page_unlock(tpg);
	vm_page_wakeup(tpg);
out:
	VM_OBJECT_UNLOCK(tobj);
	if (vpg != NULL) {
		VM_OBJECT_LOCK(vobj);
		vm_page_wakeup(vpg);
		VM_OBJECT_UNLOCK(vobj);
	}

	return	(error);
}
Esempio n. 7
0
DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
    PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)pMem;
    int rc;

    switch (pMemFreeBSD->Core.enmType)
    {
        case RTR0MEMOBJTYPE_PAGE:
        case RTR0MEMOBJTYPE_LOW:
        case RTR0MEMOBJTYPE_CONT:
            rc = vm_map_remove(kernel_map,
                                (vm_offset_t)pMemFreeBSD->Core.pv,
                                (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb);
            AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
            break;

        case RTR0MEMOBJTYPE_LOCK:
        {
            vm_map_t pMap = kernel_map;

            if (pMemFreeBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
                pMap = &((struct proc *)pMemFreeBSD->Core.u.Lock.R0Process)->p_vmspace->vm_map;

            rc = vm_map_unwire(pMap,
                               (vm_offset_t)pMemFreeBSD->Core.pv,
                               (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb,
                               VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
            AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
            break;
        }

        case RTR0MEMOBJTYPE_RES_VIRT:
        {
            vm_map_t pMap = kernel_map;
            if (pMemFreeBSD->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
                pMap = &((struct proc *)pMemFreeBSD->Core.u.ResVirt.R0Process)->p_vmspace->vm_map;
            rc = vm_map_remove(pMap,
                               (vm_offset_t)pMemFreeBSD->Core.pv,
                               (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb);
            AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
            break;
        }

        case RTR0MEMOBJTYPE_MAPPING:
        {
            vm_map_t pMap = kernel_map;

            if (pMemFreeBSD->Core.u.Mapping.R0Process != NIL_RTR0PROCESS)
                pMap = &((struct proc *)pMemFreeBSD->Core.u.Mapping.R0Process)->p_vmspace->vm_map;
            rc = vm_map_remove(pMap,
                               (vm_offset_t)pMemFreeBSD->Core.pv,
                               (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb);
            AssertMsg(rc == KERN_SUCCESS, ("%#x", rc));
            break;
        }

        case RTR0MEMOBJTYPE_PHYS:
        case RTR0MEMOBJTYPE_PHYS_NC:
        {
#if __FreeBSD_version >= 1000030
            VM_OBJECT_WLOCK(pMemFreeBSD->pObject);
#else
            VM_OBJECT_LOCK(pMemFreeBSD->pObject);
#endif
            vm_page_t pPage = vm_page_find_least(pMemFreeBSD->pObject, 0);
            vm_page_lock_queues();
            for (vm_page_t pPage = vm_page_find_least(pMemFreeBSD->pObject, 0);
                 pPage != NULL;
                 pPage = vm_page_next(pPage))
            {
                vm_page_unwire(pPage, 0);
            }
            vm_page_unlock_queues();
#if __FreeBSD_version >= 1000030
            VM_OBJECT_WUNLOCK(pMemFreeBSD->pObject);
#else
            VM_OBJECT_UNLOCK(pMemFreeBSD->pObject);
#endif
            vm_object_deallocate(pMemFreeBSD->pObject);
            break;
        }

        default:
            AssertMsgFailed(("enmType=%d\n", pMemFreeBSD->Core.enmType));
            return VERR_INTERNAL_ERROR;
    }

    return VINF_SUCCESS;
}
Esempio n. 8
0
int
proc_rwmem(struct proc *p, struct uio *uio)
{
	struct vmspace *vm;
	vm_map_t map;
	vm_object_t object = NULL;
	vm_offset_t pageno = 0;		/* page number */
	vm_prot_t reqprot;
	vm_offset_t kva;
	int error, writing;

	GIANT_REQUIRED;

	/*
	 * if the vmspace is in the midst of being deallocated or the
	 * process is exiting, don't try to grab anything.  The page table
	 * usage in that process can be messed up.
	 */
	vm = p->p_vmspace;
	if ((p->p_flag & P_WEXIT))
		return (EFAULT);
	if (vm->vm_refcnt < 1)
		return (EFAULT);
	++vm->vm_refcnt;
	/*
	 * The map we want...
	 */
	map = &vm->vm_map;

	writing = uio->uio_rw == UIO_WRITE;
	reqprot = writing ? (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE) :
	    VM_PROT_READ;

	kva = kmem_alloc_pageable(kernel_map, PAGE_SIZE);

	/*
	 * Only map in one page at a time.  We don't have to, but it
	 * makes things easier.  This way is trivial - right?
	 */
	do {
		vm_map_t tmap;
		vm_offset_t uva;
		int page_offset;		/* offset into page */
		vm_map_entry_t out_entry;
		vm_prot_t out_prot;
		boolean_t wired;
		vm_pindex_t pindex;
		u_int len;
		vm_page_t m;

		object = NULL;

		uva = (vm_offset_t)uio->uio_offset;

		/*
		 * Get the page number of this segment.
		 */
		pageno = trunc_page(uva);
		page_offset = uva - pageno;

		/*
		 * How many bytes to copy
		 */
		len = min(PAGE_SIZE - page_offset, uio->uio_resid);

		/*
		 * Fault the page on behalf of the process
		 */
		error = vm_fault(map, pageno, reqprot, VM_FAULT_NORMAL);
		if (error) {
			error = EFAULT;
			break;
		}

		/*
		 * Now we need to get the page.  out_entry, out_prot, wired,
		 * and single_use aren't used.  One would think the vm code
		 * would be a *bit* nicer...  We use tmap because
		 * vm_map_lookup() can change the map argument.
		 */
		tmap = map;
		error = vm_map_lookup(&tmap, pageno, reqprot, &out_entry,
		    &object, &pindex, &out_prot, &wired);

		if (error) {
			error = EFAULT;

			/*
			 * Make sure that there is no residue in 'object' from
			 * an error return on vm_map_lookup.
			 */
			object = NULL;

			break;
		}

		m = vm_page_lookup(object, pindex);

		/* Allow fallback to backing objects if we are reading */

		while (m == NULL && !writing && object->backing_object) {

			pindex += OFF_TO_IDX(object->backing_object_offset);
			object = object->backing_object;
			
			m = vm_page_lookup(object, pindex);
		}

		if (m == NULL) {
			error = EFAULT;

			/*
			 * Make sure that there is no residue in 'object' from
			 * an error return on vm_map_lookup.
			 */
			object = NULL;

			vm_map_lookup_done(tmap, out_entry);

			break;
		}

		/*
		 * Wire the page into memory
		 */
		vm_page_lock_queues();
		vm_page_wire(m);
		vm_page_unlock_queues();

		/*
		 * We're done with tmap now.
		 * But reference the object first, so that we won't loose
		 * it.
		 */
		vm_object_reference(object);
		vm_map_lookup_done(tmap, out_entry);

		pmap_qenter(kva, &m, 1);

		/*
		 * Now do the i/o move.
		 */
		error = uiomove((caddr_t)(kva + page_offset), len, uio);

		pmap_qremove(kva, 1);

		/*
		 * release the page and the object
		 */
		vm_page_lock_queues();
		vm_page_unwire(m, 1);
		vm_page_unlock_queues();
		vm_object_deallocate(object);

		object = NULL;

	} while (error == 0 && uio->uio_resid > 0);

	if (object)
		vm_object_deallocate(object);

	kmem_free(kernel_map, kva, PAGE_SIZE);
	vmspace_free(vm);
	return (error);
}