void test_vst4u8 (void) { uint8_t *arg0_uint8_t; uint8x8x4_t arg1_uint8x8x4_t; vst4_u8 (arg0_uint8_t, arg1_uint8x8x4_t); }
void SkBlitLCD16Row_neon(SkPMColor dst[], const uint16_t src[], SkColor color, int width, SkPMColor) { int colA = SkColorGetA(color); int colR = SkColorGetR(color); int colG = SkColorGetG(color); int colB = SkColorGetB(color); colA = SkAlpha255To256(colA); uint8x8_t vcolR, vcolG, vcolB; uint16x8_t vcolA; if (width >= 8) { vcolA = vdupq_n_u16(colA); vcolR = vdup_n_u8(colR); vcolG = vdup_n_u8(colG); vcolB = vdup_n_u8(colB); } while (width >= 8) { uint8x8x4_t vdst; uint16x8_t vmask; uint16x8_t vmaskR, vmaskG, vmaskB; vdst = vld4_u8((uint8_t*)dst); vmask = vld1q_u16(src); // Get all the color masks on 5 bits vmaskR = vshrq_n_u16(vmask, SK_R16_SHIFT); vmaskG = vshrq_n_u16(vshlq_n_u16(vmask, SK_R16_BITS), SK_B16_BITS + SK_R16_BITS + 1); vmaskB = vmask & vdupq_n_u16(SK_B16_MASK); // Upscale to 0..32 vmaskR = vmaskR + vshrq_n_u16(vmaskR, 4); vmaskG = vmaskG + vshrq_n_u16(vmaskG, 4); vmaskB = vmaskB + vshrq_n_u16(vmaskB, 4); vmaskR = vshrq_n_u16(vmaskR * vcolA, 8); vmaskG = vshrq_n_u16(vmaskG * vcolA, 8); vmaskB = vshrq_n_u16(vmaskB * vcolA, 8); vdst.val[NEON_A] = vdup_n_u8(0xFF); vdst.val[NEON_R] = SkBlend32_neon8(vcolR, vdst.val[NEON_R], vmaskR); vdst.val[NEON_G] = SkBlend32_neon8(vcolG, vdst.val[NEON_G], vmaskG); vdst.val[NEON_B] = SkBlend32_neon8(vcolB, vdst.val[NEON_B], vmaskB); vst4_u8((uint8_t*)dst, vdst); dst += 8; src += 8; width -= 8; } for (int i = 0; i < width; i++) { dst[i] = SkBlendLCD16(colA, colR, colG, colB, dst[i], src[i]); } }
void SkBlitLCD16OpaqueRow_neon(SkPMColor dst[], const uint16_t src[], SkColor color, int width, SkPMColor opaqueDst) { int colR = SkColorGetR(color); int colG = SkColorGetG(color); int colB = SkColorGetB(color); uint8x8_t vcolR, vcolG, vcolB; uint8x8_t vopqDstA, vopqDstR, vopqDstG, vopqDstB; if (width >= 8) { vcolR = vdup_n_u8(colR); vcolG = vdup_n_u8(colG); vcolB = vdup_n_u8(colB); vopqDstA = vdup_n_u8(SkGetPackedA32(opaqueDst)); vopqDstR = vdup_n_u8(SkGetPackedR32(opaqueDst)); vopqDstG = vdup_n_u8(SkGetPackedG32(opaqueDst)); vopqDstB = vdup_n_u8(SkGetPackedB32(opaqueDst)); } while (width >= 8) { uint8x8x4_t vdst; uint16x8_t vmask; uint16x8_t vmaskR, vmaskG, vmaskB; uint8x8_t vsel_trans, vsel_opq; vdst = vld4_u8((uint8_t*)dst); vmask = vld1q_u16(src); // Prepare compare masks vsel_trans = vmovn_u16(vceqq_u16(vmask, vdupq_n_u16(0))); vsel_opq = vmovn_u16(vceqq_u16(vmask, vdupq_n_u16(0xFFFF))); // Get all the color masks on 5 bits vmaskR = vshrq_n_u16(vmask, SK_R16_SHIFT); vmaskG = vshrq_n_u16(vshlq_n_u16(vmask, SK_R16_BITS), SK_B16_BITS + SK_R16_BITS + 1); vmaskB = vmask & vdupq_n_u16(SK_B16_MASK); // Upscale to 0..32 vmaskR = vmaskR + vshrq_n_u16(vmaskR, 4); vmaskG = vmaskG + vshrq_n_u16(vmaskG, 4); vmaskB = vmaskB + vshrq_n_u16(vmaskB, 4); vdst.val[NEON_A] = vbsl_u8(vsel_trans, vdst.val[NEON_A], vdup_n_u8(0xFF)); vdst.val[NEON_A] = vbsl_u8(vsel_opq, vopqDstA, vdst.val[NEON_A]); vdst.val[NEON_R] = SkBlend32_neon8(vcolR, vdst.val[NEON_R], vmaskR); vdst.val[NEON_G] = SkBlend32_neon8(vcolG, vdst.val[NEON_G], vmaskG); vdst.val[NEON_B] = SkBlend32_neon8(vcolB, vdst.val[NEON_B], vmaskB); vdst.val[NEON_R] = vbsl_u8(vsel_opq, vopqDstR, vdst.val[NEON_R]); vdst.val[NEON_G] = vbsl_u8(vsel_opq, vopqDstG, vdst.val[NEON_G]); vdst.val[NEON_B] = vbsl_u8(vsel_opq, vopqDstB, vdst.val[NEON_B]); vst4_u8((uint8_t*)dst, vdst); dst += 8; src += 8; width -= 8; } // Leftovers for (int i = 0; i < width; i++) { dst[i] = SkBlendLCD16Opaque(colR, colG, colB, dst[i], src[i], opaqueDst); } }
void UpsampleRgbaLinePairNEON(const uint8_t *top_y, const uint8_t *bottom_y, const uint8_t *top_u, const uint8_t *top_v, const uint8_t *cur_u, const uint8_t *cur_v, uint8_t *top_dst, uint8_t *bottom_dst, int len) { int block; uint8_t uv_buf[2 * 32 + 15]; uint8_t *const r_uv = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); const int uv_len = (len + 1) >> 1; const int num_blocks = (uv_len - 1) >> 3; const int leftover = uv_len - num_blocks * 8; const int last_pos = 1 + 16 * num_blocks; const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; const int16x4_t cf16 = vld1_s16(coef); const int32x2_t cf32 = vmov_n_s32(76283); const uint8x8_t u16 = vmov_n_u8(16); const uint8x8_t u128 = vmov_n_u8(128); for (block = 0; block < num_blocks; ++block) { { uint8x8_t a = vld1_u8(top_u); uint8x8_t b = vld1_u8(top_u + 1); uint8x8_t c = vld1_u8(cur_u); uint8x8_t d = vld1_u8(cur_u + 1); uint16x8_t al = vshll_n_u8(a, 1); uint16x8_t bl = vshll_n_u8(b, 1); uint16x8_t cl = vshll_n_u8(c, 1); uint16x8_t dl = vshll_n_u8(d, 1); uint8x8_t diag1, diag2; uint16x8_t sl; sl = vaddl_u8(a, b); sl = vaddw_u8(sl, c); sl = vaddw_u8(sl, d); al = vaddq_u16(sl, al); bl = vaddq_u16(sl, bl); al = vaddq_u16(al, dl); bl = vaddq_u16(bl, cl); diag2 = vshrn_n_u16(al, 3); diag1 = vshrn_n_u16(bl, 3); a = vrhadd_u8(a, diag1); b = vrhadd_u8(b, diag2); c = vrhadd_u8(c, diag2); d = vrhadd_u8(d, diag1); { const uint8x8x2_t a_b = {{ a, b }}; const uint8x8x2_t c_d = {{ c, d }}; vst2_u8(r_uv, a_b); vst2_u8(r_uv + 32, c_d); } } { uint8x8_t a = vld1_u8(top_v); uint8x8_t b = vld1_u8(top_v + 1); uint8x8_t c = vld1_u8(cur_v); uint8x8_t d = vld1_u8(cur_v + 1); uint16x8_t al = vshll_n_u8(a, 1); uint16x8_t bl = vshll_n_u8(b, 1); uint16x8_t cl = vshll_n_u8(c, 1); uint16x8_t dl = vshll_n_u8(d, 1); uint8x8_t diag1, diag2; uint16x8_t sl; sl = vaddl_u8(a, b); sl = vaddw_u8(sl, c); sl = vaddw_u8(sl, d); al = vaddq_u16(sl, al); bl = vaddq_u16(sl, bl); al = vaddq_u16(al, dl); bl = vaddq_u16(bl, cl); diag2 = vshrn_n_u16(al, 3); diag1 = vshrn_n_u16(bl, 3); a = vrhadd_u8(a, diag1); b = vrhadd_u8(b, diag2); c = vrhadd_u8(c, diag2); d = vrhadd_u8(d, diag1); { const uint8x8x2_t a_b = {{ a, b }}; const uint8x8x2_t c_d = {{ c, d }}; vst2_u8(r_uv + 16, a_b); vst2_u8(r_uv + 16 + 32, c_d); } } { if (top_y) { { int i; for (i = 0; i < 16; i += 8) { int off = ((16 * block + 1) + i) * 4; uint8x8_t y = vld1_u8(top_y + (16 * block + 1) + i); uint8x8_t u = vld1_u8((r_uv) + i); uint8x8_t v = vld1_u8((r_uv) + i + 16); int16x8_t yy = vreinterpretq_s16_u16(vsubl_u8(y, u16)); int16x8_t uu = vreinterpretq_s16_u16(vsubl_u8(u, u128)); int16x8_t vv = vreinterpretq_s16_u16(vsubl_u8(v, u128)); int16x8_t ud = vshlq_n_s16(uu, 1); int16x8_t vd = vshlq_n_s16(vv, 1); int32x4_t vrl = vqdmlal_lane_s16(vshll_n_s16(vget_low_s16(vv), 1), vget_low_s16(vd), cf16, 0); int32x4_t vrh = vqdmlal_lane_s16(vshll_n_s16(vget_high_s16(vv), 1), vget_high_s16(vd), cf16, 0); int16x8_t vr = vcombine_s16(vrshrn_n_s32(vrl, 16), vrshrn_n_s32(vrh, 16)); int32x4_t vl = vmovl_s16(vget_low_s16(vv)); int32x4_t vh = vmovl_s16(vget_high_s16(vv)); int32x4_t ugl = vmlal_lane_s16(vl, vget_low_s16(uu), cf16, 1); int32x4_t ugh = vmlal_lane_s16(vh, vget_high_s16(uu), cf16, 1); int32x4_t gcl = vqdmlal_lane_s16(ugl, vget_low_s16(vv), cf16, 2); int32x4_t gch = vqdmlal_lane_s16(ugh, vget_high_s16(vv), cf16, 2); int16x8_t gc = vcombine_s16(vrshrn_n_s32(gcl, 16), vrshrn_n_s32(gch, 16)); int32x4_t ubl = vqdmlal_lane_s16(vshll_n_s16(vget_low_s16(uu), 1), vget_low_s16(ud), cf16, 3); int32x4_t ubh = vqdmlal_lane_s16(vshll_n_s16(vget_high_s16(uu), 1), vget_high_s16(ud), cf16, 3); int16x8_t ub = vcombine_s16(vrshrn_n_s32(ubl, 16), vrshrn_n_s32(ubh, 16)); int32x4_t rl = vaddl_s16(vget_low_s16(yy), vget_low_s16(vr)); int32x4_t rh = vaddl_s16(vget_high_s16(yy), vget_high_s16(vr)); int32x4_t gl = vsubl_s16(vget_low_s16(yy), vget_low_s16(gc)); int32x4_t gh = vsubl_s16(vget_high_s16(yy), vget_high_s16(gc)); int32x4_t bl = vaddl_s16(vget_low_s16(yy), vget_low_s16(ub)); int32x4_t bh = vaddl_s16(vget_high_s16(yy), vget_high_s16(ub)); rl = vmulq_lane_s32(rl, cf32, 0); rh = vmulq_lane_s32(rh, cf32, 0); gl = vmulq_lane_s32(gl, cf32, 0); gh = vmulq_lane_s32(gh, cf32, 0); bl = vmulq_lane_s32(bl, cf32, 0); bh = vmulq_lane_s32(bh, cf32, 0); y = vqmovun_s16(vcombine_s16(vrshrn_n_s32(rl, 16), vrshrn_n_s32(rh, 16))); u = vqmovun_s16(vcombine_s16(vrshrn_n_s32(gl, 16), vrshrn_n_s32(gh, 16))); v = vqmovun_s16(vcombine_s16(vrshrn_n_s32(bl, 16), vrshrn_n_s32(bh, 16))); do { const uint8x8x4_t r_g_b_v255 = {{ y, u, v, vmov_n_u8(255) }}; vst4_u8(top_dst + off, r_g_b_v255); } while (0); } } } if (bottom_y) { { int i; for (i = 0; i < 16; i += 8) { int off = ((16 * block + 1) + i) * 4; uint8x8_t y = vld1_u8(bottom_y + (16 * block + 1) + i); uint8x8_t u = vld1_u8(((r_uv) + 32) + i); uint8x8_t v = vld1_u8(((r_uv) + 32) + i + 16); int16x8_t yy = vreinterpretq_s16_u16(vsubl_u8(y, u16)); int16x8_t uu = vreinterpretq_s16_u16(vsubl_u8(u, u128)); int16x8_t vv = vreinterpretq_s16_u16(vsubl_u8(v, u128)); int16x8_t ud = vshlq_n_s16(uu, 1); int16x8_t vd = vshlq_n_s16(vv, 1); int32x4_t vrl = vqdmlal_lane_s16(vshll_n_s16(vget_low_s16(vv), 1), vget_low_s16(vd), cf16, 0); int32x4_t vrh = vqdmlal_lane_s16(vshll_n_s16(vget_high_s16(vv), 1), vget_high_s16(vd), cf16, 0); int16x8_t vr = vcombine_s16(vrshrn_n_s32(vrl, 16), vrshrn_n_s32(vrh, 16)); int32x4_t vl = vmovl_s16(vget_low_s16(vv)); int32x4_t vh = vmovl_s16(vget_high_s16(vv)); int32x4_t ugl = vmlal_lane_s16(vl, vget_low_s16(uu), cf16, 1); int32x4_t ugh = vmlal_lane_s16(vh, vget_high_s16(uu), cf16, 1); int32x4_t gcl = vqdmlal_lane_s16(ugl, vget_low_s16(vv), cf16, 2); int32x4_t gch = vqdmlal_lane_s16(ugh, vget_high_s16(vv), cf16, 2); int16x8_t gc = vcombine_s16(vrshrn_n_s32(gcl, 16), vrshrn_n_s32(gch, 16)); int32x4_t ubl = vqdmlal_lane_s16(vshll_n_s16(vget_low_s16(uu), 1), vget_low_s16(ud), cf16, 3); int32x4_t ubh = vqdmlal_lane_s16(vshll_n_s16(vget_high_s16(uu), 1), vget_high_s16(ud), cf16, 3); int16x8_t ub = vcombine_s16(vrshrn_n_s32(ubl, 16), vrshrn_n_s32(ubh, 16)); int32x4_t rl = vaddl_s16(vget_low_s16(yy), vget_low_s16(vr)); int32x4_t rh = vaddl_s16(vget_high_s16(yy), vget_high_s16(vr)); int32x4_t gl = vsubl_s16(vget_low_s16(yy), vget_low_s16(gc)); int32x4_t gh = vsubl_s16(vget_high_s16(yy), vget_high_s16(gc)); int32x4_t bl = vaddl_s16(vget_low_s16(yy), vget_low_s16(ub)); int32x4_t bh = vaddl_s16(vget_high_s16(yy), vget_high_s16(ub)); rl = vmulq_lane_s32(rl, cf32, 0); rh = vmulq_lane_s32(rh, cf32, 0); gl = vmulq_lane_s32(gl, cf32, 0); gh = vmulq_lane_s32(gh, cf32, 0); bl = vmulq_lane_s32(bl, cf32, 0); bh = vmulq_lane_s32(bh, cf32, 0); y = vqmovun_s16(vcombine_s16(vrshrn_n_s32(rl, 16), vrshrn_n_s32(rh, 16))); u = vqmovun_s16(vcombine_s16(vrshrn_n_s32(gl, 16), vrshrn_n_s32(gh, 16))); v = vqmovun_s16(vcombine_s16(vrshrn_n_s32(bl, 16), vrshrn_n_s32(bh, 16))); do { const uint8x8x4_t r_g_b_v255 = {{ y, u, v, vmov_n_u8(255) }}; vst4_u8(bottom_dst + off, r_g_b_v255); } while (0); } } } } } }
static void store_pixel_block(unsigned char* dst, PixelBlock& pblock, uint8x8_t const& r, uint8x8_t const& g, uint8x8_t const& b) { pblock.val[0] = b; pblock.val[1] = g; pblock.val[2] = r; vst4_u8(dst, pblock); }
inline void vst4(u8 * ptr, const uint8x8x4_t & v) { return vst4_u8(ptr, v); }
// // box blur a square array of pixels (power of 2, actually) // if we insist on powers of 2, we don't need to special case some end-of-row/col conditions // to a specific blur width // // also, we're using NEON to vectorize our arithmetic. // we need to do a division along the way, but NEON doesn't support integer division. // so rather than divide by, say "w", we multiply by magic(w). // magic(w) is chosen so that the result of multiplying by it will be the same as // dividing by w, except that the result will be in the high half of the result. // yes, dorothy... this is what compilers do, too... void NEONboxBlur(pixel *src, pixel *dest, unsigned int size, unsigned int blurRad) { unsigned int wid = 2 * blurRad + 1; // because NEON doesn't have integer division, we use "magic constants" that will give // use the result of division by multiplication -- the upper half of the result will be // (more or less) the result of the division. // for this, we need to compute the magic numbers corresponding to a given divisor struct magicu_info minfo = compute_unsigned_magic_info(wid, 16); int16x8_t preshift = vdupq_n_s16(-minfo.pre_shift); // negative means shift right int32x4_t postshift = vdupq_n_s32(-(minfo.post_shift+16)); // negative means shift right uint16x4_t magic = vdup_n_u16(minfo.multiplier); // fprintf(stderr,"width %5d, preshift %d, postshift %d + 16, increment %d, magic %d\n", wid, // minfo.pre_shift, minfo.post_shift, minfo.increment, minfo.multiplier); // if (minfo.pre_shift > 0) fprintf(stderr,"hey, not an odd number!\n"); int i, j, k, ch; for (i = 0 ; i < size ; i+=8) { // first, initialize the sum so that we can loop from 0 to size-1 // we'll initialize boxsum for index -1, so that we can move into 0 as part of our loop uint16x8x4_t boxsum; uint8x8x4_t firstpixel = vld4_u8((uint8_t *)(src + 0 * size + i)); for (ch = 0 ; ch < 4 ; ch++) { // boxsum[ch] = blurRad * srcpixel[ch] boxsum.val[ch] = vmulq_n_u16(vmovl_u8(firstpixel.val[ch]),(blurRad+1)+1); } for ( k = 1 ; k < blurRad ; k++) { uint8x8x4_t srcpixel = vld4_u8((uint8_t *)(src + k * size + i)); for (ch = 0 ; ch < 4 ; ch++ ) { boxsum.val[ch] = vaddw_u8(boxsum.val[ch], srcpixel.val[ch]); } } int right = blurRad-1; int left = -blurRad-1; if (minfo.increment) { for ( k = 0 ; k < size ; k++) { // move to next pixel unsigned int l = (left < 0)?0:left; // take off the old left left++; right++; unsigned int r = (right < size)?right:(size-1); // but add the new right uint8x8x4_t addpixel = vld4_u8((uint8_t *)(src + r * size + i)); uint8x8x4_t subpixel = vld4_u8((uint8_t *)(src + l * size + i)); for (ch = 0 ; ch < 4 ; ch++ ) { // boxsum[ch] += addpixel[ch] - subpixel[ch]; boxsum.val[ch] = vsubw_u8(vaddw_u8(boxsum.val[ch], addpixel.val[ch]), subpixel.val[ch]); } uint8x8x4_t destpixel; for (ch = 0 ; ch < 4 ; ch++ ) { // compute: destpixel = boxsum / wid // since 16bit multiplication leads to 32bit results, we need to // split our task into two chunks, for the hi and low half of our vector // (because otherwise, it won't all fit into 128 bits) // this is the meat of the magic division algorithm (see the include file...) uint16x8_t bsum_preshifted = vshlq_u16(boxsum.val[ch],preshift); // multiply by the magic number uint32x4_t res_hi = vmull_u16(vget_high_u16(bsum_preshifted), magic); res_hi = vaddw_u16(res_hi, magic); // take the high half and post-shift uint16x4_t q_hi = vmovn_u32(vshlq_u32(res_hi, postshift)); // pre-shift and multiply by the magic number uint32x4_t res_lo = vmull_u16(vget_low_u16(bsum_preshifted), magic); res_lo = vaddw_u16(res_lo, magic); // take the high half and post-shift uint16x4_t q_lo = vmovn_u32(vshlq_u32(res_lo, postshift)); destpixel.val[ch] = vqmovn_u16(vcombine_u16(q_lo, q_hi)); } pixel block[8]; vst4_u8((uint8_t *)&block, destpixel); for (j = 0 ; j < 8 ; j++ ) { dest[(i + j)*size + k] = block[j]; } // vst4_u8((uint8_t *)(dest + k * size + i), destpixel); } } else { for ( k = 0 ; k < size ; k++) { // move to next pixel unsigned int l = (left < 0)?0:left; // take off the old left left++; right++; unsigned int r = (right < size)?right:(size-1); // but add the new right uint8x8x4_t addpixel = vld4_u8((uint8_t *)(src + r * size + i)); uint8x8x4_t subpixel = vld4_u8((uint8_t *)(src + l * size + i)); for (ch = 0 ; ch < 4 ; ch++ ) { // boxsum[ch] += addpixel[ch] - subpixel[ch]; boxsum.val[ch] = vsubw_u8(vaddw_u8(boxsum.val[ch], addpixel.val[ch]), subpixel.val[ch]); } uint8x8x4_t destpixel; for (ch = 0 ; ch < 4 ; ch++ ) { // compute: destpixel = boxsum / wid // since 16bit multiplication leads to 32bit results, we need to // split our task into two chunks, for the hi and low half of our vector // (because otherwise, it won't all fit into 128 bits) // this is the meat of the magic division algorithm (see the include file...) uint16x8_t bsum_preshifted = vshlq_u16(boxsum.val[ch],preshift); // multiply by the magic number // take the high half and post-shift uint32x4_t res_hi = vmull_u16(vget_high_u16(bsum_preshifted), magic); uint16x4_t q_hi = vmovn_u32(vshlq_u32(res_hi, postshift)); // multiply by the magic number // take the high half and post-shift uint32x4_t res_lo = vmull_u16(vget_low_u16(bsum_preshifted), magic); uint16x4_t q_lo = vmovn_u32(vshlq_u32(res_lo, postshift)); destpixel.val[ch] = vqmovn_u16(vcombine_u16(q_lo, q_hi)); } pixel block[8]; vst4_u8((uint8_t *)&block, destpixel); for (j = 0 ; j < 8 ; j++ ) { dest[(i + j)*size + k] = block[j]; } // vst4_u8((uint8_t *)(dest + k * size + i), destpixel); } } } }
void combineUYVY(const Size2D &size, const u8 * srcyBase, ptrdiff_t srcyStride, const u8 * srcuBase, ptrdiff_t srcuStride, const u8 * srcvBase, ptrdiff_t srcvStride, u8 * dstBase, ptrdiff_t dstStride) { internal::assertSupportedConfiguration(); #ifdef CAROTENE_NEON #ifndef __ANDROID__ size_t roiw32 = size.width >= 31 ? size.width - 31 : 0; #endif size_t roiw8 = size.width >= 7 ? size.width - 7 : 0; for (size_t i = 0u; i < size.height; ++i) { const u8 * srcy = internal::getRowPtr(srcyBase, srcyStride, i); const u8 * srcu = internal::getRowPtr(srcuBase, srcuStride, i); const u8 * srcv = internal::getRowPtr(srcvBase, srcvStride, i); u8 * dst = internal::getRowPtr(dstBase, dstStride, i); size_t syj = 0u, sj = 0u, dj = 0u; #ifndef __ANDROID__ for (; sj < roiw32; sj += 32, syj += 64, dj += 128) { internal::prefetch(srcy + syj); internal::prefetch(srcu + sj); internal::prefetch(srcv + sj); uint8x16x2_t v_y = vld2q_u8(srcy + syj); uint8x16x4_t v_dst; v_dst.val[0] = vld1q_u8(srcu + sj); v_dst.val[1] = v_y.val[0]; v_dst.val[2] = vld1q_u8(srcv + sj); v_dst.val[3] = v_y.val[1]; vst4q_u8(dst + dj, v_dst); v_y = vld2q_u8(srcy + syj + 32); v_dst.val[0] = vld1q_u8(srcu + sj + 16); v_dst.val[1] = v_y.val[0]; v_dst.val[2] = vld1q_u8(srcv + sj + 16); v_dst.val[3] = v_y.val[1]; vst4q_u8(dst + dj + 64, v_dst); } #endif for (; sj < roiw8; sj += 8, syj += 16, dj += 32) { uint8x8x2_t v_y = vld2_u8(srcy + syj); uint8x8x4_t v_dst; v_dst.val[0] = vld1_u8(srcu + sj); v_dst.val[1] = v_y.val[0]; v_dst.val[2] = vld1_u8(srcv + sj); v_dst.val[3] = v_y.val[1]; vst4_u8(dst + dj, v_dst); } for (; sj < size.width; ++sj, syj += 2, dj += 4) { dst[dj] = srcu[sj]; dst[dj + 1] = srcy[syj]; dst[dj + 2] = srcv[sj]; dst[dj + 3] = srcy[syj + 1]; } } #else (void)size; (void)srcyBase; (void)srcyStride; (void)srcuBase; (void)srcuStride; (void)srcvBase; (void)srcvStride; (void)dstBase; (void)dstStride; #endif }