Esempio n. 1
0
/* ionosphere residuals ------------------------------------------------------*/
static int res_iono(const obsd_t *obs, int n, const nav_t *nav,
                    const double *rs, const double *rr, const double *pos,
                    const double *azel, const pcv_t *pcv, const ekf_t *ekf,
                    double *phw, double *v, double *H, double *R)
{
    double *sig,P1,P2,L1,L2,c_iono=1.0-SQR(lam[1]/lam[0]);
    double LG,PG,antdel[3]={0},dant[NFREQ]={0};
    int i,j,nv=0,sat;
    
    sig=mat(1,2*n);
    
    for (i=0;i<n;i++) {
        if (!raw_obs(obs+i,nav,&P1,&P2,&L1,&L2)||azel[i*2+1]<MIN_EL) continue;
        
        sat=obs[i].sat;
        
        /* ionosphere-LC model */
        LG=-c_iono*ekf->x[II(sat)]+ekf->x[IB(sat)];
        PG= c_iono*ekf->x[II(sat)]+nav->cbias[sat-1][0];
        
        /* receiver antenna phase center offset and variation */
        if (pcv) {
            antmodel(pcv,antdel,azel+i*2,dant);
            LG+=dant[0]-dant[1];
            PG+=dant[0]-dant[1];
        }
        /* phase windup correction */
        windupcorr(obs[i].time,rs+i*6,rr,phw+obs[i].sat-1);
        LG+=(lam[0]-lam[1])*phw[obs[i].sat-1];
        
        /* residuals of ionosphere (geometriy-free) LC */
        v[nv  ]=(L1-L2)-LG;
#if 0
        v[nv+1]=(P1-P2)-PG;
#else
        v[nv+1]=0.0;
#endif
        for (j=0;j<ekf->nx*2;j++) H[ekf->nx*nv+j]=0.0;
        H[ekf->nx*nv    +II(sat)]=-c_iono;
        H[ekf->nx*nv    +IB(sat)]=1.0;
        H[ekf->nx*(nv+1)+II(sat)]=c_iono;
        
        sig[nv  ]=sig_err(azel+i*2);
        sig[nv+1]=RATIO_ERR*sig[nv];
        nv+=2;
    }
    for (i=0;i<nv;i++) for (j=0;j<nv;j++) {
        R[i+j*nv]=i==j?SQR(sig[i]):0.0;
    }
    free(sig);
    return nv;
}
Esempio n. 2
0
/* phase and code residuals --------------------------------------------------*/
static int res_ppp(int iter, const obsd_t *obs, int n, const double *rs,
                   const double *dts, const double *vare, const int *svh,
                   const nav_t *nav, const double *x, rtk_t *rtk, double *v,
                   double *H, double *R, double *azel)
{
    prcopt_t *opt=&rtk->opt;
    double r,rr[3],disp[3],pos[3],e[3],meas[2],dtdx[3],dantr[NFREQ]={0};
    double dants[NFREQ]={0},var[MAXOBS*2],dtrp=0.0,vart=0.0,varm[2]={0};
    int i,j,k,sat,sys,nv=0,nx=rtk->nx,brk,tideopt;
    
    trace(3,"res_ppp : n=%d nx=%d\n",n,nx);
    
    for (i=0;i<MAXSAT;i++) rtk->ssat[i].vsat[0]=0;
    
    for (i=0;i<3;i++) rr[i]=x[i];
    
    /* earth tides correction */
    if (opt->tidecorr) {
        tideopt=opt->tidecorr==1?1:7; /* 1:solid, 2:solid+otl+pole */
        
        tidedisp(gpst2utc(obs[0].time),rr,tideopt,&nav->erp,opt->odisp[0],
                 disp);
        for (i=0;i<3;i++) rr[i]+=disp[i];
    }
    ecef2pos(rr,pos);
    
    for (i=0;i<n&&i<MAXOBS;i++) {
        sat=obs[i].sat;
        if (!(sys=satsys(sat,NULL))||!rtk->ssat[sat-1].vs) continue;
        
        /* geometric distance/azimuth/elevation angle */
        if ((r=geodist(rs+i*6,rr,e))<=0.0||
            satazel(pos,e,azel+i*2)<opt->elmin) continue;
        
        /* excluded satellite? */
        if (satexclude(obs[i].sat,svh[i],opt)) continue;
        
        /* tropospheric delay correction */
        if (opt->tropopt==TROPOPT_SAAS) {
            dtrp=tropmodel(obs[i].time,pos,azel+i*2,REL_HUMI);
            vart=SQR(ERR_SAAS);
        }
        else if (opt->tropopt==TROPOPT_SBAS) {
            dtrp=sbstropcorr(obs[i].time,pos,azel+i*2,&vart);
        }
        else if (opt->tropopt==TROPOPT_EST||opt->tropopt==TROPOPT_ESTG) {
            dtrp=prectrop(obs[i].time,pos,azel+i*2,opt,x+IT(opt),dtdx,&vart);
        }
        else if (opt->tropopt==TROPOPT_COR||opt->tropopt==TROPOPT_CORG) {
            dtrp=prectrop(obs[i].time,pos,azel+i*2,opt,x,dtdx,&vart);
        }
        /* satellite antenna model */
        if (opt->posopt[0]) {
            satantpcv(rs+i*6,rr,nav->pcvs+sat-1,dants);
        }
        /* receiver antenna model */
        antmodel(opt->pcvr,opt->antdel[0],azel+i*2,opt->posopt[1],dantr);
        
        /* phase windup correction */
        if (opt->posopt[2]) {
            windupcorr(rtk->sol.time,rs+i*6,rr,&rtk->ssat[sat-1].phw);
        }
        /* ionosphere and antenna phase corrected measurements */
        if (!corrmeas(obs+i,nav,pos,azel+i*2,&rtk->opt,dantr,dants,
                      rtk->ssat[sat-1].phw,meas,varm,&brk)) {
            continue;
        }
        /* satellite clock and tropospheric delay */
        r+=-CLIGHT*dts[i*2]+dtrp;
        
        trace(5,"sat=%2d azel=%6.1f %5.1f dtrp=%.3f dantr=%6.3f %6.3f dants=%6.3f %6.3f phw=%6.3f\n",
              sat,azel[i*2]*R2D,azel[1+i*2]*R2D,dtrp,dantr[0],dantr[1],dants[0],
              dants[1],rtk->ssat[sat-1].phw);
        
        for (j=0;j<2;j++) { /* for phase and code */
            
            if (meas[j]==0.0) continue;
            
            for (k=0;k<nx;k++) H[k+nx*nv]=0.0;
            
            v[nv]=meas[j]-r;
            
            for (k=0;k<3;k++) H[k+nx*nv]=-e[k];
            
            if (sys!=SYS_GLO) {
                v[nv]-=x[IC(0,opt)];
                H[IC(0,opt)+nx*nv]=1.0;
            }
            else {
                v[nv]-=x[IC(1,opt)];
                H[IC(1,opt)+nx*nv]=1.0;
            }
            if (opt->tropopt>=TROPOPT_EST) {
                for (k=0;k<(opt->tropopt>=TROPOPT_ESTG?3:1);k++) {
                    H[IT(opt)+k+nx*nv]=dtdx[k];
                }
            }
            if (j==0) {
                v[nv]-=x[IB(obs[i].sat,opt)];
                H[IB(obs[i].sat,opt)+nx*nv]=1.0;
            }
            var[nv]=varerr(obs[i].sat,sys,azel[1+i*2],j,opt)+varm[j]+vare[i]+vart;
            
            if (j==0) rtk->ssat[sat-1].resc[0]=v[nv];
            else      rtk->ssat[sat-1].resp[0]=v[nv];
            
            /* test innovation */
#if 0
            if (opt->maxinno>0.0&&fabs(v[nv])>opt->maxinno) {
#else
            if (opt->maxinno>0.0&&fabs(v[nv])>opt->maxinno&&sys!=SYS_GLO) {
#endif
                trace(2,"ppp outlier rejected %s sat=%2d type=%d v=%.3f\n",
                      time_str(obs[i].time,0),sat,j,v[nv]);
                rtk->ssat[sat-1].rejc[0]++;
                continue;
            }
            if (j==0) rtk->ssat[sat-1].vsat[0]=1;
            nv++;
        }
    }
    for (i=0;i<nv;i++) for (j=0;j<nv;j++) {
        R[i+j*nv]=i==j?var[i]:0.0;
    }
    trace(5,"x=\n"); tracemat(5,x, 1,nx,8,3);
    trace(5,"v=\n"); tracemat(5,v, 1,nv,8,3);
    trace(5,"H=\n"); tracemat(5,H,nx,nv,8,3);
    trace(5,"R=\n"); tracemat(5,R,nv,nv,8,5);
    return nv;
}
/* number of estimated states ------------------------------------------------*/
extern int pppnx(const prcopt_t *opt)
{
    return NX(opt);
}
/* precise point positioning -------------------------------------------------*/
extern void pppos(rtk_t *rtk, const obsd_t *obs, int n, const nav_t *nav)
{
    const prcopt_t *opt=&rtk->opt;
    double *rs,*dts,*var,*v,*H,*R,*azel,*xp,*Pp;
    int i,nv,info,svh[MAXOBS],stat=SOLQ_SINGLE;
    
    trace(3,"pppos   : nx=%d n=%d\n",rtk->nx,n);
    
    rs=mat(6,n); dts=mat(2,n); var=mat(1,n); azel=zeros(2,n);
    
    for (i=0;i<MAXSAT;i++) rtk->ssat[i].fix[0]=0;
    
    /* temporal update of states */
    udstate_ppp(rtk,obs,n,nav);
    
    trace(4,"x(0)="); tracemat(4,rtk->x,1,NR(opt),13,4);
    
    /* satellite positions and clocks */
    satposs(obs[0].time,obs,n,nav,rtk->opt.sateph,rs,dts,var,svh);
    
    /* exclude measurements of eclipsing satellite */
    if (rtk->opt.posopt[3]) {
        testeclipse(obs,n,nav,rs);
    }
    xp=mat(rtk->nx,1); Pp=zeros(rtk->nx,rtk->nx);
    matcpy(xp,rtk->x,rtk->nx,1);
    nv=n*rtk->opt.nf*2; v=mat(nv,1); H=mat(rtk->nx,nv); R=mat(nv,nv);
    
    for (i=0;i<rtk->opt.niter;i++) {
        
        /* phase and code residuals */
        if ((nv=res_ppp(i,obs,n,rs,dts,var,svh,nav,xp,rtk,v,H,R,azel))<=0) break;
        
        /* measurement update */
        matcpy(Pp,rtk->P,rtk->nx,rtk->nx);
        
        if ((info=filter(xp,Pp,H,v,R,rtk->nx,nv))) {
            trace(2,"ppp filter error %s info=%d\n",time_str(rtk->sol.time,0),
                  info);
            break;
        }
        trace(4,"x(%d)=",i+1); tracemat(4,xp,1,NR(opt),13,4);
        
        stat=SOLQ_PPP;
    }
    if (stat==SOLQ_PPP) {
        /* postfit residuals */
        res_ppp(1,obs,n,rs,dts,var,svh,nav,xp,rtk,v,H,R,azel);
        
        /* update state and covariance matrix */
        matcpy(rtk->x,xp,rtk->nx,1);
        matcpy(rtk->P,Pp,rtk->nx,rtk->nx);
        
        /* ambiguity resolution in ppp */
        if (opt->modear==ARMODE_PPPAR||opt->modear==ARMODE_PPPAR_ILS) {
            if (pppamb(rtk,obs,n,nav,azel)) stat=SOLQ_FIX;
        }
        /* update solution status */
        rtk->sol.ns=0;
        for (i=0;i<n&&i<MAXOBS;i++) {
            if (!rtk->ssat[obs[i].sat-1].vsat[0]) continue;
            rtk->ssat[obs[i].sat-1].lock[0]++;
            rtk->ssat[obs[i].sat-1].outc[0]=0;
            rtk->ssat[obs[i].sat-1].fix [0]=4;
            rtk->sol.ns++;
        }
        rtk->sol.stat=stat;
        
        for (i=0;i<3;i++) {
            rtk->sol.rr[i]=rtk->x[i];
            rtk->sol.qr[i]=(float)rtk->P[i+i*rtk->nx];
        }
        rtk->sol.qr[3]=(float)rtk->P[1];
        rtk->sol.qr[4]=(float)rtk->P[2+rtk->nx];
        rtk->sol.qr[5]=(float)rtk->P[2];
        rtk->sol.dtr[0]=rtk->x[IC(0,opt)];
        rtk->sol.dtr[1]=rtk->x[IC(1,opt)]-rtk->x[IC(0,opt)];
        for (i=0;i<n&&i<MAXOBS;i++) {
            rtk->ssat[obs[i].sat-1].snr[0]=MIN(obs[i].SNR[0],obs[i].SNR[1]);
        }
        for (i=0;i<MAXSAT;i++) {
            if (rtk->ssat[i].slip[0]&3) rtk->ssat[i].slipc[0]++;
        }
    }
    free(rs); free(dts); free(var); free(azel);
    free(xp); free(Pp); free(v); free(H); free(R);
}