// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void SurfaceMeshToNonconformalVtk::execute()
{
  int err = 0;
  setErrorCondition(err);

  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(m_SurfaceMeshFaceLabelsArrayPath.getDataContainerName());

  TriangleGeom::Pointer triangleGeom = getDataContainerArray()->getDataContainer(getSurfaceMeshFaceLabelsArrayPath().getDataContainerName())->getGeometryAs<TriangleGeom>();
  float* nodes = triangleGeom->getVertexPointer(0);
  int64_t* triangles = triangleGeom->getTriPointer(0);

  qint64 numNodes = triangleGeom->getNumberOfVertices();
  int64_t numTriangles = triangleGeom->getNumberOfTris();

  // Make sure any directory path is also available as the user may have just typed
  // in a path without actually creating the full path
  QFileInfo fi(getOutputVtkFile());
  QDir parentPath = fi.path();
  if(!parentPath.mkpath("."))
  {
    QString ss = QObject::tr("Error creating parent path '%1'").arg(parentPath.absolutePath());
    setErrorCondition(-1);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  // Open the output VTK File for writing
  FILE* vtkFile = NULL;
  vtkFile = fopen(getOutputVtkFile().toLatin1().data(), "wb");
  if (NULL == vtkFile)
  {
    QString ss = QObject::tr("Error creating file '%1'").arg(getOutputVtkFile());
    setErrorCondition(-18542);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }
  ScopedFileMonitor vtkFileMonitor(vtkFile);

  notifyStatusMessage(getHumanLabel(), "Writing Vertex Data ....");

  fprintf(vtkFile, "# vtk DataFile Version 2.0\n");
  fprintf(vtkFile, "Data set from DREAM.3D Surface Meshing Module\n");
  if (m_WriteBinaryFile)
  {
    fprintf(vtkFile, "BINARY\n");
  }
  else
  {
    fprintf(vtkFile, "ASCII\n");
  }
  fprintf(vtkFile, "DATASET POLYDATA\n");

  int numberWrittenNodes = 0;
  for (int i = 0; i < numNodes; i++)
  {
    //  Node& n = nodes[i]; // Get the current Node
    if (m_SurfaceMeshNodeType[i] > 0) { ++numberWrittenNodes; }
    else { qDebug() << "Node Type Invalid: " << i << "::" << (int)(m_SurfaceMeshNodeType[i]) ;}
  }

  fprintf(vtkFile, "POINTS %d float\n", numberWrittenNodes);

  float pos[3] = {0.0f, 0.0f, 0.0f};

  size_t totalWritten = 0;

  // Write the POINTS data (Vertex)
  for (int i = 0; i < numNodes; i++)
  {
    if (m_SurfaceMeshNodeType[i] > 0)
    {
      pos[0] = static_cast<float>(nodes[i * 3]);
      pos[1] = static_cast<float>(nodes[i * 3 + 1]);
      pos[2] = static_cast<float>(nodes[i * 3 + 2]);

      if (m_WriteBinaryFile == true)
      {
        SIMPLib::Endian::FromSystemToBig::convert(pos[0]);
        SIMPLib::Endian::FromSystemToBig::convert(pos[1]);
        SIMPLib::Endian::FromSystemToBig::convert(pos[2]);
        totalWritten = fwrite(pos, sizeof(float), 3, vtkFile);
        if(totalWritten != 3) {}
      }
      else
      {
        fprintf(vtkFile, "%f %f %f\n", pos[0], pos[1], pos[2]); // Write the positions to the output file
      }
    }
  }


  // Write the triangle indices into the vtk File
  notifyStatusMessage(getHumanLabel(), "Writing Faces ....");

  int tData[4];

  // Store all the unique Spins
  QMap<int32_t, int32_t> featureTriangleCount;
  for (int i = 0; i < numTriangles; i++)
  {
    if (featureTriangleCount.find(m_SurfaceMeshFaceLabels[i * 2]) == featureTriangleCount.end())
    {
      featureTriangleCount[m_SurfaceMeshFaceLabels[i * 2]] = 1;
    }
    else
    {
      featureTriangleCount[m_SurfaceMeshFaceLabels[i * 2]]++;
    }
    if (featureTriangleCount.find(m_SurfaceMeshFaceLabels[i * 2 + 1]) == featureTriangleCount.end())
    {
      featureTriangleCount[m_SurfaceMeshFaceLabels[i * 2 + 1]] = 1;
    }
    else
    {
      featureTriangleCount[m_SurfaceMeshFaceLabels[i * 2 + 1]]++;
    }
  }

  // Write the POLYGONS
  fprintf(vtkFile, "\nPOLYGONS %lld %lld\n", (long long int)(numTriangles * 2), (long long int)(numTriangles * 2 * 4));

  size_t totalCells = 0;
  // Loop over all the features
  for(QMap<int32_t, int32_t>::iterator featureIter = featureTriangleCount.begin(); featureIter != featureTriangleCount.end(); ++featureIter)
  {
    totalCells += featureIter.value();
  }
  Q_ASSERT(totalCells == (size_t)(numTriangles * 2) );


  // Loop over all the features
  for(QMap<int32_t, int32_t>::iterator featureIter = featureTriangleCount.begin(); featureIter != featureTriangleCount.end(); ++featureIter)
  {
    int32_t gid = featureIter.key(); // The current Feature Id
    int32_t numTriToWrite = featureIter.value(); // The number of triangles for this feature
    uint8_t doWrite = 0;

    // Loop over all the triangles looking for the current feature id
    // this is probably sub-optimal as if we have 1000 features we are going to loop 1000 times but this will use the
    // least amount of memory. We could run a filter to group the triangles by feature but then we would need an
    // additional amount of memory equal to 3X the memory used for the triangle list because every triangle will be listed
    // twice. We could get some slightly better performance if we buffered 4K worth of data then wrote out that data
    // in one chunk versus what we are doing here.
    for (int j = 0; j < numTriangles; j++)
    {
      doWrite = 0;

      if (m_SurfaceMeshFaceLabels[j * 2] == gid ) { doWrite = 1; }
      else if (m_SurfaceMeshFaceLabels[j * 2 + 1] == gid) { doWrite = 2; } // We need to flip the winding of the triangle
      if (doWrite == 0) { continue; } // Labels in the triangle did match the current feature id.

      if (doWrite == 1)
      {
        tData[0] = 3; // Push on the total number of entries for this entry
        tData[1] = triangles[j * 3];
        tData[2] = triangles[j * 3 + 1];
        tData[3] = triangles[j * 3 + 2];
      }
      else
      {
        tData[0] = 3; // Push on the total number of entries for this entry
        tData[1] = triangles[j * 3 + 2];
        tData[2] = triangles[j * 3 + 1];
        tData[3] = triangles[j * 3];
      }
      if (m_WriteBinaryFile == true)
      {

        SIMPLib::Endian::FromSystemToBig::convert(tData[0]);
        SIMPLib::Endian::FromSystemToBig::convert(tData[1]); // Index of Vertex 0
        SIMPLib::Endian::FromSystemToBig::convert(tData[2]); // Index of Vertex 1
        SIMPLib::Endian::FromSystemToBig::convert(tData[3]); // Index of Vertex 2
        fwrite(tData, sizeof(int), 4, vtkFile);
      }
      else
      {
        fprintf(vtkFile, "3 %d %d %d\n", tData[1], tData[2], tData[3]);
      }
      numTriToWrite--;
    }
    if (numTriToWrite != 0)
    {
      qDebug() << "Not enough triangles written: " << gid << "::" << numTriToWrite << " Total Triangles to Write " << featureIter.value();
    }

  }


  // Write the POINT_DATA section
  err = writePointData(vtkFile);

  // Write the CELL_DATA section
  err = writeCellData(vtkFile, featureTriangleCount);


  fprintf(vtkFile, "\n");

  setErrorCondition(0);
  notifyStatusMessage(getHumanLabel(), "Complete");
}
Esempio n. 2
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void SurfaceMeshToVtk::execute()
{
  int err = 0;
  setErrorCondition(err);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  setErrorCondition(0);
  DataContainer::Pointer sm = getDataContainerArray()->getDataContainer(m_SurfaceMeshFaceLabelsArrayPath.getDataContainerName());  /* Place all your code to execute your filter here. */
  TriangleGeom::Pointer triangleGeom = getDataContainerArray()->getDataContainer(getSurfaceMeshFaceLabelsArrayPath().getDataContainerName())->getGeometryAs<TriangleGeom>();
  float* nodes = triangleGeom->getVertexPointer(0);
  int64_t* triangles = triangleGeom->getTriPointer(0);

  qint64 numNodes = triangleGeom->getNumberOfVertices();
  int64_t numTriangles = triangleGeom->getNumberOfTris();

  // Make sure any directory path is also available as the user may have just typed
  // in a path without actually creating the full path
  QFileInfo fi(getOutputVtkFile());
  QDir parentPath = fi.path();

  if(!parentPath.mkpath("."))
  {

    QString ss = QObject::tr("Error creating parent path '%1'").arg(parentPath.absolutePath());
    notifyErrorMessage(getHumanLabel(), ss, -1);
    setErrorCondition(-1);
    return;
  }

  // Open the output VTK File for writing
  FILE* vtkFile = NULL;
  vtkFile = fopen(getOutputVtkFile().toLatin1().data(), "wb");
  if (NULL == vtkFile)
  {

    QString ss = QObject::tr("Error creating file '%1'").arg(getOutputVtkFile());
    notifyErrorMessage(getHumanLabel(), ss, -18542);
    setErrorCondition(-18542);
    return;
  }
  ScopedFileMonitor vtkFileMonitor(vtkFile);

  fprintf(vtkFile, "# vtk DataFile Version 2.0\n");
  fprintf(vtkFile, "Data set from DREAM.3D Surface Meshing Module\n");
  if (m_WriteBinaryFile)
  {
    fprintf(vtkFile, "BINARY\n");
  }
  else
  {
    fprintf(vtkFile, "ASCII\n");
  }
  fprintf(vtkFile, "DATASET POLYDATA\n");

  int numberWrittenumNodes = 0;
  for (int i = 0; i < numNodes; i++)
  {
    //  Node& n = nodes[i]; // Get the current Node
    if (m_SurfaceMeshNodeType[i] > 0) { ++numberWrittenumNodes; }
  }

  fprintf(vtkFile, "POINTS %d float\n", numberWrittenumNodes);

  float pos[3] = {0.0f, 0.0f, 0.0f};

  size_t totalWritten = 0;

  // Write the POINTS data (Vertex)
  for (int i = 0; i < numNodes; i++)
  {
    if (m_SurfaceMeshNodeType[i] > 0)
    {
      pos[0] = static_cast<float>(nodes[i * 3]);
      pos[1] = static_cast<float>(nodes[i * 3 + 1]);
      pos[2] = static_cast<float>(nodes[i * 3 + 2]);

      if (m_WriteBinaryFile == true)
      {
        SIMPLib::Endian::FromSystemToBig::convert(pos[0]);
        SIMPLib::Endian::FromSystemToBig::convert(pos[1]);
        SIMPLib::Endian::FromSystemToBig::convert(pos[2]);
        totalWritten = fwrite(pos, sizeof(float), 3, vtkFile);
        if (totalWritten != sizeof(float) * 3)
        {

        }
      }
      else
      {
        fprintf(vtkFile, "%f %f %f\n", pos[0], pos[1], pos[2]); // Write the positions to the output file
      }
    }
  }

  int tData[4];
  int triangleCount = numTriangles;
  //  int tn1, tn2, tn3;
  if (false == m_WriteConformalMesh)
  {
    triangleCount = numTriangles * 2;
  }
  // Write the POLYGONS
  fprintf(vtkFile, "\nPOLYGONS %d %d\n", triangleCount, (triangleCount * 4));
  for (int j = 0; j < numTriangles; j++)
  {
    //  Triangle& t = triangles[j];
    tData[1] = triangles[j * 3];
    tData[2] = triangles[j * 3 + 1];
    tData[3] = triangles[j * 3 + 2];

    if (m_WriteBinaryFile == true)
    {
      tData[0] = 3; // Push on the total number of entries for this entry
      SIMPLib::Endian::FromSystemToBig::convert(tData[0]);
      SIMPLib::Endian::FromSystemToBig::convert(tData[1]); // Index of Vertex 0
      SIMPLib::Endian::FromSystemToBig::convert(tData[2]); // Index of Vertex 1
      SIMPLib::Endian::FromSystemToBig::convert(tData[3]); // Index of Vertex 2
      fwrite(tData, sizeof(int), 4, vtkFile);
      if (false == m_WriteConformalMesh)
      {
        tData[0] = tData[1];
        tData[1] = tData[3];
        tData[3] = tData[0];
        tData[0] = 3;
        SIMPLib::Endian::FromSystemToBig::convert(tData[0]);
        fwrite(tData, sizeof(int), 4, vtkFile);
      }
    }
    else
    {
      fprintf(vtkFile, "3 %d %d %d\n", tData[1], tData[2], tData[3]);
      if (false == m_WriteConformalMesh)
      {
        fprintf(vtkFile, "3 %d %d %d\n", tData[3], tData[2], tData[1]);
      }
    }
  }

  // Write the POINT_DATA section
  err = writePointData(vtkFile);
  // Write the CELL_DATA section
  err = writeCellData(vtkFile);

  fprintf(vtkFile, "\n");

  setErrorCondition(0);
  notifyStatusMessage(getHumanLabel(), "Complete");
}