Esempio n. 1
0
//! Use key + salt to encrypt the header, and write it to disk.
status_t
VolumeCryptContext::_WriteHeader(int fd, const uint8* key, uint32 keyLength,
	off_t headerOffset, uint8* buffer)
{
	uint8 diskKey[DISK_KEY_SIZE];
	derive_key(key, keyLength, buffer, PKCS5_SALT_SIZE, diskKey, DISK_KEY_SIZE);

	status_t status = Init(ALGORITHM_AES, MODE_XTS, diskKey, DISK_KEY_SIZE);
	if (status != B_OK)
		return status;

	true_crypt_header& header = *(true_crypt_header*)&buffer[PKCS5_SALT_SIZE];
	Encrypt((uint8*)&header, BLOCK_SIZE - PKCS5_SALT_SIZE);

	ssize_t bytesWritten = write_pos(fd, headerOffset, buffer, BLOCK_SIZE);
	if (bytesWritten < 0)
		return errno;

	// use the decrypted header to init the volume encryption

	Decrypt((uint8*)&header, BLOCK_SIZE - PKCS5_SALT_SIZE);
	SetKey(header.disk_key, sizeof(header.disk_key));

	return B_OK;
}
Esempio n. 2
0
status_t
Volume::WriteSuperBlock()
{
	if (write_pos(fDevice, 512, &fSuperBlock, sizeof(disk_super_block))
			!= sizeof(disk_super_block))
		return B_IO_ERROR;

	return B_OK;
}
Esempio n. 3
0
/*!	Erase the first boot block, as we don't use it and there
 *	might be leftovers from other file systems. This can cause
 *	confusion for identifying the partition if not erased.
 */
status_t
Volume::_EraseUnusedBootBlock()
{
	const int32 blockSize = 512;
	const char emptySector[blockSize] = { 0 };
	if (write_pos(fDevice, 0, emptySector, blockSize) != blockSize)
		return B_IO_ERROR;

	return B_OK;
}
Esempio n. 4
0
status_t
Header::_Write(int fd, off_t offset, const void* data, size_t size) const
{
	ssize_t bytesWritten = write_pos(fd, offset, data, size);
	if (bytesWritten < 0)
		return bytesWritten;
	if (bytesWritten != (ssize_t)size)
		return B_IO_ERROR;

	return B_OK;
}
Esempio n. 5
0
// write_boot_code_part
static void
write_boot_code_part(const char *fileName, int fd, off_t imageOffset,
	const uint8 *bootCodeData, int offset, int size, bool dryRun)
{
	if (!dryRun) {
		ssize_t bytesWritten = write_pos(fd, imageOffset + offset,
			bootCodeData + offset, size);
		if (bytesWritten != size) {
			fprintf(stderr, "Error: Failed to write to \"%s\": %s\n", fileName,
				strerror(bytesWritten < 0 ? errno : B_ERROR));
		}
	}
}
Esempio n. 6
0
// Write
status_t
FileHandle::Write(off_t pos, const void* buffer, size_t size,
                  size_t* _bytesWritten)
{
    if (fFD < 0)
        return B_BAD_VALUE;

    ssize_t bytesWritten = write_pos(fFD, pos, buffer, size);
    if (bytesWritten < 0)
        return errno;

    *_bytesWritten = bytesWritten;
    return B_OK;
}
Esempio n. 7
0
ssize_t
Partition::WriteAt(void *cookie, off_t position, const void *buffer,
	size_t bufferSize)
{
	if (position > this->size)
		return 0;
	if (position < 0)
		return B_BAD_VALUE;

	if (position + bufferSize > this->size)
		bufferSize = this->size - position;

	ssize_t result = write_pos(fFD, this->offset + position, buffer,
		bufferSize);
	return result < 0 ? errno : result;
}
Esempio n. 8
0
status_t Initialize(int fatbits, const char *device, const char *label, bool noprompt, bool testmode)
{
    if (fatbits != 0 && fatbits != 12 && fatbits != 16 && fatbits != 32) {
        fprintf(stderr,"Error: don't know how to create a %d bit fat\n",fatbits);
        return B_ERROR;
    }
    //XXX the following two checks can be removed when this is fixed:
#ifndef WITH_FLOPPY_SUPPORT
    if (0 != strstr(device,"floppy")) {
        fprintf(stderr,"Error: floppy B_GET_GEOMETRY and B_GET_BIOS_GEOMETRY calls are broken, floppy not supported\n");
        return B_ERROR;
    }
    if (fatbits == 12) {
        fprintf(stderr,"Error: can't create a 12 bit fat on a device other than floppy\n");
        return B_ERROR;
    }
#endif

    printf("device = %s\n",device);

    int fd = open(device, O_RDWR);
    if (fd < 0) {
        fprintf(stderr, "Error: couldn't open file for device %s (%s)\n", device, strerror(errno));
        return B_ERROR;
    }

    bool isRawDevice;
    bool hasBiosGeometry;
    bool hasDeviceGeometry;
    bool hasPartitionInfo;
    device_geometry biosGeometry;
    device_geometry deviceGeometry;
    partition_info 	partitionInfo;

    isRawDevice = 0 != strstr(device, "/raw");
    hasBiosGeometry = B_OK == ioctl(fd, B_GET_BIOS_GEOMETRY, &biosGeometry, sizeof(biosGeometry));
    hasDeviceGeometry = B_OK == ioctl(fd, B_GET_GEOMETRY, &deviceGeometry, sizeof(deviceGeometry));
    hasPartitionInfo = B_OK == ioctl(fd, B_GET_PARTITION_INFO, &partitionInfo, sizeof(partitionInfo));

    if (!isRawDevice && !hasBiosGeometry && !hasDeviceGeometry && !hasPartitionInfo)
        isRawDevice = true;

    if (hasBiosGeometry) {
        printf("bios geometry: %ld heads, %ld cylinders, %ld sectors/track, %ld bytes/sector\n",
               biosGeometry.head_count,biosGeometry.cylinder_count,biosGeometry.sectors_per_track,biosGeometry.bytes_per_sector);
    }
    if (hasBiosGeometry) {
        printf("device geometry: %ld heads, %ld cylinders, %ld sectors/track, %ld bytes/sector\n",
               deviceGeometry.head_count,deviceGeometry.cylinder_count,deviceGeometry.sectors_per_track,deviceGeometry.bytes_per_sector);
    }
    if (hasPartitionInfo) {
        printf("partition info: start at %Ld bytes (%Ld sectors), %Ld KB, %Ld MB, %Ld GB\n",
               partitionInfo.offset,
               partitionInfo.offset / 512,
               partitionInfo.offset / 1024,
               partitionInfo.offset / (1024 * 1024),
               partitionInfo.offset / (1024 * 1024 * 1024));
        printf("partition info: size %Ld bytes, %Ld KB, %Ld MB, %Ld GB\n",
               partitionInfo.size,
               partitionInfo.size / 1024,
               partitionInfo.size / (1024 * 1024),
               partitionInfo.size / (1024 * 1024 * 1024));
    }

    if (!isRawDevice && !hasPartitionInfo) {
        fprintf(stderr,"Warning: couldn't get partition information\n");
    }
    if ((hasBiosGeometry && biosGeometry.bytes_per_sector != 512)
            ||	(hasDeviceGeometry && deviceGeometry.bytes_per_sector != 512)) {
        fprintf(stderr,"Error: geometry block size not 512 bytes\n");
        close(fd);
        return B_ERROR;
    } else if (hasPartitionInfo && partitionInfo.logical_block_size != 512) {
        printf("partition logical block size is not 512, it's %ld bytes\n",
               partitionInfo.logical_block_size);
    }

    if (hasDeviceGeometry && deviceGeometry.read_only) {
        fprintf(stderr,"Error: this is a read-only device\n");
        close(fd);
        return B_ERROR;
    }
    if (hasDeviceGeometry && deviceGeometry.write_once) {
        fprintf(stderr,"Error: this is a write-once device\n");
        close(fd);
        return B_ERROR;
    }
    uint64 size = 0;

    if (hasPartitionInfo) {
        size = partitionInfo.size;
    } else if (hasDeviceGeometry) {
        size = uint64(deviceGeometry.bytes_per_sector) * deviceGeometry.sectors_per_track * deviceGeometry.cylinder_count * deviceGeometry.head_count;
    } else if (hasBiosGeometry) {
        size = uint64(biosGeometry.bytes_per_sector) * biosGeometry.sectors_per_track * biosGeometry.cylinder_count * biosGeometry.head_count;
    } else {
        // maybe it's just a file
        struct stat stat;
        if (fstat(fd, &stat) < 0) {
            fprintf(stderr, "Error: couldn't get device partition or geometry information, nor size\n");
            close(fd);
            return B_ERROR;
        }
        size = stat.st_size;
    }

    // TODO still valid on Haiku ?
    /*if (isRawDevice && size > FLOPPY_MAX_SIZE) {
    	fprintf(stderr,"Error: device too large for floppy, or raw devices not supported\n");
    	close(fd);
    	return B_ERROR;
    }*/

    printf("size = %Ld bytes (%Ld sectors), %Ld KB, %Ld MB, %Ld GB\n",
           size,
           size / 512,
           size / 1024,
           size / (1024 * 1024),
           size / (1024 * 1024 * 1024));

    if (fatbits == 0) {
        //auto determine fat type
        if (isRawDevice && size <= FLOPPY_MAX_SIZE && (size / FAT12_CLUSTER_MAX_SIZE) < FAT12_MAX_CLUSTER_COUNT) {
            fatbits = 12;
        } else if ((size / CLUSTER_MAX_SIZE) < FAT16_MAX_CLUSTER_COUNT) {
            fatbits = 16;
        } else if ((size / CLUSTER_MAX_SIZE) < FAT32_MAX_CLUSTER_COUNT) {
            fatbits = 32;
        }
    }

    if (fatbits == 0) {
        fprintf(stderr,"Error: device too large for 32 bit fat\n");
        close(fd);
        return B_ERROR;
    }

    int sectorPerCluster;

    sectorPerCluster = 0;
    if (fatbits == 12) {
        sectorPerCluster = 0;
        if (size <= 4182016LL)
            sectorPerCluster = 2;	// XXX don't know the correct value
        if (size <= 2091008LL)
            sectorPerCluster = 1;	// XXX don't know the correct value
    } else if (fatbits == 16) {
        // special BAD_CLUSTER value is 0xFFF7,
        // but this should work anyway, since space required by
        // two FATs will make maximum cluster count smaller.
        // at least, this is what I think *should* happen
        sectorPerCluster = 0;				//larger than 2 GB must fail
        if (size <= (2048 * 1024 * 1024LL))	// up to 2GB, use 32k clusters
            sectorPerCluster = 64;
        if (size <= (1024 * 1024 * 1024LL))	// up to 1GB, use 16k clusters
            sectorPerCluster = 32;
        if (size <= (512 * 1024 * 1024LL))	// up to 512MB, use 8k clusters
            sectorPerCluster = 16;
        if (size <= (256 * 1024 * 1024LL))	// up to 256MB, use 4k clusters
            sectorPerCluster = 8;
        if (size <= (128 * 1024 * 1024LL))	// up to 128MB, use 2k clusters
            sectorPerCluster = 4;
        if (size <= (16 * 1024 * 1024LL))	// up to 16MB, use 2k clusters
            sectorPerCluster = 2;
        if (size <= 4182016LL)				// smaller than fat32 must fail
            sectorPerCluster = 0;
    }
    if (fatbits == 32) {
        sectorPerCluster = 64;				// default is 32k clusters
        if (size <= (32 * 1024 * 1024 * 1024LL))	// up to 32GB, use 16k clusters
            sectorPerCluster = 32;
        if (size <= (16 * 1024 * 1024 * 1024LL))	// up to 16GB, use 8k clusters
            sectorPerCluster = 16;
        if (size <= (8 * 1024 * 1024 * 1024LL))		// up to 8GB, use 4k clusters
            sectorPerCluster = 8;
        if (size <= (532480 * 512LL))				// up to 260 MB, use 0.5k clusters
            sectorPerCluster = 1;
        if (size <= (66600 * 512LL))		// smaller than 32.5 MB must fail
            sectorPerCluster = 0;
    }

    if (sectorPerCluster == 0) {
        fprintf(stderr,"Error: failed to determine sector per cluster value, partition too large for %d bit fat\n",fatbits);
        close(fd);
        return B_ERROR;
    }

    int reservedSectorCount = 0; // avoid compiler warning
    int rootEntryCount = 0; // avoid compiler warning
    int numFATs;
    int sectorSize;
    uint8 biosDriveId;

    // get bios drive-id, or use 0x80
    if (B_OK != ioctl(fd, B_GET_BIOS_DRIVE_ID, &biosDriveId, sizeof(biosDriveId))) {
        biosDriveId = 0x80;
    } else {
        printf("bios drive id: 0x%02x\n", (int)biosDriveId);
    }

    // default parameters for the bootsector
    numFATs = 2;
    sectorSize = 512;
    if (fatbits == 12 || fatbits == 16)
        reservedSectorCount = 1;
    if (fatbits == 32)
        reservedSectorCount = 32;
    if (fatbits == 12)
        rootEntryCount = 128; // XXX don't know the correct value
    if (fatbits == 16)
        rootEntryCount = 512;
    if (fatbits == 32)
        rootEntryCount = 0;

    // Determine FATSize
    // calculation done as MS recommends
    uint64 dskSize = size / sectorSize;
    uint32 rootDirSectors = ((rootEntryCount * 32) + (sectorSize - 1)) / sectorSize;
    uint64 tmpVal1 = dskSize - (reservedSectorCount + rootDirSectors);
    uint64 tmpVal2 = (256 * sectorPerCluster) + numFATs;
    if (fatbits == 32)
        tmpVal2 = tmpVal2 / 2;
    uint32 FATSize = (tmpVal1 + (tmpVal2 - 1)) / tmpVal2;
    // FATSize should now contain the size of *one* FAT, measured in sectors
    // RootDirSectors should now contain the size of the fat12/16 root directory, measured in sectors

    printf("fatbits = %d, clustersize = %d\n", fatbits, sectorPerCluster * 512);
    printf("FAT size is %ld sectors\n", FATSize);
    printf("disk label: %s\n", label);

    char bootsector[512];
    memset(bootsector,0x00,512);
    memcpy(bootsector + BOOTJMP_START_OFFSET, bootjmp, sizeof(bootjmp));
    memcpy(bootsector + BOOTCODE_START_OFFSET, bootcode, sizeof(bootcode));

    if (fatbits == 32) {
        bootsector32 *bs = (bootsector32 *)bootsector;
        uint16 temp16;
        uint32 temp32;
        memcpy(bs->BS_OEMName,"Haiku   ",8);
        bs->BPB_BytsPerSec = B_HOST_TO_LENDIAN_INT16(sectorSize);
        bs->BPB_SecPerClus = sectorPerCluster;
        bs->BPB_RsvdSecCnt = B_HOST_TO_LENDIAN_INT16(reservedSectorCount);
        bs->BPB_NumFATs = numFATs;
        bs->BPB_RootEntCnt = B_HOST_TO_LENDIAN_INT16(rootEntryCount);
        bs->BPB_TotSec16 = B_HOST_TO_LENDIAN_INT16(0);
        bs->BPB_Media = 0xF8;
        bs->BPB_FATSz16 = B_HOST_TO_LENDIAN_INT16(0);
        temp16 = hasBiosGeometry ? biosGeometry.sectors_per_track : 63;
        bs->BPB_SecPerTrk = B_HOST_TO_LENDIAN_INT16(temp16);
        temp16 = hasBiosGeometry ? biosGeometry.head_count : 255;
        bs->BPB_NumHeads = B_HOST_TO_LENDIAN_INT16(temp16);
        temp32 = hasPartitionInfo ? (partitionInfo.size / 512) : 0;
        bs->BPB_HiddSec = B_HOST_TO_LENDIAN_INT32(temp32);
        temp32 = size / 512;
        bs->BPB_TotSec32 = B_HOST_TO_LENDIAN_INT32(temp32);
        bs->BPB_FATSz32 = B_HOST_TO_LENDIAN_INT32(FATSize);
        bs->BPB_ExtFlags = B_HOST_TO_LENDIAN_INT16(0);
        bs->BPB_FSVer = B_HOST_TO_LENDIAN_INT16(0);
        bs->BPB_RootClus = B_HOST_TO_LENDIAN_INT32(FAT32_ROOT_CLUSTER);
        bs->BPB_FSInfo = B_HOST_TO_LENDIAN_INT16(FSINFO_SECTOR_NUM);
        bs->BPB_BkBootSec = B_HOST_TO_LENDIAN_INT16(BACKUP_SECTOR_NUM);
        memset(bs->BPB_Reserved,0,12);
        bs->BS_DrvNum = biosDriveId;
        bs->BS_Reserved1 = 0x00;
        bs->BS_BootSig = 0x29;
        *(uint32*)bs->BS_VolID = (uint32)system_time();
        memcpy(bs->BS_VolLab,"NO NAME    ",11);
        memcpy(bs->BS_FilSysType,"FAT32   ",8);
        bs->signature = B_HOST_TO_LENDIAN_INT16(0xAA55);
    } else {
        bootsector1216 *bs = (bootsector1216 *)bootsector;
        uint16 temp16;
        uint32 temp32;
        uint32 sectorcount = size / 512;
        memcpy(bs->BS_OEMName, "Haiku   ", 8);
        bs->BPB_BytsPerSec = B_HOST_TO_LENDIAN_INT16(sectorSize);
        bs->BPB_SecPerClus = sectorPerCluster;
        bs->BPB_RsvdSecCnt = B_HOST_TO_LENDIAN_INT16(reservedSectorCount);
        bs->BPB_NumFATs = numFATs;
        bs->BPB_RootEntCnt = B_HOST_TO_LENDIAN_INT16(rootEntryCount);
        temp16 = (sectorcount <= 65535) ? sectorcount : 0;
        bs->BPB_TotSec16 = B_HOST_TO_LENDIAN_INT16(temp16);
        bs->BPB_Media = 0xF8;
        bs->BPB_FATSz16 = B_HOST_TO_LENDIAN_INT16(FATSize);
        temp16 = hasBiosGeometry ? biosGeometry.sectors_per_track : 63;
        bs->BPB_SecPerTrk = B_HOST_TO_LENDIAN_INT16(temp16);
        temp16 = hasBiosGeometry ? biosGeometry.head_count : 255;
        bs->BPB_NumHeads = B_HOST_TO_LENDIAN_INT16(temp16);
        temp32 = hasPartitionInfo ? (partitionInfo.size / 512) : 0;
        bs->BPB_HiddSec = B_HOST_TO_LENDIAN_INT32(temp32);
        temp32 = (sectorcount <= 65535) ? 0 : sectorcount;
        bs->BPB_TotSec32 = B_HOST_TO_LENDIAN_INT32(temp32);
        bs->BS_DrvNum = biosDriveId;
        bs->BS_Reserved1 = 0x00;
        bs->BS_BootSig = 0x29;
        *(uint32*)bs->BS_VolID = (uint32)system_time();
        memcpy(bs->BS_VolLab,"NO NAME    ",11);
        memcpy(bs->BS_FilSysType,(fatbits == 12) ? "FAT12   " : "FAT16   ",8);
        bs->signature = B_HOST_TO_LENDIAN_INT16(0xAA55);
    }

    if (!noprompt) {
        printf("\n");
        printf("Initializing will erase all existing data on the drive.\n");
        printf("Do you wish to proceed? ");
        char answer[1000];
        char *p;
        memset(answer, 0, 1000);
        fflush(stdout);
        p = fgets(answer, 1000, stdin);
        if (p && (p=strchr(p, '\n')))
            *p = '\0'; /* remove newline */
        if ((p == NULL) || (strlen(answer) < 1) || (0 != strncasecmp(answer, "yes", strlen(answer)))) {
            printf("drive NOT initialized\n");
            close(fd);
            return B_OK;
        }
    }
    if (testmode) {
        close(fd);
        return B_OK;
    }

    // Disk layout:
    // 0) reserved sectors, this includes the bootsector, fsinfosector and bootsector backup
    // 1) FAT
    // 2) root directory (not on fat32)
    // 3) file & directory data

    ssize_t written;

    // initialize everything with zero first
    // avoid doing 512 byte writes here, they are slow
    printf("Writing FAT\n");
    char * zerobuffer = (char *)malloc(65536);
    memset(zerobuffer,0,65536);
    int64 bytes_to_write = 512LL * (reservedSectorCount + (numFATs * FATSize) + rootDirSectors);
    int64 pos = 0;
    while (bytes_to_write > 0) {
        ssize_t writesize = min_c(bytes_to_write, 65536);
        written = write_pos(fd, pos, zerobuffer, writesize);
        if (written != writesize) {
            fprintf(stderr,"Error: write error near sector %Ld\n",pos / 512);
            close(fd);
            return B_ERROR;
        }
        bytes_to_write -= writesize;
        pos += writesize;
    }
    free(zerobuffer);

    //write boot sector
    printf("Writing boot block\n");
    written = write_pos(fd, BOOT_SECTOR_NUM * 512, bootsector, 512);
    if (written != 512) {
        fprintf(stderr,"Error: write error at sector %d\n", BOOT_SECTOR_NUM);
        close(fd);
        return B_ERROR;
    }

    if (fatbits == 32) {
        written = write_pos(fd, BACKUP_SECTOR_NUM * 512, bootsector, 512);
        if (written != 512) {
            fprintf(stderr,"Error: write error at sector %d\n", BACKUP_SECTOR_NUM);
            close(fd);
            return B_ERROR;
        }
    }

    //write first fat sector
    printf("Writing first FAT sector\n");
    uint8 sec[512];
    memset(sec,0,512);
    if (fatbits == 12) {
        //FAT[0] contains media byte in lower 8 bits, all other bits set to 1
        //FAT[1] contains EOF marker
        sec[0] = 0xF8;
        sec[1] = 0xFF;
        sec[2] = 0xFF;
    } else if (fatbits == 16) {
        //FAT[0] contains media byte in lower 8 bits, all other bits set to 1
        sec[0] = 0xF8;
        sec[1] = 0xFF;
        //FAT[1] contains EOF marker
        sec[2] = 0xFF;
        sec[3] = 0xFF;
    } else if (fatbits == 32) {
        //FAT[0] contains media byte in lower 8 bits, all other bits set to 1
        sec[0] = 0xF8;
        sec[1] = 0xFF;
        sec[2] = 0xFF;
        sec[3] = 0xFF;
        //FAT[1] contains EOF marker
        sec[4] = 0xFF;
        sec[5] = 0xFF;
        sec[6] = 0xFF;
        sec[7] = 0x0F;
        //FAT[2] contains EOF marker, used to terminate root directory
        sec[8] = 0xFF;
        sec[9] = 0xFF;
        sec[10] = 0xFF;
        sec[11] = 0x0F;
    }
    written = write_pos(fd, reservedSectorCount * 512, sec, 512);
    if (written != 512) {
        fprintf(stderr,"Error: write error at sector %d\n", reservedSectorCount);
        close(fd);
        return B_ERROR;
    }
    if (numFATs > 1) {
        written = write_pos(fd, (reservedSectorCount + FATSize) * 512,sec,512);
        if (written != 512) {
            fprintf(stderr,"Error: write error at sector %ld\n", reservedSectorCount + FATSize);
            close(fd);
            return B_ERROR;
        }
    }

    //write fsinfo sector
    if (fatbits == 32) {
        printf("Writing boot info\n");
        //calculate total sector count first
        uint64 free_count = size / 512;
        //now account for already by metadata used sectors
        free_count -= reservedSectorCount + (numFATs * FATSize) + rootDirSectors;
        //convert from sector to clustercount
        free_count /= sectorPerCluster;
        //and account for 1 already used cluster of root directory
        free_count -= 1;
        fsinfosector32 fsinfosector;
        memset(&fsinfosector,0x00,512);
        fsinfosector.FSI_LeadSig 	= B_HOST_TO_LENDIAN_INT32(0x41615252);
        fsinfosector.FSI_StrucSig 	= B_HOST_TO_LENDIAN_INT32(0x61417272);
        fsinfosector.FSI_Free_Count = B_HOST_TO_LENDIAN_INT32((uint32)free_count);
        fsinfosector.FSI_Nxt_Free 	= B_HOST_TO_LENDIAN_INT32(3);
        fsinfosector.FSI_TrailSig 	= B_HOST_TO_LENDIAN_INT32(0xAA550000);
        written = write_pos(fd, FSINFO_SECTOR_NUM * 512, &fsinfosector, 512);
        if (written != 512) {
            fprintf(stderr,"Error: write error at sector %d\n", FSINFO_SECTOR_NUM);
            close(fd);
            return B_ERROR;
        }
    }

    //write volume label into root directory
    printf("Writing root directory\n");
    if (fatbits == 12 || fatbits == 16) {
        uint8 data[512];
        memset(data, 0, 512);
        CreateVolumeLabel(data, label);
        uint32 rootDirSector = reservedSectorCount + (numFATs * FATSize);
        written = write_pos(fd, rootDirSector * 512, data, 512);
        if (written != 512) {
            fprintf(stderr,"Error: write error at sector %ld\n", rootDirSector);
            close(fd);
            return B_ERROR;
        }
    } else if (fatbits == 32) {
        int size = 512 * sectorPerCluster;
        uint8 *cluster = (uint8*)malloc(size);
        memset(cluster, 0, size);
        CreateVolumeLabel(cluster, label);
        uint32 rootDirSector = reservedSectorCount + (numFATs * FATSize) + rootDirSectors;
        written = write_pos(fd, rootDirSector * 512, cluster, size);
        free(cluster);
        if (written != size) {
            fprintf(stderr,"Error: write error at sector %ld\n", rootDirSector);
            close(fd);
            return B_ERROR;
        }
    }

    ioctl(fd, B_FLUSH_DRIVE_CACHE);
    close(fd);

    return B_OK;
}
Esempio n. 9
0
ssize_t
__libc_pwrite (int fd, const void *buf, size_t nbyte, off_t offset)
{
  return write_pos (fd, offset, buf, nbyte);
}