Esempio n. 1
0
int main(int argc, char *argv[]) 
{
  if (argc<2) {
    cout << "\nUsage: " << argv[0] << " L [c=2 w=64 k=80 d=1]" << endl;
    cout << "  L is the number of levels\n";
    cout << "  optional c is number of columns in the key-switching matrices (default=2)\n";
    cout << "  optional w is Hamming weight of the secret key (default=64)\n";
    cout << "  optional k is the security parameter (default=80)\n";
    cout << "  optional d specifies GF(2^d) arithmetic (default=1, must be <=16)\n";
    //    cout << "  k is the security parameter\n";
    //    cout << "  m determines the ring mod Phi_m(X)" << endl;
    cout << endl;
    exit(0);
  }
  cout.unsetf(ios::floatfield);
  cout.precision(4);

  long L = atoi(argv[1]);
  long c = 2;
  long w = 64;
  long k = 80;
  long d = 1;
  if (argc>2) c = atoi(argv[2]);
  if (argc>3) w = atoi(argv[3]);
  if (argc>4) k = atoi(argv[4]);
  if (argc>5) d = atoi(argv[5]);

  if (d>16) Error("d cannot be larger than 16\n");

  cout << "\nTesting FHE with parameters L="<<L
       << ", c="<<c<<", w="<<w<<", k="<<k<<", d="<<d<< endl;

  // get a lower-bound on the parameter N=phi(m):
  // 1. Empirically, we use ~20-bit small primes in the modulus chain (the main
  //    constraints is that 2m must divide p-1 for every prime p). The first
  //    prime is larger, a 40-bit prime. (If this is a 32-bit machine then we
  //    use two 20-bit primes instead.)
  // 2. With L levels, the largest modulus for "fresh ciphertexts" has size
  //          q0 ~ p0 * p^{L} ~ 2^{40+20L}
  // 3. We break each ciphertext into upto c digits, do each digit is as large
  //    as    D=2^{(40+20L)/c}
  // 4. The added noise variance term from the key-switching operation is
  //    c*N*sigma^2*D^2, and this must be mod-switched down to w*N (so it is
  //    on part with the added noise from modulus-switching). Hence the ratio
  //    P that we use for mod-switching must satisfy c*N*sigma^2*D^2/P^2<w*N,
  //    or    P > sqrt(c/w) * sigma * 2^{(40+20L)/c}
  // 5. With this extra P factor, the key-switching matrices are defined
  //    relative to a modulus of size
  //          Q0 = q0*P ~ sqrt{c/w} sigma 2^{(40+20L)(1+1/c)}
  // 6. To get k-bit security we need N>log(Q0/sigma)(k+110)/7.2, i.e. roughly
  //          N > (40+20L)(1+1/c)(k+110) / 7.2

  long ptxtSpace = 2;
  double cc = 1.0+(1.0/(double)c);
  long N = (long) ceil((pSize*L+p0Size)*cc*(k+110)/7.2);
  cout << "  bounding phi(m) > " << N << endl;

#if 0  // A small m for debugging purposes
  long m = 15;
#else
  // pre-computed values of [phi(m),m,d]
  long ms[][4] = {
    //phi(m)  m  ord(2) c_m*1000
    { 1176,  1247, 28,  3736},
    { 1936,  2047, 11,  3870},
    { 2880,  3133, 24,  3254},
    { 4096,  4369, 16,  3422},
    { 5292,  5461, 14,  4160},
    { 5760,  8435, 24,  8935},
    { 8190,  8191, 13,  1273},
    {10584, 16383, 14,  8358},
    {10752, 11441, 48,  3607},
    {12000, 13981, 20,  2467},
    {11520, 15665, 24, 14916},
    {14112, 18415, 28, 11278},
    {15004, 15709, 22,  3867},
    {15360, 20485, 24, 12767},
 // {16384, 21845, 16, 12798},
    {17208 ,21931, 24, 18387},
    {18000, 18631, 25,  4208},
    {18816, 24295, 28, 16360},
    {19200, 21607, 40, 35633},
    {21168, 27305, 28, 15407},
    {23040, 23377, 48,  5292},
    {24576, 24929, 48,  5612},
    {27000, 32767, 15, 20021},
    {31104, 31609, 71,  5149},
    {42336, 42799, 21,  5952},
    {46080, 53261, 24, 33409},
    {49140, 57337, 39,  2608},
    {51840, 59527, 72, 21128},
    {61680, 61681, 40,  1273},
    {65536, 65537, 32,  1273},
    {75264, 82603, 56, 36484},
    {84672, 92837, 56, 38520}
  };

#if 0

  for (long i = 0; i < 25; i++) {
    long m = ms[i][1];
    PAlgebra alg(m);
    alg.printout();
    cout << "\n";
    // compute phi(m) directly
    long phim = 0;
    for (long j = 0; j < m; j++)
      if (GCD(j, m) == 1) phim++;

    if (phim != alg.phiM()) cout << "ERROR\n";
  }

  exit(0);


#endif



  // find the first m satisfying phi(m)>=N and d | ord(2) in Z_m^*
  long m = 0;
  for (unsigned i=0; i<sizeof(ms)/sizeof(long[3]); i++) 
    if (ms[i][0]>=N && (ms[i][2] % d) == 0) {
      m = ms[i][1];
      c_m = 0.001 * (double) ms[i][3];
      break;
    }
  if (m==0) Error("Cannot support this L,d combination");
#endif
  //  m = 257;
  FHEcontext context(m);
#if 0
  context.stdev = to_xdouble(0.5); // very low error
#endif
  activeContext = &context; // Mark this as the "current" context

  context.zMstar.printout();
  cout << endl;


  // Set the modulus chain

#if 1
  // The first 1-2 primes of total p0size bits
  #if (NTL_SP_NBITS > p0Size)
    AddPrimesByNumber(context, 1, 1UL<<p0Size); // add a single prime
  #else
    AddPrimesByNumber(context, 2, 1UL<<(p0Size/2)); // add two primes
  #endif
#endif

  // The next L primes, as small as possible
  AddPrimesByNumber(context, L);

  ZZ productOfCtxtPrimes = context.productOfPrimes(context.ctxtPrimes);
  double productSize = context.logOfProduct(context.ctxtPrimes);

  // might as well test that the answer is roughly correct
  cout << "  context.logOfProduct(...)-log(context.productOfPrimes(...)) = "
       << productSize-log(productOfCtxtPrimes) << endl;

  // calculate the size of the digits

  context.digits.resize(c);
  IndexSet s1;
#if 0
  for (long i=0; i<c-1; i++) context.digits[i] = IndexSet(i,i);
  context.digits[c-1] = context.ctxtPrimes / IndexSet(0,c-2);
  AddPrimesByNumber(context, 2, 1, true);
#else
  double sizeSoFar = 0.0;
  double maxDigitSize = 0.0;
  if (c>1) {   // break ciphetext into a few digits
    double dsize = productSize/c;  // initial estimate
    double target = dsize-(pSize/3.0);
    long idx = context.ctxtPrimes.first();
    for (long i=0; i<c-1; i++) { // compute next digit
      IndexSet s;
      while (idx <= context.ctxtPrimes.last() && sizeSoFar < target) {
        s.insert(idx);
	sizeSoFar += log((double)context.ithPrime(idx));
	idx = context.ctxtPrimes.next(idx);
      }
      context.digits[i] = s;
      s1.insert(s);
      double thisDigitSize = context.logOfProduct(s);
      if (maxDigitSize < thisDigitSize) maxDigitSize = thisDigitSize;
      cout << "  digit #"<<i+1<< " " <<s << ": size " << thisDigitSize << endl;
      target += dsize;
    }
    IndexSet s = context.ctxtPrimes / s1; // all the remaining primes
    context.digits[c-1] = s;
    double thisDigitSize = context.logOfProduct(s);
    if (maxDigitSize < thisDigitSize) maxDigitSize = thisDigitSize;
    cout << "  digit #"<<c<< " " <<s << ": size " << thisDigitSize << endl;
  }
  else { 
    maxDigitSize = context.logOfProduct(context.ctxtPrimes);
    context.digits[0] = context.ctxtPrimes;
  }

  // Add primes to the chain for the P factor of key-switching
  double sizeOfSpecialPrimes 
    = maxDigitSize + log(c/(double)w)/2 + log(context.stdev *2);

  AddPrimesBySize(context, sizeOfSpecialPrimes, true);
#endif

  cout << "* ctxtPrimes: " << context.ctxtPrimes 
       << ", log(q0)=" << context.logOfProduct(context.ctxtPrimes) << endl;
  cout << "* specialPrimes: " << context.specialPrimes
       << ", log(P)=" << context.logOfProduct(context.specialPrimes) << endl;

  for (long i=0; i<context.numPrimes(); i++) {
    cout << "  modulus #" << i << " " << context.ithPrime(i) << endl;
  }
  cout << endl;

  setTimersOn();
  const ZZX& PhimX = context.zMstar.PhimX(); // The polynomial Phi_m(X)
  long phim = context.zMstar.phiM();         // The integer phi(m)
  FHESecKey secretKey(context);
  const FHEPubKey& publicKey = secretKey;

#if 0 // Debug mode: use sk=1,2
  DoubleCRT newSk(to_ZZX(2), context);
  long id1 = secretKey.ImportSecKey(newSk, 64, ptxtSpace);
  newSk -= 1;
  long id2 = secretKey.ImportSecKey(newSk, 64, ptxtSpace);
#else
  long id1 = secretKey.GenSecKey(w,ptxtSpace); // A Hamming-weight-w secret key
  long id2 = secretKey.GenSecKey(w,ptxtSpace); // A second Hamming-weight-w secret key
#endif

  ZZX zero = to_ZZX(0);
//  Ctxt zeroCtxt(publicKey);

  /******************************************************************/
  /**                      TESTS BEGIN HERE                       ***/
  /******************************************************************/


  cout << "ptxtSpace = " << ptxtSpace << endl;

  GF2X G;          // G is the AES polynomial, G(X)= X^8 +X^4 +X^3 +X +1
  SetCoeff(G,8); SetCoeff(G,4); SetCoeff(G,3); SetCoeff(G,1); SetCoeff(G,0);
  GF2X X;
  SetX(X);
  
#if 1
  // code for rotations...

  {
    GF2X::HexOutput = 1;
    
    const PAlgebra& al = context.zMstar;
    const PAlgebraModTwo& al2 = context.modTwo;

    long ngens = al.numOfGens();
    long nslots = al.NSlots();
    DoubleCRT tmp(context);

    vector< vector< DoubleCRT > > maskTable;

    maskTable.resize(ngens);
    for (long i = 0; i < ngens; i++) {
      if (i==0 && al.SameOrd(i)) continue;
      long ord = al.OrderOf(i);
      maskTable[i].resize(ord+1, tmp);
      for (long j = 0; j <= ord; j++) {
        // initialize the mask that is 1 whenever
        // the ith coordinate is at least j

        vector<GF2X> maps, alphas, betas;

        al2.mapToSlots(maps, G); // Change G to X to get bits in the slots
        alphas.resize(nslots);

        for (long k = 0; k < nslots; k++) 
          if (coordinate(al, i, k) >= j)
               alphas[k] = 1;
          else alphas[k] = 0;

       GF2X ptxt;
       al2.embedInSlots(ptxt, alphas, maps);

       // Sanity-check, make sure that encode/decode works as expected
       al2.decodePlaintext(betas, ptxt, G, maps);
       for (long k = 0; k < nslots; k++) {
	 if (alphas[k] != betas[k]) {
	   cout << " Mask computation failed, i="<<i<<", j="<<j<<"\n";
	   return 0;
	 }
       }
       maskTable[i][j] = to_ZZX(ptxt);
      }
    }

  vector<GF2X> maps;
  al2.mapToSlots(maps, G);

  vector<GF2X> alphas(nslots);
  for (long i=0; i < nslots; i++) 
    random(alphas[i], 8); // random degree-7 polynomial mod 2

  for (long amt = 0; amt < 20; amt++) {

    cout << ".";

     GF2X ptxt;
     al2.embedInSlots(ptxt, alphas, maps);

     DoubleCRT pp(context);
     pp = to_ZZX(ptxt);

     rotate(pp, amt, maskTable);

     GF2X ptxt1 = to_GF2X(to_ZZX(pp));

     vector<GF2X> betas;
     al2.decodePlaintext(betas, ptxt1, G, maps);

     for (long i = 0; i < nslots; i++) {
       if (alphas[i] != betas[(i+amt)%nslots]) {
	 cout << " amt="<<amt<<" oops\n";
          return 0;
       }
     }
   }

   cout << "\n";

#if 0
  long ord0 = al.OrderOf(0);

  for (long i = 0; i < nslots; i++) {
    cout << alphas[i] << " ";
    if ((i+1) % (nslots/ord0) == 0) cout << "\n";
  }
 
  cout << "\n\n";
  cout << betas.size() << "\n";

  for (long i = 0; i < nslots; i++) {
    cout << betas[i] << " ";
    if ((i+1) % (nslots/ord0) == 0) cout << "\n";
  }
#endif


  return 0;
  

  }


#endif

  // an initial sanity check on noise estimates,
  // comparing the estimated variance to the actual average
  cout << "pk:"; checkCiphertext(publicKey.pubEncrKey, zero, secretKey);

  ZZX ptxt[6]; // first four are plaintext, last two are constants
  std::vector<Ctxt> ctxt(4, Ctxt(publicKey));

  // Initialize the plaintext and constants to random 0-1 polynomials
  for (size_t j=0; j<6; j++) {
    ptxt[j].rep.SetLength(phim);
    for (long i = 0; i < phim; i++)
      ptxt[j].rep[i] = RandomBnd(ptxtSpace);
    ptxt[j].normalize();

    if (j<4) { 
      publicKey.Encrypt(ctxt[j], ptxt[j], ptxtSpace);
      cout << "c"<<j<<":"; checkCiphertext(ctxt[j], ptxt[j], secretKey);
    }
  }

  // perform upto 2L levels of computation, each level computing:
  //    1. c0 += c1
  //    2. c1 *= c2            // L1' = max(L1,L2)+1
  //    3. c1.reLinearlize
  //    4. c2 *= p4
  //    5. c2.automorph(k)     // k is the first generator of Zm^* /(2)
  //    6. c2.reLinearlize
  //    7. c3 += p5
  //    8. c3 *= c0            // L3' = max(L3,L0,L1)+1
  //    9. c2 *= c3            // L2' = max(L2,L0+1,L1+1,L3+1)+1
  //   10. c0 *= c0            // L0' = max(L0,L1)+1
  //   11. c0.reLinearlize
  //   12. c2.reLinearlize
  //   13. c3.reLinearlize
  //
  // The levels of the four ciphertexts behave as follows:
  // 0, 0, 0, 0  =>  1, 1, 2, 1  =>  2, 3, 3, 2
  //             =>  4, 4, 5, 4  =>  5, 6, 6, 5
  //             =>  7, 7, 8, 7  =>  8,,9, 9, 10  => [...]
  //
  // We perform the same operations on the plaintext, and after each operation
  // we check that decryption still works, and print the curretn modulus and
  // noise estimate. We stop when we get the first decryption error, or when
  // we reach 2L levels (which really should not happen).

  zz_pContext zzpc;
  zz_p::init(ptxtSpace);
  zzpc.save();
  const zz_pXModulus F = to_zz_pX(PhimX);
  long g = context.zMstar.ZmStarGen(0); // the first generator in Zm*
  zz_pX x2g(g, 1);
  zz_pX p2;

  // generate a key-switching matrix from s(X^g) to s(X)
  secretKey.GenKeySWmatrix(/*powerOfS= */  1,
			   /*powerOfX= */  g,
			   0, 0,
			   /*ptxtSpace=*/  ptxtSpace);

  // generate a key-switching matrix from s^2 to s
  secretKey.GenKeySWmatrix(/*powerOfS= */  2,
			   /*powerOfX= */  1,
			   0, 0,
			   /*ptxtSpace=*/  ptxtSpace);

  // generate a key-switching matrix from s^3 to s
  secretKey.GenKeySWmatrix(/*powerOfS= */  3,
			   /*powerOfX= */  1,
			   0, 0,
			   /*ptxtSpace=*/  ptxtSpace);

  for (long lvl=0; lvl<2*L; lvl++) {
    cout << "=======================================================\n";
    ctxt[0] += ctxt[1];
    ptxt[0] += ptxt[1];
    PolyRed(ptxt[0], ptxtSpace, true);
    cout << "c0+=c1:  "; checkCiphertext(ctxt[0], ptxt[0], secretKey);

    ctxt[1].multiplyBy(ctxt[2]);
    ptxt[1] = (ptxt[1] * ptxt[2]) % PhimX;
    PolyRed(ptxt[1], ptxtSpace, true);
    cout << "c1*=c2:  "; checkCiphertext(ctxt[1], ptxt[1], secretKey);

    ctxt[2].multByConstant(ptxt[4]);
    ptxt[2] = (ptxt[2] * ptxt[4]) % PhimX;
    PolyRed(ptxt[2], ptxtSpace, true);
    cout <<  "c2*=p4:  "; checkCiphertext(ctxt[2], ptxt[2], secretKey);

    ctxt[2] >>= g;
    zzpc.restore();
    p2 = to_zz_pX(ptxt[2]);
    CompMod(p2, p2, x2g, F);
    ptxt[2] = to_ZZX(p2);
    cout << "c2>>="<<g<<":"; checkCiphertext(ctxt[2], ptxt[2], secretKey);

    ctxt[2].reLinearize();
    cout << "c2.relin:"; checkCiphertext(ctxt[2], ptxt[2], secretKey);

    ctxt[3].addConstant(ptxt[5]);
    ptxt[3] += ptxt[5];
    PolyRed(ptxt[3], ptxtSpace, true);
    cout << "c3+=p5:  "; checkCiphertext(ctxt[3], ptxt[3], secretKey);

    ctxt[3].multiplyBy(ctxt[0]);
    ptxt[3] = (ptxt[3] * ptxt[0]) % PhimX;
    PolyRed(ptxt[3], ptxtSpace, true);
    cout << "c3*=c0:  ";    checkCiphertext(ctxt[3], ptxt[3], secretKey);

    ctxt[0].square();
    ptxt[0] = (ptxt[0] * ptxt[0]) % PhimX;
    PolyRed(ptxt[0], ptxtSpace, true);
    cout << "c0*=c0:  ";    checkCiphertext(ctxt[0], ptxt[0], secretKey);

    ctxt[2].multiplyBy(ctxt[3]);
    ptxt[2] = (ptxt[2] * ptxt[3]) % PhimX;
    PolyRed(ptxt[2], ptxtSpace, true);
    cout << "c2*=c3:  ";    checkCiphertext(ctxt[2], ptxt[2], secretKey);
  }
  /******************************************************************/
  /**                       TESTS END HERE                        ***/
  /******************************************************************/
  cout << endl;
  return 0;
}
Esempio n. 2
0
vector<IO::OFILE::Data> Grid::getOData(const string & type) const {

	vector<IO::OFILE::Data> out;

	////////////////////////////////////////////////////////////
	//
	// 		Text file output:
	//
	if (type.compare(IO::OFILE::TYPE::TXT) == 0) {

		// add a piece of data: points
		IO::OFILE::Data dat;

		// set pre and post fields:
		dat.type = type;
		dat.origin = gridName;

		// Output Cartesian points:
		if (flag_output_cart) {

			dat.name = "grid_points_cartesian";
			dat.pre_data = "// " + gridName + ": " + String(gSize)
					+ " points in Cartesian space (" + String(getN()) + ")\n";

			for (unsigned int g = 0; g < gridSize(); ++g) {

				// pick a coordinate:
				const MultiIndexed::IndexSet coord = g2x(g);

				// get Cartesian coordinate:
				COORD_GRID x = getPoint(coord);

				// write:
				dat.data += String(x) + "   ";

			}

		}

		// grid point output:
		else {

			dat.name = "grid_points";
			dat.pre_data = "// " + gridName + ": " + String(indexSize())
					+ " points in grid space (" + String(getN()) + ")\n";

			for (unsigned int i = 0; i < indexSize(); i++) {

				// pick a coordinate:
				MultiIndexed::IndexSet coord = i2x(i);

				// get Cartesian coordinate:
				COORD_GRID x = getGridPoint(coord);

				// write:
				dat.data += String(x) + "   ";

			}

		}

		// write points:
		dat.data += "\n";
		out.push_back(dat);

	}

	////////////////////////////////////////////////////////////
	//
	// 		VTK ascii file output:
	//
	else if (type.compare(IO::OFILE::TYPE::VTK_ASCII) == 0) {

		// add a piece of data: points
		IO::OFILE::Data dat;

		// set pre and post fields:
		dat.type = type;
		dat.origin = gridName;

		// Output Cartesian points:
		if (flag_output_cart) {

			// meta data for grid points:
			vector<int> dims = getN();
			dims.resize(3, 1);
			dat.name = "grid_points_cartesian";
			dat.pre_data = String("DATASET UNSTRUCTURED_GRID\n")
				//	+ "DIMENSIONS " + IO::vi2s(dims) + "\n"
					+ "POINTS " + String(gridSize()) + " \n";

			for (unsigned int g = 0; g < gridSize(); g++) {

				// pick a coordinate:
				MultiIndexed::IndexSet coord = g2x(g);

				// get Cartesian coordinate:
				COORD_GRID x = getPoint(coord);

				// vtk expects 3 dimensions:
				x.resize(3, 0);

				// write:
				dat.data += String(x) + "   ";

			}

		}

		// grid point output:
		else {

			// meta data for grid points:
			vector<int> dims = getN();
			dims.resize(3, 1);
			dat.name = "grid_points";
			dat.pre_data = String("DATASET STRUCTURED_GRID\n")
					+ "DIMENSIONS " + String(dims) + "\n"
					+ "POINTS " + String(indexSize()) + " \n";

			for (unsigned int i = 0; i < indexSize(); i++) {

				// pick a coordinate:
				MultiIndexed::IndexSet coord = i2x(i);

				// get Cartesian coordinate:
				COORD_GRID x = getPoint(coord);

				// vtk expects 3 dimensions:
				x.resize(3, 0);

				// write:
				dat.data += String(x) + "   ";

			}

		}

		// write points:
		dat.data += "\n";
		out.push_back(dat);

		// add new piece of data: cells
		dat = IO::OFILE::Data();

		// set pre and post fields:
		dat.type = type;
		dat.origin = gridName;
		dat.pre_data = "CELLS " + String(cells()) + " ";
		dat.data = "";

		// Output in Cartesian space:
		if (flag_output_cart) {

			dat.name = "grid_cells_cartesian";

			// count data output:
			int dcounter = 0;

			// cell output:
			for(int i = 0; i < cells(); i++) {

				// get cell:
				MultiIndexed::IndexCell cell = getIndexCell(i);

				// grid filter:
				for(unsigned j = 0; j < cell.size(); j++)
					cell[j] = filter_i2g(cell[j]);
				reduceDup_v(cell);

				// write cell:
				dat.data += String(cell.size());
				dcounter++;
				for(unsigned j = 0; j < cell.size(); j++){
					cout<<String(cell[j])<<" -> "<<String(x2g(cell[j]))<<endl;
					dat.data += " " + String(x2g(cell[j]));
					dcounter++;
				}
				cout<<endl;
				dat.data += "\n";

			}

			dat.pre_data += String(dcounter) + "\n";

		}

		dat.data += "\n";
		out.push_back(dat);

	}

	return out;

}