Esempio n. 1
0
// Move the selected point
void CanvasPicker::move(const QPoint &pos)
{
    if ( !d_selectedCurve )
        return;

    QVector<double> xData(d_selectedCurve->dataSize());
    QVector<double> yData(d_selectedCurve->dataSize());

    for ( int i = 0; i < (int)d_selectedCurve->dataSize(); i++ )
    {
        if ( i == d_selectedPoint )
        {
            xData[i] = plot()->invTransform(
                d_selectedCurve->xAxis(), pos.x());
            yData[i] = plot()->invTransform(
                d_selectedCurve->yAxis(), pos.y());
        }
        else
        {
            const QPointF sample = d_selectedCurve->sample(i);
            xData[i] = sample.x();
            yData[i] = sample.y();
        }
    }
    d_selectedCurve->setSamples(xData, yData);

    plot()->replot();
    showCursor(true);
}
Esempio n. 2
0
void LineSegmentPlot::updateDataLimits()
{
    qDebug() << Q_FUNC_INFO;
    int xLen = xSize(), yLen = ySize(), endXLen = m_endX.size(), endYLen = m_endY.size();
    int N = qMin( qMin(xLen, yLen), qMin(endXLen, endYLen) );
    m_dataSize = N;

    qreal minX = Inf, maxX = -Inf, minY = Inf, maxY = -Inf;
    // Calculate the y limits
    RangeValues yrng = ArrayUtil::limits(yData());
    minY = yrng.min;
    maxY = yrng.max;

    yrng = ArrayUtil::limits(m_endY);
    minY = qMin(minY, yrng.min);
    maxY = qMax(maxY, yrng.max);

    RangeValues xrng = ArrayUtil::limits(xData());
    minX = xrng.min;
    maxX = xrng.max;

    xrng = ArrayUtil::limits(m_endX);
    minX = qMin(minX, xrng.min);
    maxX = qMax(maxX, xrng.max);

    QRectF newLim;
    newLim.setLeft(minX);
    newLim.setTop(minY);
    newLim.setRight(maxX);
    newLim.setBottom(maxY);
    setDataLimits(newLim);
}
Esempio n. 3
0
void LinePlot::scaleCurves(QwtPlotCurve *curve)
{

  /// multiple curves based on units
  const QwtPlotItemList &listPlotItem = m_qwtPlot->itemList();
  QwtPlotCurve *plotCurve;
  QwtPlotItemIterator itPlotItem;
  int curveCount = numberOfCurves();

  switch (curveCount)
  {
    case 0:
    {
      curve->setYAxis(QwtPlot::yLeft);
      m_qwtPlot->enableAxis(QwtPlot::yRight, false);
      break;
    }
    case 1:
    {
      curve->setYAxis(QwtPlot::yRight);
      m_qwtPlot->enableAxis(QwtPlot::yRight, true);
      break;
    }
    default: //scale
      m_qwtPlot->enableAxis(QwtPlot::yRight, false);
      // find min, max of all curves
      // scale
      int i;
      for ( itPlotItem = listPlotItem.begin();itPlotItem!=listPlotItem.end();++itPlotItem)
      {
        if ( (*itPlotItem)->rtti() == QwtPlotItem::Rtti_PlotCurve)
        {
          plotCurve = (QwtPlotCurve*) (*itPlotItem);

          if ((plotCurve->minYValue() != 0) || (plotCurve->maxYValue() != 1))
          {

            QwtArray<double> xData(plotCurve->dataSize());
            QwtArray<double> yData(plotCurve->dataSize());
            for (i = 0; i < plotCurve->dataSize(); i++)
            {
              xData[i] = plotCurve->x(i);
              yData[i] = (plotCurve->y(i) - plotCurve->minYValue())/ (plotCurve->maxYValue() - plotCurve->minYValue());
            }
            // reset data
            plotCurve->setTitle(plotCurve->title().text() + "[" + QString::number(plotCurve->minYValue()) + ", "  + QString::number(plotCurve->maxYValue()) + "]");
            plotCurve->setData(xData,yData);
          }
        }
      }
      break;
  }

}
writeTimeData::writeTimeData
(
    const fileName& pathName,
    const word& nameFile,
    const List< Pair<scalar> >& data,
    const label& dummy
)
{
    fileName writeFile(pathName/nameFile);
    
    scalarField xData(data.size());
    scalarField yData(data.size());

    forAll(data, d)
    {
        xData[d] = data[d].first();
        yData[d] = data[d].second();
    }
Esempio n. 5
0
// Move the selected point
void CanvasPicker::move( const QPoint &pos )
{
    if ( !d_selectedCurve )
        return;

    QVector<double> xData( d_selectedCurve->dataSize() );
    QVector<double> yData( d_selectedCurve->dataSize() );

    for ( int i = 0;
        i < static_cast<int>( d_selectedCurve->dataSize() ); i++ )
    {
        if ( i == d_selectedPoint )
        {
            xData[i] = plot()->invTransform(
                d_selectedCurve->xAxis(), pos.x() );
            yData[i] = plot()->invTransform(
                d_selectedCurve->yAxis(), pos.y() );
        }
        else
        {
            const QPointF sample = d_selectedCurve->sample( i );
            xData[i] = sample.x();
            yData[i] = sample.y();
        }
    }
    d_selectedCurve->setSamples( xData, yData );

    /*
       Enable QwtPlotCanvas::ImmediatePaint, so that the canvas has been
       updated before we paint the cursor on it.
     */
    QwtPlotCanvas *plotCanvas = 
        qobject_cast<QwtPlotCanvas *>( plot()->canvas() );

    plotCanvas->setPaintAttribute( QwtPlotCanvas::ImmediatePaint, true );
    plot()->replot();
    plotCanvas->setPaintAttribute( QwtPlotCanvas::ImmediatePaint, false );

    showCursor( true );
}
Esempio n. 6
0
//MAIN RENDER CODE ================================================
void DataGrid::render()
{
    //vector<T> xData(_xData); //Assign xData to non-const so we can pass by const reference.
    
    // Add the border if flagged
    if (flags & (int)o_t::BORDER) {
        addBorder();
        const int shrink = 4;
        plotArea.setSize(plotArea.getWidth()-shrink, plotArea.getHeight()-shrink);
        plotArea.translate(shrink/2, shrink/2);
    }
    
    // Add the title if flagged
    if (flags & (int)o_t::TITLE) {
        addTitle();
    }
    
    // Abort if series vec is empty
    if (series.getNumSeries()==0){
        cout << "No data series available, aborting. \n";
        return;
    }
    
    // get ranges
    const float xMin = series.getXmin();
    const float xMax = series.getXmax();
    const float yMin = series.getYmin();
    const float yMax = series.getYmax();
    // Another way of aliasing - pointless here bu I <3 lambdas
    // To use this alternative, replace xMin with xMin() below
    // auto xMin = [&](){return series.getXmin();};  
    
    // Add the y-axis if flagged
    if (flags & (int)o_t::YAXIS) {
        const int yaxWidth = 10;
        Rectangle rAx = Rectangle(plotArea.getTL(), yaxWidth, plotArea.getHeight());
        addYAxis(yMin, yMax, rAx);
        
        // Shift the plot area
        plotArea.setWidth(plotArea.getWidth()-yaxWidth);
        plotArea.translate(yaxWidth, 0);
    }
    
    // Add simple x-axis indicators if requested
    if (flags & (int)o_t::XAXIS) {
        addXAxis(xMin, xMax, plotArea);
    }
    
    
    for (size_t ii=0; ii<series.getNumSeries(); ++ii){
        // Warn if input is messed up
        vector<float> xData(series.getXdata(ii));
        vector<float> yData(series.getYdata(ii));
        
        if (xData.size()!=yData.size()) {
            cout << "WARNING: x and y data size mismatch, not plotting.\n";
            return;
        }
        
        
        for(size_t nn=0; nn<xData.size(); ++nn){
            int intX = mapVal(   xData[nn], xMin, xMax, plotArea.getLeft(), plotArea.getRight()   );
            // Notice the subtle reversal of yMax and yMin here so data flipped the correct way
            int intY = mapVal(   yData[nn], yMax, yMin, plotArea.getTop(), plotArea.getBtm()   );
            addPoint(Point(intX, intY), series.getMarker(ii) );
        }
    }
    
    // Add the legend if flagged
    if (flags & (int)o_t::LEGEND) {
        addLegend();
    }
    
} // End of rendering function
void QSGDefaultImageNode::updateGeometry()
{
    Q_ASSERT(!m_targetRect.isEmpty());
    const QSGTexture *t = m_material.texture();
    if (!t) {
        QSGGeometry *g = geometry();
        g->allocate(4);
        g->setDrawingMode(GL_TRIANGLE_STRIP);
        memset(g->vertexData(), 0, g->sizeOfVertex() * 4);
    } else {
        QRectF sourceRect = t->normalizedTextureSubRect();

        QRectF innerSourceRect(sourceRect.x() + m_innerSourceRect.x() * sourceRect.width(),
                               sourceRect.y() + m_innerSourceRect.y() * sourceRect.height(),
                               m_innerSourceRect.width() * sourceRect.width(),
                               m_innerSourceRect.height() * sourceRect.height());

        bool hasMargins = m_targetRect != m_innerTargetRect;

        int floorLeft = qFloor(m_subSourceRect.left());
        int ceilRight = qCeil(m_subSourceRect.right());
        int floorTop = qFloor(m_subSourceRect.top());
        int ceilBottom = qCeil(m_subSourceRect.bottom());
        int hTiles = ceilRight - floorLeft;
        int vTiles = ceilBottom - floorTop;

        bool hasTiles = hTiles != 1 || vTiles != 1;
        bool fullTexture = innerSourceRect == QRectF(0, 0, 1, 1);

#ifdef QT_OPENGL_ES_2
        QOpenGLContext *ctx = QOpenGLContext::currentContext();
        bool npotSupported = ctx->functions()->hasOpenGLFeature(QOpenGLFunctions::NPOTTextureRepeat);
        QSize size = t->textureSize();
        bool isNpot = !isPowerOfTwo(size.width()) || !isPowerOfTwo(size.height());
        bool wrapSupported = npotSupported || !isNpot;
#else
        bool wrapSupported = true;
#endif

        // An image can be rendered as a single quad if:
        // - There are no margins, and either:
        //   - the image isn't repeated
        //   - the source rectangle fills the entire texture so that texture wrapping can be used,
        //     and NPOT is supported
        if (!hasMargins && (!hasTiles || (fullTexture && wrapSupported))) {
            QRectF sr;
            if (!fullTexture) {
                sr = QRectF(innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width(),
                            innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height(),
                            m_subSourceRect.width() * innerSourceRect.width(),
                            m_subSourceRect.height() * innerSourceRect.height());
            } else {
                sr = QRectF(m_subSourceRect.left() - floorLeft, m_subSourceRect.top() - floorTop,
                            m_subSourceRect.width(), m_subSourceRect.height());
            }
            if (m_mirror) {
                qreal oldLeft = sr.left();
                sr.setLeft(sr.right());
                sr.setRight(oldLeft);
            }

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);
                g->allocate(8, 14);
                g->setDrawingMode(GL_TRIANGLE_STRIP);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                        ? m_targetRect.width() : m_targetRect.height()) * 0.5f;
                float sx = float(sr.width() / m_targetRect.width());
                float sy = float(sr.height() / m_targetRect.height());
                for (int d = -1; d <= 1; d += 2) {
                    for (int j = 0; j < 2; ++j) {
                        for (int i = 0; i < 2; ++i, ++vertices) {
                            vertices->x = m_targetRect.x() + i * m_targetRect.width();
                            vertices->y = m_targetRect.y() + j * m_targetRect.height();
                            vertices->u = sr.x() + i * sr.width();
                            vertices->v = sr.y() + j * sr.height();
                            vertices->dx = (i == 0 ? delta : -delta) * d;
                            vertices->dy = (j == 0 ? delta : -delta) * d;
                            vertices->du = (d < 0 ? 0 : vertices->dx * sx);
                            vertices->dv = (d < 0 ? 0 : vertices->dy * sy);
                        }
                    }
                }
                Q_ASSERT(vertices - g->vertexCount() == g->vertexData());
                static const quint16 indices[] = {
                    0, 4, 1, 5, 3, 7, 2, 6, 0, 4,
                    4, 6, 5, 7
                };
                Q_ASSERT(g->sizeOfIndex() * g->indexCount() == sizeof(indices));
                memcpy(g->indexDataAsUShort(), indices, sizeof(indices));
            } else {
                m_geometry.allocate(4);
                m_geometry.setDrawingMode(GL_TRIANGLE_STRIP);
                QSGGeometry::updateTexturedRectGeometry(&m_geometry, m_targetRect, sr);
            }
        } else {
            int hCells = hTiles;
            int vCells = vTiles;
            if (m_innerTargetRect.width() == 0)
                hCells = 0;
            if (m_innerTargetRect.left() != m_targetRect.left())
                ++hCells;
            if (m_innerTargetRect.right() != m_targetRect.right())
                ++hCells;
            if (m_innerTargetRect.height() == 0)
                vCells = 0;
            if (m_innerTargetRect.top() != m_targetRect.top())
                ++vCells;
            if (m_innerTargetRect.bottom() != m_targetRect.bottom())
                ++vCells;
            QVarLengthArray<X, 32> xData(2 * hCells);
            QVarLengthArray<Y, 32> yData(2 * vCells);
            X *xs = xData.data();
            Y *ys = yData.data();

            if (m_innerTargetRect.left() != m_targetRect.left()) {
                xs[0].x = m_targetRect.left();
                xs[0].tx = sourceRect.left();
                xs[1].x = m_innerTargetRect.left();
                xs[1].tx = innerSourceRect.left();
                xs += 2;
            }
            if (m_innerTargetRect.width() != 0) {
                xs[0].x = m_innerTargetRect.left();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width();
                ++xs;
                float b = m_innerTargetRect.width() / m_subSourceRect.width();
                float a = m_innerTargetRect.x() - m_subSourceRect.x() * b;
                for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
                    xs[0].x = xs[1].x = a + b * i;
                    xs[0].tx = innerSourceRect.right();
                    xs[1].tx = innerSourceRect.left();
                    xs += 2;
                }
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
                ++xs;
            }
            if (m_innerTargetRect.right() != m_targetRect.right()) {
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.right();
                xs[1].x = m_targetRect.right();
                xs[1].tx = sourceRect.right();
                xs += 2;
            }
            Q_ASSERT(xs == xData.data() + xData.size());
            if (m_mirror) {
                float leftPlusRight = m_targetRect.left() + m_targetRect.right();
                int count = xData.size();
                xs = xData.data();
                for (int i = 0; i < count >> 1; ++i)
                    qSwap(xs[i], xs[count - 1 - i]);
                for (int i = 0; i < count; ++i)
                    xs[i].x = leftPlusRight - xs[i].x;
            }

            if (m_innerTargetRect.top() != m_targetRect.top()) {
                ys[0].y = m_targetRect.top();
                ys[0].ty = sourceRect.top();
                ys[1].y = m_innerTargetRect.top();
                ys[1].ty = innerSourceRect.top();
                ys += 2;
            }
            if (m_innerTargetRect.height() != 0) {
                ys[0].y = m_innerTargetRect.top();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height();
                ++ys;
                float b = m_innerTargetRect.height() / m_subSourceRect.height();
                float a = m_innerTargetRect.y() - m_subSourceRect.y() * b;
                for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
                    ys[0].y = ys[1].y = a + b * i;
                    ys[0].ty = innerSourceRect.bottom();
                    ys[1].ty = innerSourceRect.top();
                    ys += 2;
                }
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
                ++ys;
            }
            if (m_innerTargetRect.bottom() != m_targetRect.bottom()) {
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.bottom();
                ys[1].y = m_targetRect.bottom();
                ys[1].ty = sourceRect.bottom();
                ys += 2;
            }
            Q_ASSERT(ys == yData.data() + yData.size());

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);

                g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
                            hCells * vCells * 6 + (hCells + vCells) * 12);
                g->setDrawingMode(GL_TRIANGLES);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
                quint16 *indices = g->indexDataAsUShort();

                // The deltas are how much the fuzziness can reach into the image.
                // Only the border vertices are moved by the vertex shader, so the fuzziness
                // can't reach further into the image than the closest interior vertices.
                float leftDx = xData.at(1).x - xData.at(0).x;
                float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
                float topDy = yData.at(1).y - yData.at(0).y;
                float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;

                float leftDu = xData.at(1).tx - xData.at(0).tx;
                float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
                float topDv = yData.at(1).ty - yData.at(0).ty;
                float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;

                if (hCells == 1) {
                    leftDx = rightDx *= 0.5f;
                    leftDu = rightDu *= 0.5f;
                }
                if (vCells == 1) {
                    topDy = bottomDy *= 0.5f;
                    topDv = bottomDv *= 0.5f;
                }

                // This delta is how much the fuzziness can reach out from the image.
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                                    ? m_targetRect.width() : m_targetRect.height()) * 0.5f;

                quint16 index = 0;
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    bool isTop = j == 0;
                    bool isBottom = j == vCells - 1;
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        bool isLeft = i == 0;
                        bool isRight = i == hCells - 1;

                        SmoothVertex *v = vertices + index;

                        quint16 topLeft = index;
                        for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 topRight = index;
                        for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 bottomLeft = index;
                        for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        quint16 bottomRight = index;
                        for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);

                        if (isTop) {
                            vertices[topLeft].dy = vertices[topRight].dy = topDy;
                            vertices[topLeft].dv = vertices[topRight].dv = topDv;
                            vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
                            appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
                        }

                        if (isBottom) {
                            vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
                            vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
                            vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
                            appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
                        }

                        if (isLeft) {
                            vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
                            vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
                            vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
                            appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
                        }

                        if (isRight) {
                            vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
                            vertices[topRight].du = vertices[bottomRight].du = -rightDu;
                            vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
                            appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
                        }
                    }
                }

                Q_ASSERT(index == g->vertexCount());
                Q_ASSERT(indices - g->indexCount() == g->indexData());
            } else {
                m_geometry.allocate(hCells * vCells * 4, hCells * vCells * 6);
                m_geometry.setDrawingMode(GL_TRIANGLES);
                QSGGeometry::TexturedPoint2D *vertices = m_geometry.vertexDataAsTexturedPoint2D();
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        vertices[0].x = vertices[2].x = xs[0].x;
                        vertices[0].tx = vertices[2].tx = xs[0].tx;
                        vertices[1].x = vertices[3].x = xs[1].x;
                        vertices[1].tx = vertices[3].tx = xs[1].tx;

                        vertices[0].y = vertices[1].y = ys[0].y;
                        vertices[0].ty = vertices[1].ty = ys[0].ty;
                        vertices[2].y = vertices[3].y = ys[1].y;
                        vertices[2].ty = vertices[3].ty = ys[1].ty;

                        vertices += 4;
                    }
                }

                quint16 *indices = m_geometry.indexDataAsUShort();
                for (int i = 0; i < 4 * vCells * hCells; i += 4)
                    appendQuad(&indices, i, i + 1, i + 2, i + 3);
            }
        }
    }
    markDirty(DirtyGeometry);
    m_dirtyGeometry = false;
}
Esempio n. 8
0
void SvgView::loadPlan(vlePlan *plan)
{
    qWarning() << "SvgView::loadPlan";

    if ( mTplHeader.isNull() )
    {
        // ToDo : improve error handling
        qWarning() << "SvgView::loadPlan() Template error";
        return;
    }

    // Compute the height of a group
    if (mTplHeader.hasAttribute("height"))
        mGroupHeight = mTplHeader.attribute("height").toDouble();
    else
        mGroupHeight = 100;

    // Compute size of the whole plan
    int planHeight = mGroupHeight * (1 + plan->countGroups());
    int planWidth  = (mMaxWidth * mZoomLevel);

    // Create SVG document
    QDomDocument planSVG("xml");
    // Create root element
    QDomElement e = planSVG.createElement("svg");
    e.setAttribute("width",   QString(planWidth));
    e.setAttribute("height",  QString(planHeight));
    e.setAttribute("viewBox", QString("0 0 %1 %2").arg(planWidth).arg(planHeight));
    e.setAttribute("version", "1.1");

    QDate dateStart = plan->dateStart();
    QDate dateEnd   = plan->dateEnd();
    int nbDays = dateStart.daysTo(dateEnd);

    // In the plan duration is more than 1500 days
    if (nbDays > mMaxWidth)
    {
        // Update "pixel-per-day" to avoid very large picture
        qreal widgetSize = mMaxWidth;
        mPixelPerDay = (widgetSize / nbDays);
    }

    if (plan != mPlan)
    {
    qWarning() << "Plan period is from" << dateStart.toString("dd/MM/yyyy")
            << "to" << dateEnd.toString("dd/MM/yyyy")
            << "(" << nbDays<< "days)"
            << "[" << mPixelPerDay << "pixel per day]";
    }

    // First insert the time rule
    QDomElement timeGrp = mTplHeader.cloneNode().toElement();
    updateField(timeGrp, "{{name}}", "");
    updatePos  (timeGrp, 0, 0);
    updateAttr (timeGrp, "header_background", "width", QString::number(planWidth));
    float yLen = (mPixelPerDay * 365 * mZoomLevel);
    // Show Weeks
    if (yLen > 2000)
    {
        QDate r;
        if (dateStart.daysInMonth() == 1)
            r.setDate(dateStart.year(), dateStart.month(), dateStart.day());
        else
            r.setDate(dateStart.year(), dateStart.month() + 1, 1);
        while (r < dateEnd)
        {
            QDomElement newTimeStep = mTplTime.cloneNode().toElement();
            if (yLen < 5000)
                updateField(newTimeStep, "{{name}}", r.toString("dd/MM") );
            else
                updateField(newTimeStep, "{{name}}", r.toString("dd/MM/yy") );
            updateAttr (newTimeStep, "step_block", "width", QString::number(4));

            int offset = dateStart.daysTo(r);
            int aPos = (offset * mPixelPerDay * mZoomLevel);
            updatePos(newTimeStep, aPos, 0);
            timeGrp.appendChild(newTimeStep);
            r = r.addDays(7);
        }
    }
    // Show month
    else if (yLen > 500)
    {
        QDate r;
        if (dateStart.daysInMonth() == 1)
            r.setDate(dateStart.year(), dateStart.month(), dateStart.day());
        else
            r.setDate(dateStart.year(), dateStart.month() + 1, 1);
        while (r < dateEnd)
        {
            QDomElement newTimeStep = mTplTime.cloneNode().toElement();
            if (yLen < 1000)
                updateField(newTimeStep, "{{name}}", r.toString("MMM") );
            else
                updateField(newTimeStep, "{{name}}", r.toString("MMM yy") );
            updateAttr (newTimeStep, "step_block", "width", QString::number(4));

            int offset = dateStart.daysTo(r);
            int aPos = (offset * mPixelPerDay * mZoomLevel);
            updatePos(newTimeStep, aPos, 0);
            timeGrp.appendChild(newTimeStep);
            r = r.addMonths(1);
        }
    }
    // Show Year
    else
    {
        QDate r;
        if (dateStart.dayOfYear() == 1)
            r.setDate(dateStart.year(), dateStart.month(), dateStart.day());
        else
            r.setDate(dateStart.year() + 1, 1, 1);
        while (r < dateEnd)
        {
            QDomElement newTimeStep = mTplTime.cloneNode().toElement();
            updateField(newTimeStep, "{{name}}", QString::number(r.year()) );
            updateAttr (newTimeStep, "step_block", "width", QString::number(4));

            int offset = dateStart.daysTo(r);
            int aPos = (offset * mPixelPerDay * mZoomLevel);
            updatePos(newTimeStep, aPos, 0);
            timeGrp.appendChild(newTimeStep);
            r = r.addYears(1);
        }
    }
    e.appendChild(timeGrp);

    // Insert all the known groups
    for (int i=0; i < plan->countGroups(); i++)
    {
        vlePlanGroup *planGroup = plan->getGroup(i);
        vlePlanActivity *prevActivity = 0;
        int prevLen = 0;
        int prevOffset = 0;

        // Create a new Group
        QDomElement newGrp = mTplHeader.cloneNode().toElement();
        updateField(newGrp, "{{name}}", planGroup->getName());
        updatePos  (newGrp, 0, ((i + 1) * mGroupHeight));
        updateAttr (newGrp, "header_background", "width", QString::number(planWidth));

        for (int j = 0; j < planGroup->count(); j++)
        {
            vlePlanActivity *planActivity = planGroup->getActivity(j);

            QDate actStart = planActivity->dateStart();
            QDate actEnd   = planActivity->dateEnd();

            qreal actLength = (mPixelPerDay * actStart.daysTo(actEnd) * mZoomLevel);
            if (actLength < 1)
                actLength = 1;

            QDomElement newAct = mTplTask.cloneNode().toElement();
            updateField(newAct, "{{name}}", planActivity->getName());
            updateAttr (newAct, "activity_block", "width", QString::number(actLength));

            QString cfgColor("#00edda");
            QString activityClass = planActivity->getClass();
            if ( ! activityClass.isEmpty() )
            {
                QString cfg = getConfig("color", activityClass);
                if ( ! cfg.isEmpty() )
                    cfgColor = cfg;
            }
            QString fillStyle = QString(";fill:%1").arg(cfgColor);
            updateAttr (newAct, "activity_block", "style", fillStyle, false);

            int date = dateStart.daysTo(planActivity->dateStart());
            int aPos = (date * mPixelPerDay * mZoomLevel);

            if (prevActivity)
            {
                if (prevLen > aPos)
                {
                    if (prevOffset < 40)
                        prevOffset += 15;
                    updateAttr(newAct, "activity_name", "y", QString::number(prevOffset));
                }
                else
                    prevOffset = 15;
            }

            updatePos(newAct, aPos, 0);
            newGrp.appendChild(newAct);

            prevActivity = planActivity;
            prevLen = aPos + (planActivity->getName().size() * 8);
        }

        e.appendChild(newGrp);
    }
    planSVG.appendChild( e );

    QByteArray data;
    QTextStream stream(&data);
    planSVG.save(stream, QDomNode::EncodingFromTextStream);

#ifdef PLAN_OUT
    QFile File("planOut.svg");
    File.open( QIODevice::WriteOnly );
    QTextStream TextStream(&File);
    planSVG.save(TextStream, 0);
    File.close();
    mFilename = "planOut.svg";
#else
    mFilename.clear();
#endif

    mPlan = plan;

    QXmlStreamReader xData(data);
    mSvgRenderer->load(&xData);
    refresh();
}
Esempio n. 9
0
QSGGeometry *QSGBasicInternalImageNode::updateGeometry(const QRectF &targetRect,
                                               const QRectF &innerTargetRect,
                                               const QRectF &sourceRect,
                                               const QRectF &innerSourceRect,
                                               const QRectF &subSourceRect,
                                               QSGGeometry *geometry,
                                               bool mirror,
                                               bool antialiasing)
{
    int floorLeft = qFloor(subSourceRect.left());
    int ceilRight = qCeil(subSourceRect.right());
    int floorTop = qFloor(subSourceRect.top());
    int ceilBottom = qCeil(subSourceRect.bottom());
    int hTiles = ceilRight - floorLeft;
    int vTiles = ceilBottom - floorTop;

    int hCells = hTiles;
    int vCells = vTiles;
    if (innerTargetRect.width() == 0)
        hCells = 0;
    if (innerTargetRect.left() != targetRect.left())
        ++hCells;
    if (innerTargetRect.right() != targetRect.right())
        ++hCells;
    if (innerTargetRect.height() == 0)
        vCells = 0;
    if (innerTargetRect.top() != targetRect.top())
        ++vCells;
    if (innerTargetRect.bottom() != targetRect.bottom())
        ++vCells;
    QVarLengthArray<X, 32> xData(2 * hCells);
    QVarLengthArray<Y, 32> yData(2 * vCells);
    X *xs = xData.data();
    Y *ys = yData.data();

    if (innerTargetRect.left() != targetRect.left()) {
        xs[0].x = targetRect.left();
        xs[0].tx = sourceRect.left();
        xs[1].x = innerTargetRect.left();
        xs[1].tx = innerSourceRect.left();
        xs += 2;
    }
    if (innerTargetRect.width() != 0) {
        xs[0].x = innerTargetRect.left();
        xs[0].tx = innerSourceRect.x() + (subSourceRect.left() - floorLeft) * innerSourceRect.width();
        ++xs;
        float b = innerTargetRect.width() / subSourceRect.width();
        float a = innerTargetRect.x() - subSourceRect.x() * b;
        for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
            xs[0].x = xs[1].x = a + b * i;
            xs[0].tx = innerSourceRect.right();
            xs[1].tx = innerSourceRect.left();
            xs += 2;
        }
        xs[0].x = innerTargetRect.right();
        xs[0].tx = innerSourceRect.x() + (subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
        ++xs;
    }
    if (innerTargetRect.right() != targetRect.right()) {
        xs[0].x = innerTargetRect.right();
        xs[0].tx = innerSourceRect.right();
        xs[1].x = targetRect.right();
        xs[1].tx = sourceRect.right();
        xs += 2;
    }
    Q_ASSERT(xs == xData.data() + xData.size());
    if (mirror) {
        float leftPlusRight = targetRect.left() + targetRect.right();
        int count = xData.size();
        xs = xData.data();
        for (int i = 0; i < count >> 1; ++i)
            qSwap(xs[i], xs[count - 1 - i]);
        for (int i = 0; i < count; ++i)
            xs[i].x = leftPlusRight - xs[i].x;
    }

    if (innerTargetRect.top() != targetRect.top()) {
        ys[0].y = targetRect.top();
        ys[0].ty = sourceRect.top();
        ys[1].y = innerTargetRect.top();
        ys[1].ty = innerSourceRect.top();
        ys += 2;
    }
    if (innerTargetRect.height() != 0) {
        ys[0].y = innerTargetRect.top();
        ys[0].ty = innerSourceRect.y() + (subSourceRect.top() - floorTop) * innerSourceRect.height();
        ++ys;
        float b = innerTargetRect.height() / subSourceRect.height();
        float a = innerTargetRect.y() - subSourceRect.y() * b;
        for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
            ys[0].y = ys[1].y = a + b * i;
            ys[0].ty = innerSourceRect.bottom();
            ys[1].ty = innerSourceRect.top();
            ys += 2;
        }
        ys[0].y = innerTargetRect.bottom();
        ys[0].ty = innerSourceRect.y() + (subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
        ++ys;
    }
    if (innerTargetRect.bottom() != targetRect.bottom()) {
        ys[0].y = innerTargetRect.bottom();
        ys[0].ty = innerSourceRect.bottom();
        ys[1].y = targetRect.bottom();
        ys[1].ty = sourceRect.bottom();
        ys += 2;
    }
    Q_ASSERT(ys == yData.data() + yData.size());

    if (antialiasing) {
        QSGGeometry *g = geometry;
        Q_ASSERT(g);

        g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
                    hCells * vCells * 6 + (hCells + vCells) * 12);
        g->setDrawingMode(QSGGeometry::DrawTriangles);
        SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
        memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
        quint16 *indices = g->indexDataAsUShort();

        // The deltas are how much the fuzziness can reach into the image.
        // Only the border vertices are moved by the vertex shader, so the fuzziness
        // can't reach further into the image than the closest interior vertices.
        float leftDx = xData.at(1).x - xData.at(0).x;
        float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
        float topDy = yData.at(1).y - yData.at(0).y;
        float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;

        float leftDu = xData.at(1).tx - xData.at(0).tx;
        float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
        float topDv = yData.at(1).ty - yData.at(0).ty;
        float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;

        if (hCells == 1) {
            leftDx = rightDx *= 0.5f;
            leftDu = rightDu *= 0.5f;
        }
        if (vCells == 1) {
            topDy = bottomDy *= 0.5f;
            topDv = bottomDv *= 0.5f;
        }

        // This delta is how much the fuzziness can reach out from the image.
        float delta = float(qAbs(targetRect.width()) < qAbs(targetRect.height())
                            ? targetRect.width() : targetRect.height()) * 0.5f;

        quint16 index = 0;
        ys = yData.data();
        for (int j = 0; j < vCells; ++j, ys += 2) {
            xs = xData.data();
            bool isTop = j == 0;
            bool isBottom = j == vCells - 1;
            for (int i = 0; i < hCells; ++i, xs += 2) {
                bool isLeft = i == 0;
                bool isRight = i == hCells - 1;

                SmoothVertex *v = vertices + index;

                quint16 topLeft = index;
                for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[0].x;
                    v->u = xs[0].tx;
                    v->y = ys[0].y;
                    v->v = ys[0].ty;
                }

                quint16 topRight = index;
                for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[1].x;
                    v->u = xs[1].tx;
                    v->y = ys[0].y;
                    v->v = ys[0].ty;
                }

                quint16 bottomLeft = index;
                for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[0].x;
                    v->u = xs[0].tx;
                    v->y = ys[1].y;
                    v->v = ys[1].ty;
                }

                quint16 bottomRight = index;
                for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[1].x;
                    v->u = xs[1].tx;
                    v->y = ys[1].y;
                    v->v = ys[1].ty;
                }

                appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);

                if (isTop) {
                    vertices[topLeft].dy = vertices[topRight].dy = topDy;
                    vertices[topLeft].dv = vertices[topRight].dv = topDv;
                    vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
                    appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
                }

                if (isBottom) {
                    vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
                    vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
                    vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
                    appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
                }

                if (isLeft) {
                    vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
                    vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
                    vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
                    appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
                }

                if (isRight) {
                    vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
                    vertices[topRight].du = vertices[bottomRight].du = -rightDu;
                    vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
                    appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
                }
            }
        }

        Q_ASSERT(index == g->vertexCount());
        Q_ASSERT(indices - g->indexCount() == g->indexData());
    } else {
        if (!geometry) {
            geometry = new QSGGeometry(QSGGeometry::defaultAttributes_TexturedPoint2D(),
                                       hCells * vCells * 4, hCells * vCells * 6,
                                       QSGGeometry::UnsignedShortType);
        } else {
            geometry->allocate(hCells * vCells * 4, hCells * vCells * 6);
        }
        geometry->setDrawingMode(QSGGeometry::DrawTriangles);
        QSGGeometry::TexturedPoint2D *vertices = geometry->vertexDataAsTexturedPoint2D();
        ys = yData.data();
        for (int j = 0; j < vCells; ++j, ys += 2) {
            xs = xData.data();
            for (int i = 0; i < hCells; ++i, xs += 2) {
                vertices[0].x = vertices[2].x = xs[0].x;
                vertices[0].tx = vertices[2].tx = xs[0].tx;
                vertices[1].x = vertices[3].x = xs[1].x;
                vertices[1].tx = vertices[3].tx = xs[1].tx;

                vertices[0].y = vertices[1].y = ys[0].y;
                vertices[0].ty = vertices[1].ty = ys[0].ty;
                vertices[2].y = vertices[3].y = ys[1].y;
                vertices[2].ty = vertices[3].ty = ys[1].ty;

                vertices += 4;
            }
        }

        quint16 *indices = geometry->indexDataAsUShort();
        for (int i = 0; i < 4 * vCells * hCells; i += 4)
            appendQuad(&indices, i, i + 1, i + 2, i + 3);
    }
    return geometry;
}
CubeMapTexture* CubeMapTexture::Load(int size) {

    CubeMapTexture* cubeMap = new CubeMapTexture();

    Texture::SetActiveTextureUnit(0);
    cubeMap->Bind();

    GL_C(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
    GL_C(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
    GL_C(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE));
    GL_C(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
    GL_C(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
    GL_C(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0));
    GL_C(glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, 0));

    GL_C(glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS));

    struct RGBA {
	GLubyte r;
	GLubyte g;
	GLubyte b;
	GLubyte a;

    };

    RGBA green; green.r = 0;green.g = 255;green.b = 0;green.a = 255;
    RGBA red; red.r = 255;red.g = 0;red.b = 0;red.a = 255;

    std::vector<RGBA> testData(size * size * sizeof(RGBA), green );
    std::vector<RGBA> xData(size * size * sizeof(RGBA), red);


    for(int i = 0; i < 6; ++i) {
	std::vector<RGBA> d = i % 2 == 0 ? testData : xData;

	glTexImage2D(
	    GL_TEXTURE_CUBE_MAP_POSITIVE_X+i, 0, GL_RGBA8 , size,size, 0, GL_RGBA, GL_UNSIGNED_BYTE,
	    /*&d[0]*/ nullptr);
/*


	GL_C(glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ));
	GL_C(glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ));
*/


//    GL_C(glGenerateMipmap(m_target));

    }

	/*
    GL_C(glFinish() );
    GL_C(glFlush() );

    }*/

//    cubeMap->SetTextureClamping();
    //  cubeMap->SetTextureWrap(GL_CLAMP_TO_EDGE, GL_CLAMP_TO_EDGE);



//    cubeMap->GenerateMipmap();
    //  cubeMap->Unbind();

    return cubeMap;

}