Esempio n. 1
0
static target_ulong Instrument_CALL_NEAR(target_ulong pc)
{
	uint32_t mem_addr;
	xed_reg_enum_t  reg_id;
	target_ulong target;

	PEMU_read_mem(pc, 15, pemu_inst.PEMU_inst_buf);
	xed_decoded_inst_zero_set_mode(&pemu_inst.PEMU_xedd_g, &pemu_inst.PEMU_dstate);
	xed_error_enum_t xed_error = xed_decode(&pemu_inst.PEMU_xedd_g,
			XED_STATIC_CAST(const xed_uint8_t *, pemu_inst.PEMU_inst_buf), 15);

	const xed_inst_t * ins = xed_decoded_inst_inst(&pemu_inst.PEMU_xedd_g);
	const xed_operand_t *op = xed_inst_operand(ins, 0);
	xed_operand_enum_t op_name = xed_operand_name(op);
	
	if (operand_is_mem(op_name, &mem_addr, 0)) {
		PEMU_read_mem(mem_addr,sizeof(target) , &target);
	}
	else if (operand_is_reg(op_name, &reg_id)){
		target = PEMU_get_reg(reg_id);
	}
	else{
		int len = xed_decoded_inst_get_length(&pemu_inst.PEMU_xedd_g);
		target = xed_decoded_inst_get_branch_displacement(&pemu_inst.PEMU_xedd_g) + pc + len;
	}
	return target;
}
ADDRINT GetInstructionLength (ADDRINT ip)
{
    xed_state_t dstate;
    xed_error_enum_t xed_error;
    xed_decoded_inst_t xedd;
    ostringstream os;
    if (sizeof(ADDRINT) == 4) 
        xed_state_init(&dstate,     
                       XED_MACHINE_MODE_LEGACY_32,
                       XED_ADDRESS_WIDTH_32b, 
                       XED_ADDRESS_WIDTH_32b);
    else
        xed_state_init(&dstate,
                       XED_MACHINE_MODE_LONG_64,
                       XED_ADDRESS_WIDTH_64b, 
                       XED_ADDRESS_WIDTH_64b);

    
    xed_decoded_inst_zero_set_mode(&xedd, &dstate);
    UINT32 len = 15;

    xed_error = xed_decode(&xedd, reinterpret_cast<const UINT8*>(ip), len);
    if (xed_error != XED_ERROR_NONE)
    {
        printf ("Failure to decode at %p\n", (char *)ip);
        exit (1);
    }
    return xed_decoded_inst_get_length(&xedd);
}
Esempio n. 3
0
unsigned int disas_get_target(unsigned int start_pc, struct PEMU_INST *inst)
{

	PEMU_read_mem(start_pc, 15, inst->PEMU_inst_buf);
	xed_decoded_inst_zero_set_mode(&inst->PEMU_xedd_g, &inst->PEMU_dstate);
	xed_error_enum_t xed_error = xed_decode(&inst->PEMU_xedd_g,
			XED_STATIC_CAST(const xed_uint8_t *, inst->PEMU_inst_buf), 15);


	if (xed_error != XED_ERROR_NONE) {
		fprintf(stderr, "error in disas_get_target\n");
		exit(0);
	}

	const xed_inst_t *xi = xed_decoded_inst_inst(&inst->PEMU_xedd_g);
	if(xed_decoded_inst_get_iclass(&inst->PEMU_xedd_g) != XED_ICLASS_CALL_NEAR) {
		return 0;
	}

	const xed_operand_t *op = xed_inst_operand(xi, 0);
	xed_reg_enum_t reg_id;
	xed_operand_enum_t op_name = xed_operand_name(op);
	unsigned int dest, tmp;
	
	if(operand_is_relbr(op_name, &dest)){
		dest += (start_pc +  xed_decoded_inst_get_length(&inst->PEMU_xedd_g));				
	}else if(operand_is_reg(op_name, &reg_id)){
		dest = PEMU_get_reg(reg_id);	
	}else if(operand_is_mem4(op_name, &dest,0)){
		PEMU_read_mem(dest, 4, &tmp);
		dest = tmp;
	}
	return dest;
}
Esempio n. 4
0
xed_error_enum_t disas_one_inst_ex(target_ulong pc, struct PEMU_INST *inst)
{
	PEMU_read_mem(pc, 15, inst->PEMU_inst_buf);
	xed_decoded_inst_zero_set_mode(&inst->PEMU_xedd_g, &inst->PEMU_dstate);
	xed_error_enum_t xed_error = xed_decode(&inst->PEMU_xedd_g,
			XED_STATIC_CAST(const xed_uint8_t *, inst->PEMU_inst_buf), 15);
	return xed_error;	
}
Esempio n. 5
0
xed_error_enum_t disas_one_inst_ex(target_ulong pc, struct PEMU_INST *inst)
{
	PEMU_read_mem(pc, 15, inst->PEMU_inst_buf);
	xed_decoded_inst_zero_set_mode(&inst->PEMU_xedd_g, &inst->PEMU_dstate);
	xed_error_enum_t xed_error = xed_decode(&inst->PEMU_xedd_g,
			XED_STATIC_CAST(const xed_uint8_t *, inst->PEMU_inst_buf), 15);
	xed_decoded_inst_dump_att_format(&inst->PEMU_xedd_g, inst->PEMU_inst_str, sizeof(inst->PEMU_inst_str), 0);
	//printf("%x\t%s\n", pc, inst->PEMU_inst_str);
	return xed_error;	
}
Esempio n. 6
0
File: disas.c Progetto: JaonLin/pemu
static xed_error_enum_t disas_one_inst(target_ulong pc)
{
	char buf[15];
	if(PEMU_read_mem(pc, 15, buf)!=0)
		tlb_fill(cpu_single_env, pc+14, 0, 0, 0);
	xed_decoded_inst_zero_set_mode(&xedd_g, &dstate);
	xed_error_enum_t xed_error = xed_decode(&xedd_g,
			XED_STATIC_CAST(const xed_uint8_t *,  buf), 15);
	return xed_error;	
}
Esempio n. 7
0
int main(int argc, char** argv) {
    xed_machine_mode_enum_t mmode;
    xed_bool_t long_mode = 1;
    xed_decoded_inst_t ild;
    xed_uint_t length = 0;
    xed_uint_t i;
#define NTIMES 100
    xed_uint64_t t1,t2,delta[NTIMES],tot;    
    unsigned char itext[15] = { 0xf2, 0x2e, 0x4f, 0x0F, 0x85, 0x99,
                                0x00, 0x00, 0x00 };
    xed_state_t dstate;

    

    // initialize the XED tables -- one time.
    xed_tables_init();

    // The state of the machine -- required for decoding
    if (long_mode) {
        mmode=XED_MACHINE_MODE_LONG_64;
    }
    else {
        mmode=XED_MACHINE_MODE_LEGACY_32;
    }

    dstate.mmode = mmode;

    for(i=0;i<NTIMES;i++) {
        t1 = xed_get_time();
        xed_decoded_inst_zero_set_mode(&ild, &dstate);
        //xed_ild_init(&ild, mmode, itext, 15);
        xed_ild_decode(&ild, itext, XED_MAX_INSTRUCTION_BYTES);
        t2 = xed_get_time();
        delta[i] = t2-t1;
    }

    tot = 0;
    for(i=0;i<NTIMES;i++) {
        printf("Decode time[%3d] = " XED_FMT_LU "\n", i,delta[i]);
        if (i>0)
            tot += delta[i];
    }
    printf("Avg time = " XED_FMT_LU "\n", tot/(NTIMES-1));
    
    print_ild(&ild);
    printf("length = %d\n",length);

    return 0;
    (void) argc; (void) argv; //pacify compiler

}
Esempio n. 8
0
xed_error_enum_t disas_callnear_ex(target_ulong pc, struct PEMU_INST *inst)
{
	PEMU_read_mem(pc, 15, inst->PEMU_inst_buf);
	if(pemu_inst.PEMU_inst_buf[0] != (char)0xe8 
			&& pemu_inst.PEMU_inst_buf[0] != (char)0xff) {
		return XED_ERROR_LAST;
	}

	xed_decoded_inst_zero_set_mode(&inst->PEMU_xedd_g, &inst->PEMU_dstate);
	xed_error_enum_t xed_error = xed_decode(&inst->PEMU_xedd_g,
			XED_STATIC_CAST(const xed_uint8_t *, inst->PEMU_inst_buf), 15);
	//xed_decoded_inst_dump_att_format(&inst->PEMU_xedd_g, inst->PEMU_inst_str, sizeof(inst->PEMU_inst_str), 0);
	return xed_error;	
}
xed_iclass_enum_t
xed_iclass(char* ins)
{
  xed_decoded_inst_t xedd;
  xed_decoded_inst_t *xptr = &xedd;

  xed_decoded_inst_zero_set_mode(xptr, &dbg_xed_machine_state);

  xed_error_enum_t xed_error = xed_decode(xptr, (uint8_t*) ins, 15);
  if (xed_error != XED_ERROR_NONE) {
    fprintf(stderr, "!! XED decode failure of insruction @ %p", ins);
    return XED_ICLASS_INVALID;
  }
  return xed_decoded_inst_get_iclass(xptr);
}
Esempio n. 10
0
bool VariableRecovery(BYTE *startAddr, BYTE *endAddr, std::map<int, AbstractVariable*> &container)
{

    const unsigned int maxInstructionLength = 15;   // the max length of a x86 instruction is 15byte
    xed_decoded_inst_t xedd;
    int instLength, index;
	
    BYTE *currentAddr = startAddr;
    char buffer[1024];


    VariableHunter *varHunter = new VariableHunter(); // initialize the variable hunter

    static const xed_state_t dstate = { XED_MACHINE_MODE_LEGACY_32, XED_ADDRESS_WIDTH_32b };
    //currently, we only implement the 32bit machine

    index = 0;
    while(currentAddr < endAddr) // only small than, can't be equal.
    {
	    memset(buffer, 0, sizeof(buffer));
	
        xed_decoded_inst_zero_set_mode(&xedd, &dstate);
	    xed_error_enum_t xedCode = xed_decode(&xedd, (uint8_t*)currentAddr, maxInstructionLength);
		
	    if(xedCode == XED_ERROR_NONE)
	    {
            instLength = xed_decoded_inst_get_length(&xedd);   //get the length of the instruction in byte

            xed_uint64_t runtime_address = (xed_uint64_t)currentAddr;
            xed_decoded_inst_dump_intel_format(&xedd, buffer, 1024, runtime_address);
            printf("0x%x\t\t%s\n", index, buffer);


            varHunter -> findVariable(xedd);

	        currentAddr += instLength;
            index += instLength;

        }
        else
            return false;
    }

    varHunter -> getResult(container);

    delete varHunter;
    return true;
}
Esempio n. 11
0
void print_trace_record(trace_record_t *rec)
{
  xed_decoded_inst_t xDecode;
  char asm_buf[32];
  int i;
  if(rec->is_new) {
	printf("NEW eip=%08x esp=%08x caller=%08x callee=%08x M[%08x]=%08x \n", 
		rec->eip, rec->esp, rec->caller, rec->callee, rec->mem_addr, 
		rec->mem_val);
	printf("    id=%08x", rec->define.dst_id[0]);

    for(i=1; rec->define.dst_id[i] && i<4; i++) 
	  printf(", %08x", rec->define.dst_id[i]);
	printf("\n");
  }
  else {
	printf("OLD eip=%08x esp=%08x caller=%08x callee=%08x is_move=%d\n", 
		rec->eip, rec->esp, rec->caller, rec->callee, rec->prop.is_move);
	if(rec->mem_addr) 
	  printf("    M[%08x]=%08x\n", rec->mem_addr, rec->mem_val);
	
	printf("    src_id=%08x", rec->prop.src_id[0]);
	for(i=1; rec->prop.src_id[i] !=0 && i<12; i++)
	  printf(", %08x", rec->prop.src_id[i]);
	printf("\n");

	printf("    dst_id=%08x", rec->prop.dst_id[0]);
	for(i=1; rec->prop.dst_id[i] !=0 && i<4; i++)
	  printf(", %08x", rec->prop.dst_id[i]);
	printf("\n");
  }

  if(rec->address_id) 
    printf("    address_id=%08x\n", rec->address_id);

/*  printf("    raw_insn: ");
  for(i=0; i<16; i++) 
	printf("%02x ", (uint8_t)rec->raw_insn[i]); */
  xed_decoded_inst_zero_set_mode(&xDecode, &g_xState);
  xed_error_enum_t xed_error = xed_decode(&xDecode, rec->raw_insn, 16);
  if(xed_error == XED_ERROR_NONE) {
    xed_format_intel(&xDecode, asm_buf, sizeof(asm_buf), rec->eip);
    printf("%s\n", asm_buf);
  }
}
Esempio n. 12
0
VOID use_xed(ADDRINT pc) {
#if defined(TARGET_IA32E)
    static const xed_state_t dstate = {XED_MACHINE_MODE_LONG_64, XED_ADDRESS_WIDTH_64b};
#else
    static const xed_state_t dstate = { XED_MACHINE_MODE_LEGACY_32, XED_ADDRESS_WIDTH_32b};
#endif
    xed_decoded_inst_t xedd;
    xed_decoded_inst_zero_set_mode(&xedd,&dstate);
    UINT64 ticks_start, ticks_stop, delta;
    //FIXME: pass in the proper length...
    const unsigned int max_inst_len = 15;
    ticks_start = get_time();
#define USE_DECODE_CACHE
#if defined(USE_DECODE_CACHE)
    xed_error_enum_t xed_code = xed_decode_cache(&xedd, reinterpret_cast<UINT8*>(pc), max_inst_len, &cache);
#else
    xed_error_enum_t xed_code = xed_decode(&xedd, reinterpret_cast<UINT8*>(pc), max_inst_len);
#endif
    ticks_stop = get_time();
    delta = ticks_stop - ticks_start;
    //cerr << ticks_start << " " << ticks_stop << " " << delta << endl;
    UINT64 bin = delta/50;
    if ((INT64)delta < 0)
        rejects++;
    else if (bin >= MAX_BINS)
        histo[MAX_BINS-1] += 1;
    else
        histo[bin] += 1;
    BOOL xed_ok = (xed_code == XED_ERROR_NONE);
    i++;
    if (i>(1024*1024) && xed_ok) {
        i=0;
        j++;
        *out << j*1024*1024  << endl;
        Fini(0,0);
        *out << hex << std::setw(8) << pc << " " << dec;
        char buf[2048];
        xed_decoded_inst_dump_intel_format(&xedd, buf, 2048, 0);
        *out << buf << endl;
    }

}
Esempio n. 13
0
void
x86_dump_ins(void *ins)
{
  xed_decoded_inst_t xedd;
  xed_decoded_inst_t *xptr = &xedd;
  xed_error_enum_t xed_error;
  char inst_buf[1024];
  char errbuf[2048];

  xed_decoded_inst_zero_set_mode(xptr, &x86_decoder_settings.xed_settings);
  xed_error = xed_decode(xptr, (uint8_t*) ins, 15);
  
  if (xed_error == XED_ERROR_NONE) {
    xed_format_xed(xptr, inst_buf, sizeof(inst_buf), 
		   (xed_uint64_t)(uintptr_t)ins);
    sprintf(errbuf, "(%p, %d bytes, %s) %s \n" , ins, 
	    xed_decoded_inst_get_length(xptr), 
	    xed_iclass_enum_t2str(iclass(xptr)), inst_buf);
  }
  else {
#if defined(ENABLE_XOP) && defined (HOST_CPU_x86_64)
    amd_decode_t decode_res;
    adv_amd_decode(&decode_res, ins);
    if (decode_res.success) {
      if (decode_res.weak)
	sprintf(errbuf, "(%p, %d bytes) weak AMD XOP \n", ins, (int) decode_res.len);
      else
	sprintf(errbuf, "(%p, %d bytes) robust AMD XOP \n", ins, (int) decode_res.len);
    }
    else
#endif // ENABLE_XOP and HOST_CPU_x86_64
      sprintf(errbuf, "x86_dump_ins: xed decode error addr=%p, code = %d\n", 
	      ins, (int) xed_error);
  }
  EMSG(errbuf);
  fprintf(stderr, errbuf);
  fflush(stderr);
}
Esempio n. 14
0
int main(int argc, char** argv)
{
    xed_bool_t long_mode = 1;
    xed_decoded_inst_t xedd;
    xed_state_t dstate;
    unsigned char itext[15] = { 0xf2, 0x2e, 0x4f, 0x0F, 0x85, 0x99,
                                0x00, 0x00, 0x00 };

    xed_tables_init(); // one time per process

    if (long_mode) 
        dstate.mmode=XED_MACHINE_MODE_LONG_64;
    else 
        dstate.mmode=XED_MACHINE_MODE_LEGACY_32;

    xed_decoded_inst_zero_set_mode(&xedd, &dstate);
    xed_ild_decode(&xedd, itext, XED_MAX_INSTRUCTION_BYTES);
    printf("length = %d\n",xed_decoded_inst_get_length(&xedd));
    
    return 0;
    (void) argc; (void) argv; //pacify compiler

}
Esempio n. 15
0
int 
main(int argc, char** argv)
{
    xed_error_enum_t xed_error;

    xed_bool_t long_mode = 0;
    xed_state_t dstate;
    unsigned int first_argv;
    unsigned int bytes = 0;
    unsigned char itext[XED_MAX_INSTRUCTION_BYTES];
    int i;
    unsigned int u;
    xed_decoded_inst_t xedd;
#define BUFLEN  1000
    char buffer[BUFLEN];
    xed_bool_t ok;
    unsigned int isyntax;
    xed_syntax_enum_t syntax;

    xed_tables_init();
    xed_state_zero(&dstate);
    xed_set_verbosity( 99 );

    if (argc > 2 && strcmp(argv[1], "-64") == 0) 
        long_mode = 1;

    if (long_mode) {
        first_argv = 2;
        dstate.mmode=XED_MACHINE_MODE_LONG_64;
    }
    else {
        first_argv=1;
        xed_state_init(&dstate,
                       XED_MACHINE_MODE_LEGACY_32, 
                       XED_ADDRESS_WIDTH_32b, 
                       XED_ADDRESS_WIDTH_32b);
    }

    xed_decoded_inst_zero_set_mode(&xedd, &dstate);
    for( i=first_argv ;i < argc; i++)    {
        xed_uint8_t x = (xed_uint8_t)(xed_atoi_hex(argv[i]));
        assert(bytes < XED_MAX_INSTRUCTION_BYTES);
        itext[bytes++] = x;
    }
    if (bytes == 0)    {
        fprintf(stderr, "Must supply some hex bytes\n");
        exit(1);
    }

    printf("PARSING BYTES: ");
    for( u=0;u<bytes; u++) 
        printf("%02x ", STATIC_CAST(unsigned int,itext[u]));
    printf("\n");

    xed_error = xed_decode(&xedd, 
                           REINTERPRET_CAST(const xed_uint8_t*,itext),
                           bytes);
    switch(xed_error)
    {
      case XED_ERROR_NONE:
        break;
      case XED_ERROR_BUFFER_TOO_SHORT:
        fprintf(stderr,"Not enough bytes provided\n");
        exit(1);
      case XED_ERROR_GENERAL_ERROR:
        fprintf(stderr,"Could not decode given input.\n");
        exit(1);
      default:
        fprintf(stderr,"Unhandled error code %s\n", xed_error_enum_t2str(xed_error));
        exit(1);
    }
        
    //memset(buffer,0,BUFLEN);
    xed_decoded_inst_dump(&xedd,buffer, BUFLEN);
    printf("%s\n",buffer);


    for(isyntax=  XED_SYNTAX_XED; isyntax < XED_SYNTAX_LAST; isyntax++)    {
        syntax = STATIC_CAST(xed_syntax_enum_t, isyntax);
        ok = xed_format(syntax, &xedd, buffer, BUFLEN, 0);
        if (ok)
            printf("%s syntax: %s\n", xed_syntax_enum_t2str(syntax), buffer);
        else
            printf("Error disassembling %s syntax\n", xed_syntax_enum_t2str(syntax));
    }
    return 0;
}
Esempio n. 16
0
int
main(int argc, char** argv)
{
    xed_error_enum_t xed_error;

    xed_bool_t long_mode = 0;
    xed_bool_t real_mode = 0;
    xed_bool_t protected_16 = 0;
    xed_state_t dstate;
    unsigned int first_argv;
    unsigned int bytes = 0;
    unsigned char itext[XED_MAX_INSTRUCTION_BYTES];
    int i;
    unsigned int u;
    xed_decoded_inst_t xedd;
#define BUFLEN  1000
    char buffer[BUFLEN];
    xed_bool_t ok;
    unsigned int isyntax;
    xed_syntax_enum_t syntax;
    unsigned int memop_index = 0;
    unsigned int memops = 0;
    xed_uint64_t out_addr = 0;

    xed_tables_init();
    xed_agen_register_callback( register_callback, segment_callback);

    xed_state_zero(&dstate);
    xed_set_verbosity( 99 );

    if (argc > 2 && strcmp(argv[1], "-64") == 0)
        long_mode = 1;
    if (argc > 2 && strcmp(argv[1], "-r") == 0)
        real_mode = 1;
    if (argc > 2 && strcmp(argv[1], "-16") == 0)
        protected_16 = 1;

    if (long_mode) {
        first_argv = 2;
        dstate.mmode=XED_MACHINE_MODE_LONG_64;
    }
    else if (protected_16) {
        first_argv = 2;
        xed_state_init(&dstate,
                       XED_MACHINE_MODE_LEGACY_16,
                       XED_ADDRESS_WIDTH_16b,
                       XED_ADDRESS_WIDTH_16b);
    }
    else if (real_mode) {
        first_argv = 2;
        /* we say that real mode uses 16b addressing even though the
           addresses returned are 20b long. */
        xed_state_init(&dstate,
                       XED_MACHINE_MODE_REAL_16,
                       XED_ADDRESS_WIDTH_16b,
                       XED_ADDRESS_WIDTH_16b);
    }
    else {
        first_argv=1;
        xed_state_init(&dstate,
                       XED_MACHINE_MODE_LEGACY_32,
                       XED_ADDRESS_WIDTH_32b,
                       XED_ADDRESS_WIDTH_32b);
    }

    xed_decoded_inst_zero_set_mode(&xedd, &dstate);
    for( i=first_argv ; i < argc; i++)    {
        xed_uint8_t x = (xed_uint8_t)(xed_atoi_hex(argv[i]));
        assert(bytes < XED_MAX_INSTRUCTION_BYTES);
        itext[bytes++] = x;
    }
    if (bytes == 0)    {
        fprintf(stderr, "Must supply some hex bytes\n");
        exit(1);
    }

    printf("PARSING BYTES: ");
    for( u=0; u<bytes; u++)
        printf("%02x ", STATIC_CAST(unsigned int,itext[u]));
    printf("\n");

    xed_error = xed_decode(&xedd,
                           REINTERPRET_CAST(const xed_uint8_t*,itext),
                           bytes);
    switch(xed_error)
    {
    case XED_ERROR_NONE:
        break;
    case XED_ERROR_BUFFER_TOO_SHORT:
        fprintf(stderr,"Not enough bytes provided\n");
        exit(1);
    case XED_ERROR_GENERAL_ERROR:
        fprintf(stderr,"Could not decode given input.\n");
        exit(1);
    default:
        fprintf(stderr,"Unhandled error code %s\n", xed_error_enum_t2str(xed_error));
        exit(1);
    }

    xed_decoded_inst_dump(&xedd,buffer, BUFLEN);
    printf("%s\n",buffer);

    for(isyntax=  XED_SYNTAX_XED; isyntax < XED_SYNTAX_LAST; isyntax++)    {
        syntax = STATIC_CAST(xed_syntax_enum_t, isyntax);
        ok = xed_format(syntax, &xedd, buffer, BUFLEN, 0);
        if (ok)
            printf("%s syntax: %s\n", xed_syntax_enum_t2str(syntax), buffer);
        else
            printf("Error disassembling %s syntax\n", xed_syntax_enum_t2str(syntax));
    }


    memops = xed_decoded_inst_number_of_memory_operands(&xedd);
    printf("\nNumber of memory operands: %d\n", (int)memops);
    for(memop_index=0; memop_index<memops; memop_index++) {
        xed_error = xed_agen(&xedd, memop_index, 0, &out_addr);
        if (xed_error != XED_ERROR_NONE) {
            fprintf(stderr,"Agen error code %s\n", xed_error_enum_t2str(xed_error));
            exit(1);
        }
        printf("\tMemory agen%d: " XED_FMT_LX "\n", (int)memop_index, out_addr);
    }
    return 0;
}
Esempio n. 17
0
static void print_inst(INST *inst)
{
//#if 0
	xed_decoded_inst_zero_set_mode(&xedd_g, &dstate);
	xed_error_enum_t xed_error = xed_decode(&xedd_g,
			XED_STATIC_CAST(const xed_uint8_t *,  inst->inst), 15);

#ifdef STATISTICS
			g_inst_num++;
#endif

//	fprintf(output, "\/\/0x%x\n", g_pc);

	if (xed_error == XED_ERROR_NONE) 
	{
#ifdef WINDOWS_FORMAT
		xed_decoded_inst_dump_intel_format(&xedd_g, g_inst_str, sizeof(g_inst_str), 0);
#else
		xed_decoded_inst_dump_att_format(&xedd_g, g_inst_str, sizeof(g_inst_str), 0);
		//xed_decoded_inst_dump_intel_format(&xedd_g, g_inst_str, sizeof(g_inst_str), 0);
#endif
		const xed_inst_t *xi = xed_decoded_inst_inst(&xedd_g);
	
		patch_operand(xi);
		
		switch(inst->type){
			case INCALL:
			case INJMP:
			case NORMAL:
				format_normal(xi);
				break;
			case JMP:
			case TAIL:
				format_jmp(xi);
				break;
			case CALL:
				format_direct_call(xi);
				break;
			case JCC:
			case LOOP:
				format_jcc(xi);
				break;
			case LEA_8:
			case LEA_16:
			case LEA_32:
				format_lea(xi);
			default:
				break;
		}
//		fprintf(stdout, "results:\"%s\\n\\t\"\n", inst_buffer);

		if(get_jmp_dst(g_pc))
#ifdef WINDOWS_FORMAT
			fprintf(output, "L_0x%x:\n", g_pc);
#else
			fprintf(output, "\"L_0x%x:\"\n", g_pc);
#endif

#ifdef DEBUG
		print_debug();
#endif

#ifdef WINDOWS_FORMAT
		fprintf(output, "%s\n", inst_buffer);
#else
		fprintf(output, "\"%s\\n\\t\"\n", inst_buffer);
#endif

		//patch safety guard
		switch(inst->type){
			case INJMP:
			case JCC:
				if(safety_guard[0]){
#ifdef WINDOWS_FORMAT
					fprintf(output, "%s\n", safety_guard);
#else
					fprintf(output, "\"%s\\n\\t\"\n", safety_guard);
#endif
				}
				break;
		}
	}
//#endif
}
static string
disassemble(UINT64 start, UINT64 stop) {
    UINT64 pc = start;
    xed_state_t dstate;
    xed_syntax_enum_t syntax = XED_SYNTAX_INTEL;
    xed_error_enum_t xed_error;
    xed_decoded_inst_t xedd;
    ostringstream os;
    if (sizeof(ADDRINT) == 4) 
        xed_state_init(&dstate,     
                       XED_MACHINE_MODE_LEGACY_32,
                       XED_ADDRESS_WIDTH_32b, 
                       XED_ADDRESS_WIDTH_32b);
    else
        xed_state_init(&dstate,
                       XED_MACHINE_MODE_LONG_64,
                       XED_ADDRESS_WIDTH_64b, 
                       XED_ADDRESS_WIDTH_64b);

    /*while( pc < stop )*/ {
        xed_decoded_inst_zero_set_mode(&xedd, &dstate);
        UINT32 len = 15;
        if (stop - pc < 15)
            len = stop-pc;

        xed_error = xed_decode(&xedd, reinterpret_cast<const UINT8*>(pc), len);
        bool okay = (xed_error == XED_ERROR_NONE);
        iostream::fmtflags fmt = os.flags();
        os << std::setfill('0')
           << "XDIS "
           << std::hex
           << std::setw(sizeof(ADDRINT)*2)
           << pc
           << std::dec
           << ": "
           << std::setfill(' ')
           << std::setw(4);

        if (okay) {
            char buffer[200];
            unsigned int dec_len, sp;

            os << xed_extension_enum_t2str(xed_decoded_inst_get_extension(&xedd));
            dec_len = xed_decoded_inst_get_length(&xedd);
            print_hex_line(buffer, reinterpret_cast<UINT8*>(pc), dec_len);
            os << " " << buffer;
            for ( sp=dec_len; sp < 12; sp++)     // pad out the instruction bytes
                os << "  ";
            os << " ";
            memset(buffer,0,200);
            int dis_okay = xed_format(syntax, &xedd, buffer, 200, pc);
            if (dis_okay) 
                os << buffer << endl;
            else
                os << "Error disasassembling pc 0x" << std::hex << pc << std::dec << endl;
            pc += dec_len;
        }
        else { // print the byte and keep going.
            UINT8 memval = *reinterpret_cast<UINT8*>(pc);
            os << "???? " // no extension
               << std::hex
               << std::setw(2)
               << std::setfill('0')
               << static_cast<UINT32>(memval)
               << std::endl;
            pc += 1;
        }
        os.flags(fmt);
    }
    return os.str();
}
Esempio n. 19
0
static int read_instruction_v50(trace_interface_t * trace, x86_inst_t * insn, 
                    int disassemble_insn)
{
  int i, j;
  int count = 0;

  if (!trace || !insn)
    return -1;

  entry_header_t * eh = &(insn->eh);
  FILE *stream = trace->trace_stream;

  // Read address
  if (fread(eh, 4, 1, stream) < 1)
    return -1;
 
  // Set PID (not in trace)
  eh->pid = -1;

  // Read thread identifier
  if (fread(&(eh->tid), 4, 1, stream) < 1)
    return -1;

  // Read instruction size
  if (fread(&(eh->inst_size), 2, 1, stream) < 1)
    return -1;
 
  // Read num_operands and tp
  if (fread(&(eh->num_operands), 2, 1, stream) < 1)
    return -1;

  // Read eflags and cc_op
  if (fread(&(eh->eflags), 8, 1, stream) < 1)
    return -1;

  // Read df
  uint32_t df;
  if (fread(&df, 4, 1, stream) < 1)
    return -1;
  eh->df = (df == 1) ? 1 : -1;

  // Read rawbytes
  if (fread(&(eh->rawbytes), eh->inst_size, 1, stream) < 1)
    return -1;

  // Read operands
  for (i = 0; i < eh->num_operands; i++) {
    // Read the operand tentatively into the operand array
    if (read_operand_v50(stream, &(eh->operand[count])) != 0) 
      return -1;

    // If memory addressing register, move to memreg array correct position
    switch (eh->operand[count].usage) {
      case membase:
        memcpy(&(eh->memregs[count-1][1]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memindex:
        memcpy(&(eh->memregs[count-1][2]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memsegment:
        memcpy(&(eh->memregs[count-1][0]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memsegent0:
        memcpy(&(eh->memregs[count-1][3]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memsegent1:
        memcpy(&(eh->memregs[count-1][4]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memdisplacement:
      case memscale:
      case eflags:
        fprintf(stderr, "Found invalid operand usage for trace v50\n");
        return -1;

      default:
        for (j = 0; j < MAX_NUM_MEMREGS; j++) {
          eh->memregs[count][j].type = TNone;
        }
        count++;
        break;
    }
  }

  eh->operand[count].type = TNone;

  /* Set instruction counter and increase next instruction counter */
  insn->insn_ctr = trace->trace_next_insn_ctr++;

  /* Disassemble instruction if requested */
  if (disassemble_insn) {
    xed_decoded_inst_zero_set_mode(&(insn->xed_inst), &dstate);
    xed_error_enum_t xed_error =
      xed_decode(&(insn->xed_inst), 
                  XED_STATIC_CAST(const xed_uint8_t*,(insn->eh).rawbytes),
                  MAX_INSN_BYTES);
    assert(xed_error == XED_ERROR_NONE);
  }

  return 0;
}
Esempio n. 20
0
static int read_instruction_v60(trace_interface_t * trace, x86_inst_t * insn,
                    int disassemble_insn)
{
  int i, j;
  int count = 0;

  if (!trace || !insn)
    return -1;

  entry_header_t * eh = &(insn->eh);
  FILE *stream = trace->trace_stream;

  // Read address, pid, tid, inst_size, num_operands, tp, df, eflags, cc_op
  if (fread(eh, ENTRY_HEADER_FIXED_SIZE, 1, stream) < 1)
    return -1;

  // Special return if found trailer
  if (eh->address == 0xffffffff)
    return -2;

  // Read rawbytes
  if (fread(&(eh->rawbytes), eh->inst_size, 1, stream) < 1)
    return -1;

  // Build operand and memregs arrays
  for (i = 0; i < eh->num_operands; i++) {
    // Read the operand tentatively into the operand array
    if (read_operand_v60(stream, &(eh->operand[count])) != 0)
      return -1;

    // If memory addressing register, move to memreg array correct position
    switch (eh->operand[count].usage) {
      case membase:
        memcpy(&(eh->memregs[count-1][1]), &(eh->operand[count]), 
          sizeof(OperandVal));
        break;

      case memindex:
        memcpy(&(eh->memregs[count-1][2]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memsegment:
        memcpy(&(eh->memregs[count-1][0]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memsegent0:
        memcpy(&(eh->memregs[count-1][3]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memsegent1:
        memcpy(&(eh->memregs[count-1][4]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memdisplacement:
        memcpy(&(eh->memregs[count-1][5]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      case memscale:
        memcpy(&(eh->memregs[count-1][6]), &(eh->operand[count]),
          sizeof(OperandVal));
        break;

      default:
        for (j = 0; j < MAX_NUM_MEMREGS; j++) {
          eh->memregs[count][j].type = TNone;
        }
        count++;
        break;
    }
  }

  eh->operand[count].type = TNone;

  /* Set instruction counter and increase next instruction counter */
  insn->insn_ctr = trace->trace_next_insn_ctr++;

  /* Disassemble instruction if requested */
  if (disassemble_insn) {
    xed_decoded_inst_zero_set_mode(&(insn->xed_inst), &dstate);
    xed_error_enum_t xed_error =
      xed_decode(&(insn->xed_inst),
                  XED_STATIC_CAST(const xed_uint8_t*,(insn->eh).rawbytes),
                  MAX_INSN_BYTES);
    assert(xed_error == XED_ERROR_NONE);
  }

  return 0;
}
Esempio n. 21
0
static void print_block(struct pt_block *block,
			struct pt_image_section_cache *iscache,
			const struct ptxed_options *options,
			const struct ptxed_stats *stats,
			uint64_t offset, uint64_t time)
{
	xed_machine_mode_enum_t mode;
	xed_state_t xed;
	uint64_t last_ip;

	if (!block || !options) {
		printf("[internal error]\n");
		return;
	}

	if (block->resynced)
		printf("[overflow]\n");

	if (block->enabled)
		printf("[enabled]\n");

	if (block->resumed)
		printf("[resumed]\n");

	if (options->track_blocks) {
		printf("[block");
		if (stats)
			printf(" %" PRIx64, stats->blocks);
		printf("]\n");
	}

	mode = translate_mode(block->mode);
	xed_state_init2(&xed, mode, XED_ADDRESS_WIDTH_INVALID);

	last_ip = 0ull;
	for (; block->ninsn; --block->ninsn) {
		xed_decoded_inst_t inst;
		xed_error_enum_t xederrcode;
		uint8_t raw[pt_max_insn_size], *praw;
		int size, errcode;

		/* For truncated block, the last instruction is provided in the
		 * block since it can't be read entirely from the image section
		 * cache.
		 */
		if (block->truncated && (block->ninsn == 1)) {
			praw = block->raw;
			size = block->size;
		} else {
			praw = raw;
			size = pt_iscache_read(iscache, raw, sizeof(raw),
					       block->isid, block->ip);
			if (size < 0) {
				printf(" [error reading insn: (%d) %s]\n", size,
				       pt_errstr(pt_errcode(size)));
				break;
			}
		}

		xed_decoded_inst_zero_set_mode(&inst, &xed);

		if (block->speculative)
			printf("? ");

		if (options->print_offset)
			printf("%016" PRIx64 "  ", offset);

		if (options->print_time)
			printf("%016" PRIx64 "  ", time);

		printf("%016" PRIx64, block->ip);

		xederrcode = xed_decode(&inst, praw, size);
		if (xederrcode != XED_ERROR_NONE) {
			printf(" [xed decode error: (%u) %s]\n", xederrcode,
			       xed_error_enum_t2str(xederrcode));
			break;
		}

		if (!options->dont_print_insn)
			xed_print_insn(&inst, block->ip, options);

		printf("\n");

		last_ip = block->ip;

		errcode = xed_next_ip(&block->ip, &inst, last_ip);
		if (errcode < 0) {
			diagnose_block_at("reconstruct error", offset, block,
					  errcode);
			break;
		}
	}

	/* Decode should have brought us to @block->end_ip. */
	if (last_ip != block->end_ip)
		diagnose_block_at("reconstruct error", offset, block,
				  -pte_nosync);

	if (block->interrupted)
		printf("[interrupt]\n");

	if (block->aborted)
		printf("[aborted]\n");

	if (block->committed)
		printf("[committed]\n");

	if (block->disabled)
		printf("[disabled]\n");

	if (block->stopped)
		printf("[stopped]\n");
}
Esempio n. 22
0
static void print_insn(const struct pt_insn *insn, xed_state_t *xed,
		       const struct ptxed_options *options, uint64_t offset,
		       uint64_t time)
{
	if (!insn || !options) {
		printf("[internal error]\n");
		return;
	}

	if (insn->resynced)
		printf("[overflow]\n");

	if (insn->enabled)
		printf("[enabled]\n");

	if (insn->resumed)
		printf("[resumed]\n");

	if (insn->speculative)
		printf("? ");

	if (options->print_offset)
		printf("%016" PRIx64 "  ", offset);

	if (options->print_time)
		printf("%016" PRIx64 "  ", time);

	printf("%016" PRIx64, insn->ip);

	if (!options->dont_print_insn) {
		xed_machine_mode_enum_t mode;
		xed_decoded_inst_t inst;
		xed_error_enum_t errcode;

		mode = translate_mode(insn->mode);

		xed_state_set_machine_mode(xed, mode);
		xed_decoded_inst_zero_set_mode(&inst, xed);

		errcode = xed_decode(&inst, insn->raw, insn->size);
		switch (errcode) {
		case XED_ERROR_NONE:
			xed_print_insn(&inst, insn->ip, options);
			break;

		default:
			printf(" [xed decode error: (%u) %s]", errcode,
			       xed_error_enum_t2str(errcode));
			break;
		}
	}

	printf("\n");

	if (insn->interrupted)
		printf("[interrupt]\n");

	if (insn->aborted)
		printf("[aborted]\n");

	if (insn->committed)
		printf("[committed]\n");

	if (insn->disabled)
		printf("[disabled]\n");

	if (insn->stopped)
		printf("[stopped]\n");
}
Esempio n. 23
0
void OfflineX86Code::disasm(FILE* file,
                            TCA   fileStartAddr,
                            TCA   codeStartAddr,
                            uint64_t codeLen,
                            const PerfEventsMap<TCA>& perfEvents,
                            BCMappingInfo bcMappingInfo,
                            bool printAddr /* =true */,
                            bool printBinary /* =false */) {

  char codeStr[MAX_INSTR_ASM_LEN];
  xed_uint8_t* code = (xed_uint8_t*) alloca(codeLen);
  xed_uint8_t* frontier;
  TCA          ip;
  TCA          r10val = 0;
  size_t       currBC = 0;

  if (codeLen == 0) return;

  auto const offset = codeStartAddr - fileStartAddr;
  if (fseek(file, offset, SEEK_SET)) {
    error("disasm error: seeking file");
  }

  size_t readLen = fread(code, codeLen, 1, file);
  if (readLen != 1) {
    error("Failed to read {} bytes at offset {} from code file due to {}",
          codeLen, offset, feof(file) ? "EOF" : "read error");
  }

  xed_decoded_inst_t xedd;

  // Decode and print each instruction
  for (frontier = code, ip = codeStartAddr; frontier < code + codeLen; ) {

    xed_decoded_inst_zero_set_mode(&xedd, &xed_state);
    xed_decoded_inst_set_input_chip(&xedd, XED_CHIP_INVALID);
    xed_error_enum_t xed_error = xed_decode(&xedd, frontier, 15);

    if (xed_error != XED_ERROR_NONE) break;

    // Get disassembled instruction in codeStr
    if (!xed_format_context(xed_syntax, &xedd, codeStr,
                            MAX_INSTR_ASM_LEN, (uint64_t)ip, nullptr
#if XED_ENCODE_ORDER_MAX_ENTRIES != 28 // Newer version of XED library
                            , 0
#endif
                           )) {
      error("disasm error: xed_format_context failed");
    }

    // Annotate the x86 with its bytecode.
    currBC = printBCMapping(bcMappingInfo, currBC, (TCA)ip);

    if (printAddr) printf("%14p: ", ip);

    uint32_t instrLen = xed_decoded_inst_get_length(&xedd);

    if (printBinary) {
      uint32_t i;
      for (i=0; i < instrLen; i++) {
        printf("%02X", frontier[i]);
      }
      for (; i < 16; i++) {
        printf("  ");
      }
    }

    // For calls, we try to figure out the destination symbol name.
    // We look both at relative branches and the pattern:
    //    move r10, IMMEDIATE
    //    call r10
    xed_iclass_enum_t iclass = xed_decoded_inst_get_iclass(&xedd);
    string callDest = "";

    if (iclass == XED_ICLASS_CALL_NEAR || iclass == XED_ICLASS_CALL_FAR) {
      const xed_inst_t    *xi       = xed_decoded_inst_inst(&xedd);
      always_assert(xed_inst_noperands(xi) >= 1);
      const xed_operand_t *opnd     = xed_inst_operand(xi, 0);
      xed_operand_enum_t   opndName = xed_operand_name(opnd);

      if (opndName == XED_OPERAND_RELBR) {
        if (xed_decoded_inst_get_branch_displacement_width(&xedd)) {
          xed_int32_t disp = xed_decoded_inst_get_branch_displacement(&xedd);
          TCA         addr = ip + instrLen + disp;
          callDest = getSymbolName(addr);
        }
      } else if (opndName == XED_OPERAND_REG0) {
        if (xed_decoded_inst_get_reg(&xedd, opndName) == XED_REG_R10) {
          callDest = getSymbolName(r10val);
        }
      }
    } else if (iclass == XED_ICLASS_MOV) {
      // Look for moves into r10 and keep r10val updated
      const xed_inst_t* xi = xed_decoded_inst_inst(&xedd);

      always_assert(xed_inst_noperands(xi) >= 2);

      const xed_operand_t *destOpnd     = xed_inst_operand(xi, 0);
      xed_operand_enum_t   destOpndName = xed_operand_name(destOpnd);

      if (destOpndName == XED_OPERAND_REG0 &&
          xed_decoded_inst_get_reg(&xedd, destOpndName) == XED_REG_R10) {
        const xed_operand_t *srcOpnd     = xed_inst_operand(xi, 1);
        xed_operand_enum_t   srcOpndName = xed_operand_name(srcOpnd);
        if (srcOpndName == XED_OPERAND_IMM0) {
          TCA addr = (TCA)xed_decoded_inst_get_unsigned_immediate(&xedd);
          r10val = addr;
        }
      }
    }

    if (!perfEvents.empty()) {
      printEventStats((TCA)ip, instrLen, perfEvents);
    } else {
      printf("%48s", "");
    }
    printf("%s%s\n", codeStr, callDest.c_str());

    frontier += instrLen;
    ip       += instrLen;
  }
}
Esempio n. 24
0
void Disasm::disasm(std::ostream& out, uint8_t* codeStartAddr,
                    uint8_t* codeEndAddr) {

#ifdef HAVE_LIBXED
  auto const endClr = m_opts.m_color.empty() ? "" : ANSI_COLOR_END;
  char codeStr[MAX_INSTR_ASM_LEN];
  xed_uint8_t *frontier;
  xed_decoded_inst_t xedd;
  uint64_t codeBase = uint64_t(codeStartAddr);
  uint64_t ip;

  // Decode and print each instruction
  for (frontier = codeStartAddr, ip = (uint64_t)codeStartAddr;
       frontier < codeEndAddr; ) {
    xed_decoded_inst_zero_set_mode(&xedd, &m_xedState);
    xed_decoded_inst_set_input_chip(&xedd, XED_CHIP_INVALID);
    xed_error_enum_t xed_error = xed_decode(&xedd, frontier, 15);
    if (xed_error != XED_ERROR_NONE) error("disasm error: xed_decode failed");

    // Get disassembled instruction in codeStr
    auto const syntax = m_opts.m_forceAttSyntax ? XED_SYNTAX_ATT
                                                : s_xed_syntax;
    if (!xed_format_context(syntax, &xedd, codeStr,
                            MAX_INSTR_ASM_LEN, ip, nullptr)) {
      error("disasm error: xed_format_context failed");
    }
    uint32_t instrLen = xed_decoded_inst_get_length(&xedd);

    // If it's a jump, we're printing relative offsets, and the dest
    // is within the range we're printing, add the dest as a relative
    // offset.
    std::string jmpComment;
    auto const cat = xed_decoded_inst_get_category(&xedd);
    if (cat == XED_CATEGORY_COND_BR || cat == XED_CATEGORY_UNCOND_BR) {
      if (m_opts.m_relativeOffset) {
        auto disp = uint64_t(frontier + instrLen +
                             xed_decoded_inst_get_branch_displacement(&xedd) -
                             codeBase);
        if (disp < uint64_t(codeEndAddr - codeStartAddr)) {
          jmpComment = folly::format(" # {:#x}", disp).str();
        }
      }
    }

    for (int i = 0; i < m_opts.m_indentLevel; ++i) {
      out << ' ';
    }
    out << m_opts.m_color;
    if (m_opts.m_addresses) {
      const char* fmt = m_opts.m_relativeOffset ? "{:3x}: " : "{:#10x}: ";
      out << folly::format(fmt, ip - (m_opts.m_relativeOffset ? codeBase : 0));
    }
    if (m_opts.m_printEncoding) {
      // print encoding, like in objdump
      unsigned posi = 0;
      for (; posi < instrLen; ++posi) {
        out << folly::format("{:02x} ", (uint8_t)frontier[posi]);
      }
      for (; posi < 16; ++posi) {
        out << "   ";
      }
    }
    out << codeStr << jmpComment << endClr << '\n';
    frontier += instrLen;
    ip       += instrLen;
  }
#else
  out << "This binary was compiled without disassembly support\n";
#endif // HAVE_LIBXED
}
Esempio n. 25
0
File: trace.c Progetto: anhkgg/temu
/* This is the central function
  Given a memory address, reads a bunch of memory bytes and
    calls the disassembler to obtain the information
  Then it stores the information into the eh EntryHeader
*/
void decode_address(uint32_t address, EntryHeader *eh, int ignore_taint)
{
  unsigned char insn_buf[MAX_INSN_BYTES];
  unsigned int is_stackpush = 0, is_stackpop = 0;
  unsigned int stackpushpop_acc = 0;

  if (xed2chris_regmapping[XED_REG_EAX][0] == 0) {
    init_xed2chris();
    assert(xed2chris_regmapping[XED_REG_EAX][0] != 0);
  }

  /* Read memory from TEMU */
  TEMU_read_mem(address, MAX_INSN_BYTES, insn_buf);

  /* Disassemble instruction buffer */
  xed_decoded_inst_zero_set_mode(&xedd, &dstate);
  xed_error_enum_t xed_error =
    xed_decode(&xedd, STATIC_CAST(const xed_uint8_t*,insn_buf), MAX_INSN_BYTES);
  xed_bool_t okay = (xed_error == XED_ERROR_NONE);
  if (!okay) return;

  // Increase counters
  tstats.insn_counter_decoded++;

  int i;

  /* Clear out Entry header */
  memset(eh, 0, sizeof(EntryHeader));

  /* Copy the address and instruction size */
  eh->address = address;
  eh->inst_size = xed_decoded_inst_get_length(&xedd);
  if (eh->inst_size > MAX_INSN_BYTES) eh->inst_size = MAX_INSN_BYTES;

  /* Copy instruction rawbytes */
  memcpy(eh->rawbytes, insn_buf, eh->inst_size);

  /* Get the number of XED operands */
  const xed_inst_t* xi = xed_decoded_inst_inst(&xedd);
  int xed_ops = xed_inst_noperands(xi);
  int op_idx = -1;

  /* Get the category of the instruction */
  xed_category_enum_t category = xed_decoded_inst_get_category(&xedd);

  /* Iterate over the XED operands */
  for(i = 0; i < xed_ops; i++) {
  	if(op_idx >= MAX_NUM_OPERANDS)
  	  break;
    //assert(op_idx < MAX_NUM_OPERANDS);

    /* Get operand */
    const xed_operand_t* op = xed_inst_operand(xi,i);
    xed_operand_enum_t op_name = xed_operand_name(op);

    switch(op_name) {
      /* Register */
      case XED_OPERAND_REG0:
      case XED_OPERAND_REG1:
      case XED_OPERAND_REG2:
      case XED_OPERAND_REG3:
      case XED_OPERAND_REG4:
      case XED_OPERAND_REG5:
      case XED_OPERAND_REG6:
      case XED_OPERAND_REG7:
      case XED_OPERAND_REG8:
      case XED_OPERAND_REG9:
      case XED_OPERAND_REG10:
      case XED_OPERAND_REG11:
      case XED_OPERAND_REG12:
      case XED_OPERAND_REG13:
      case XED_OPERAND_REG14:
      case XED_OPERAND_REG15: {
        xed_reg_enum_t reg_id = xed_decoded_inst_get_reg(&xedd, op_name);
        int regnum = xed2chris_regmapping[reg_id][1];

        // Special handling for Push
        if (reg_id == XED_REG_STACKPUSH) is_stackpush = 1;
        else if (reg_id == XED_REG_STACKPOP) is_stackpop = 1;

        if (-1 == regnum)
          break;
        else {
	  op_idx++;
          eh->num_operands++;
          eh->operand[op_idx].type = TRegister;
          eh->operand[op_idx].addr = xed2chris_regmapping[reg_id][0];
	  eh->operand[op_idx].length = 
	    (uint8_t) xed_decoded_inst_operand_length (&xedd, i);
	  eh->operand[op_idx].access = (uint8_t) xed_operand_rw (op);
          eh->operand[op_idx].value = TEMU_cpu_regs[regnum];
          switch (eh->operand[op_idx].addr) {
            case ax_reg:
            case bx_reg:
            case cx_reg:
            case dx_reg:
            case bp_reg:
            case sp_reg:
            case si_reg:
            case di_reg:
              eh->operand[op_idx].value &= 0xFFFF;
              break;
            case al_reg:
            case bl_reg:
            case cl_reg:
            case dl_reg:
              eh->operand[op_idx].value &= 0xFF;
              break;
            case ah_reg:
            case bh_reg:
            case ch_reg:
            case dh_reg:
              eh->operand[op_idx].value = (eh->operand[i].value & 0xFF00) >> 8;
              break;
            default:
              break;
          }
        }
        if (ignore_taint == 0) set_operand_data(&(eh->operand[op_idx]));
        break;
      }

      /* Immediate */
      case XED_OPERAND_IMM0: {
        op_idx++;
        eh->num_operands++;
        eh->operand[op_idx].type = TImmediate;
	eh->operand[op_idx].length = 
	  (uint8_t) xed_decoded_inst_operand_length (&xedd, i);
	eh->operand[op_idx].access = (uint8_t) xed_operand_rw (op);
        //xed_uint_t width = xed_decoded_inst_get_immediate_width(&xedd);
        if (xed_decoded_inst_get_immediate_is_signed(&xedd)) {
          xed_int32_t signed_imm_val = 
	    xed_decoded_inst_get_signed_immediate(&xedd);
          eh->operand[op_idx].value = (uint32_t) signed_imm_val;
        }
        else {
          xed_uint64_t unsigned_imm_val =
            xed_decoded_inst_get_unsigned_immediate(&xedd);
          eh->operand[op_idx].value = (uint32_t) unsigned_imm_val;
        }
        break;
      break;
      }
      /* Special immediate only used in ENTER instruction */
      case XED_OPERAND_IMM1: {
        op_idx++;
        eh->num_operands++;
        eh->operand[op_idx].type = TImmediate;
	eh->operand[op_idx].length = 
	  (uint8_t) xed_decoded_inst_operand_length (&xedd, i);
	eh->operand[op_idx].access = (uint8_t) xed_operand_rw (op);
        xed_uint8_t unsigned_imm_val = 
	  xed_decoded_inst_get_second_immediate(&xedd);
        eh->operand[op_idx].value = (uint32_t) unsigned_imm_val;
        break;
      }


      /* Memory */
      case XED_OPERAND_AGEN:
      case XED_OPERAND_MEM0:
      case XED_OPERAND_MEM1: {
	unsigned long base = 0;
	unsigned long index = 0;
	unsigned long scale = 1;
	unsigned long segbase = 0;
	unsigned short segsel = 0;
	unsigned long displacement = 0;
	unsigned int j;
	size_t remaining = 0;

	/* Set memory index */
        int mem_idx = 0;
        if (op_name == XED_OPERAND_MEM1) mem_idx = 1;

	unsigned int memlen = xed_decoded_inst_operand_length (&xedd, i);

	for (j = 0; j < memlen; j+=4) {
	  /* Initialization */
	  base = 0;
	  index = 0;
	  scale = 1;
	  segbase = 0;
	  segsel = 0;
	  displacement = 0;
	  remaining = memlen - j;

	  op_idx++;
	  if(op_idx >= MAX_NUM_OPERANDS)
	    break;
	  //assert(op_idx < MAX_NUM_OPERANDS);
	  eh->num_operands++;
	  eh->operand[op_idx].type = TMemLoc;
	  eh->operand[op_idx].access = (uint8_t) xed_operand_rw (op);
	  eh->operand[op_idx].length = 
	    remaining > 4 ? 4 : (uint8_t) remaining;

	  // Get Segment register
	  xed_reg_enum_t seg_regid = 
	    xed_decoded_inst_get_seg_reg(&xedd,mem_idx);

	  if (seg_regid != XED_REG_INVALID) {
	    const xed_operand_values_t *xopv = 
	      xed_decoded_inst_operands_const(&xedd);
	    xed_bool_t default_segment = 
	      xed_operand_values_using_default_segment (xopv,mem_idx);

	    if (!default_segment) {
	      eh->num_operands++;
	      int segmentreg = xed2chris_regmapping[seg_regid][0] - 100;

	      segbase = TEMU_cpu_segs[segmentreg].base;
	      segsel = TEMU_cpu_segs[segmentreg].selector;

	      eh->memregs[op_idx][0].type = TRegister;
	      eh->memregs[op_idx][0].length = 2;
	      eh->memregs[op_idx][0].addr = xed2chris_regmapping[seg_regid][0];
	      eh->memregs[op_idx][0].access = (uint8_t) XED_OPERAND_ACTION_R;
	      eh->memregs[op_idx][0].value = segsel;
	      eh->memregs[op_idx][0].usage = memsegment;
	      if (ignore_taint == 0) 
		set_operand_data(&(eh->memregs[op_idx][0]));

	      int dt;
	      if (segsel & 0x4)       // ldt
		dt = TEMU_cpu_ldt->base;
	      else                    //gdt
		dt = TEMU_cpu_gdt->base;
	      segsel = segsel >> 3;

	      unsigned long segent = dt + 8 * segsel;
	      unsigned char segdes[8];
	      TEMU_read_mem(segent, 8, segdes);

#if 0
	      // debugging code to double check segbase value
	      unsigned long segbasenew = segdes[2] + segdes[3] * 256 +
	      segdes[4] * 256 * 256 + segdes[7] * 256 * 256 * 256;
	      if (segbase != segbasenew) {
		term_printf("segbase unexpected: 0x%08lX v.s 0x%08lX\n",
			segbase, segbasenew);
	      }
#endif
	      /* Segment descriptor is stored as a memory operand */
	      eh->num_operands+=2;
	      eh->memregs[op_idx][3].type = TMemLoc;
	      eh->memregs[op_idx][3].length = 4;
	      eh->memregs[op_idx][3].addr = segent;
	      eh->memregs[op_idx][3].access = 
		(uint8_t) XED_OPERAND_ACTION_INVALID;
	      eh->memregs[op_idx][3].value = *(uint32_t *) segdes;
	      eh->memregs[op_idx][3].tainted = 0;
	      eh->memregs[op_idx][3].usage = memsegent0;

	      eh->memregs[op_idx][4].type = TMemLoc;
	      eh->memregs[op_idx][4].length = 4;
	      eh->memregs[op_idx][4].addr = segent + 4;
	      eh->memregs[op_idx][4].access = 
		(uint8_t) XED_OPERAND_ACTION_INVALID;
	      eh->memregs[op_idx][4].value = *(uint32_t *) (segdes + 4);
	      eh->memregs[op_idx][4].tainted = 0;
	      eh->memregs[op_idx][4].usage = memsegent1;
	    }
	  }

	  // Get Base register
	  xed_reg_enum_t base_regid = 
	    xed_decoded_inst_get_base_reg(&xedd,mem_idx);
	  if (base_regid != XED_REG_INVALID) {
	    eh->num_operands++;
	    int basereg = xed2chris_regmapping[base_regid][1];
	    base = TEMU_cpu_regs[basereg];
	    eh->memregs[op_idx][1].type = TRegister;
	    eh->memregs[op_idx][1].addr = xed2chris_regmapping[base_regid][0];
	    eh->memregs[op_idx][1].length = 4;
	    eh->memregs[op_idx][1].access = (uint8_t) XED_OPERAND_ACTION_R;
	    eh->memregs[op_idx][1].value = base;
	    eh->memregs[op_idx][1].usage = membase;
	    if (ignore_taint == 0) set_operand_data(&(eh->memregs[op_idx][1]));
	  }
	  // Get Index register and Scale
	  xed_reg_enum_t index_regid = 
	    xed_decoded_inst_get_index_reg(&xedd,mem_idx);
	  if (mem_idx == 0 && index_regid != XED_REG_INVALID) {
	    eh->num_operands++;
	    int indexreg = xed2chris_regmapping[index_regid][1];
	    index = TEMU_cpu_regs[indexreg];
	    eh->memregs[op_idx][2].type = TRegister;
	    eh->memregs[op_idx][2].addr = xed2chris_regmapping[index_regid][0];
	    eh->memregs[op_idx][2].length = 4;
	    eh->memregs[op_idx][2].access = (uint8_t) XED_OPERAND_ACTION_R;
	    eh->memregs[op_idx][2].value = index;
	    eh->memregs[op_idx][2].usage = memindex;
	    if (ignore_taint == 0) set_operand_data(&(eh->memregs[op_idx][2]));

	    // Get Scale (AKA width) (only have a scale if the index exists)
	    if (xed_decoded_inst_get_scale(&xedd,i) != 0) {
	      scale = (unsigned long) xed_decoded_inst_get_scale(&xedd,mem_idx);
	    }
	  }
	  // Get displacement (AKA offset)
	  displacement = 
	    (unsigned long) xed_decoded_inst_get_memory_displacement
	    (&xedd,mem_idx);

	  // Fix displacement for:
	  //   1) Any instruction that pushes into the stack, since ESP is 
	  //        decremented before memory operand is written using ESP. 
	  //        Affects: ENTER,PUSH,PUSHA,PUSHF,CALL
	  if (is_stackpush) {
            stackpushpop_acc += eh->operand[op_idx].length;
            displacement = displacement - stackpushpop_acc -j;
	  }
	  //   2) Pop instructions where the 
	  //      destination operand is a memory location that uses ESP 
	  //        as base or index register. 
	  //      The pop operations increments ESP and the written memory 
	  //        location address needs to be adjusted.
	  //      Affects: pop (%esp)
	  else if ((category == XED_CATEGORY_POP) && (!is_stackpop)) {
	    if ((eh->memregs[op_idx][1].addr == esp_reg) || 
		(eh->memregs[op_idx][2].addr == esp_reg)) 
	    {
	      displacement = displacement + eh->operand[op_idx].length;
	    }
	  }

	  // Calculate memory address accessed
	  eh->operand[op_idx].addr =
	    j + segbase + base + index * scale + displacement;

	  // Special handling for LEA instructions
	  if (op_name == XED_OPERAND_AGEN) {
	    eh->operand[op_idx].type = TMemAddress;
	    eh->operand[op_idx].length = 4;
	    has_page_fault = 0; // LEA won't trigger page fault
	  }
	  else {
	    has_page_fault = TEMU_read_mem(eh->operand[op_idx].addr,
	      (int)(eh->operand[op_idx].length), 
	      (uint8_t *)&(eh->operand[op_idx].value));
	  }

	  // Check if instruction accesses user memory
	  // kernel_mem_start defined in shared/read_linux.c
	  if ((eh->operand[op_idx].addr < kernel_mem_start) &&
	    (op_name != XED_OPERAND_AGEN))
	  {
	    access_user_mem = 1;
	  }
	  if (ignore_taint == 0) set_operand_data(&(eh->operand[op_idx]));
	}
	break;
      }

      /* Jumps */
      case XED_OPERAND_PTR:  // pointer (always in conjunction with a IMM0)
      case XED_OPERAND_RELBR: { // branch displacements
          xed_uint_t disp = xed_decoded_inst_get_branch_displacement(&xedd);
	  /* Displacement is from instruction end */
	  /* Adjust displacement with instruction size */
	  disp = disp + eh->inst_size;
	  op_idx++;
	  eh->num_operands++;
	  eh->operand[op_idx].type = TJump;
	  eh->operand[op_idx].length = 4;
	  eh->operand[op_idx].access = (uint8_t) xed_operand_rw (op);
	  eh->operand[op_idx].value = disp;
          break;
      }

      /* Floating point registers */
      case XED_REG_X87CONTROL:
      case XED_REG_X87STATUS:
      case XED_REG_X87TOP:
      case XED_REG_X87TAG:
      case XED_REG_X87PUSH:
      case XED_REG_X87POP:
      case XED_REG_X87POP2:
          op_idx++;
          eh->num_operands++;
          eh->operand[op_idx].type = TFloatRegister;
          eh->operand[op_idx].length = 4;
	  eh->operand[op_idx].access = (uint8_t) xed_operand_rw (op);
      default:
        break;
     }
  }
Esempio n. 26
0
int main(int argc, char** argv) {
    xed_ild_t ild;
    xed_uint_t uargc = (xed_uint_t)argc;
    xed_uint_t length = 0;
    xed_uint_t dlen = 0;    
    xed_uint_t i,j,input_nibbles=0;
    xed_uint8_t itext[XED_MAX_INSTRUCTION_BYTES];
    char src[MAX_INPUT_NIBBLES+1];
    xed_state_t dstate;
    xed_decoded_inst_t xedd;
    xed_uint_t first_argv;
    xed_uint_t bytes;
    xed_error_enum_t xed_error;
    xed_chip_enum_t chip = XED_CHIP_INVALID;
    int already_set_mode = 0;
    
    // initialize the XED tables -- one time.
    xed_tables_init();

    xed_state_zero(&dstate);

    first_argv = 1;
    dstate.mmode=XED_MACHINE_MODE_LEGACY_32;
    dstate.stack_addr_width=XED_ADDRESS_WIDTH_32b;

    for(i=1;i< uargc;i++) {
        if (strcmp(argv[i], "-64") == 0) {
            assert(already_set_mode == 0);
            already_set_mode = 1;
            dstate.mmode=XED_MACHINE_MODE_LONG_64;
            first_argv++;
        }
        else if (strcmp(argv[i], "-16") == 0) {
            assert(already_set_mode == 0);
            already_set_mode = 1;
            dstate.mmode=XED_MACHINE_MODE_LEGACY_16;
            dstate.stack_addr_width=XED_ADDRESS_WIDTH_16b;
            first_argv++;
        }
        else if (strcmp(argv[i], "-s16") == 0) {
            already_set_mode = 1;
            dstate.stack_addr_width=XED_ADDRESS_WIDTH_16b;
            first_argv++;
        }
        else if (strcmp(argv[i], "-chip") == 0) {
            assert(i+1 < uargc);
            chip = str2xed_chip_enum_t(argv[i+1]);
            printf("Setting chip to %s\n", xed_chip_enum_t2str(chip));
            assert(chip != XED_CHIP_INVALID);
            first_argv+=2;
        }

    }

    assert(first_argv < uargc);

    xed_decoded_inst_zero_set_mode(&xedd, &dstate);

    if (first_argv >= uargc) {
      printf("Need some hex instruction nibbles");
      exit(1);
    }
    
    for(i=first_argv;i<uargc;i++) { 
      for(j=0;argv[i][j];j++) {
        assert(input_nibbles < MAX_INPUT_NIBBLES);
        src[input_nibbles] = argv[i][j];
        input_nibbles++;
      }
    }
    src[input_nibbles] = 0;
    if (input_nibbles & 1) {
      printf("Need an even number of nibbles");
      exit(1);
    }

    bytes = xed_convert_ascii_to_hex(src, itext, XED_MAX_INSTRUCTION_BYTES);
                            
    printf("Attempting to decode: ");
    for(i=0;i<bytes;i++) {
      printf("%02x", itext[i]);
    }
    printf("\n");

    xed_ild_init(&ild, dstate.mmode, chip, itext, XED_MAX_INSTRUCTION_BYTES);
    length = xed_instruction_length_decode(&ild);
    print_ild(&ild);
    printf("ILD length = %d\n",length);


    xed_decoded_inst_set_input_chip(&xedd, chip);
    xed_error = xed_decode(&xedd, 
                           XED_REINTERPRET_CAST(const xed_uint8_t*,itext), 
                           bytes);

    switch(xed_error)    {
      case XED_ERROR_NONE:
        break;
      case XED_ERROR_BUFFER_TOO_SHORT:
        printf("Not enough bytes provided\n");
        exit(1);
      case XED_ERROR_INVALID_FOR_CHIP:
        printf("The instruction was not valid for the specified chip.\n");
        exit(1);
      case XED_ERROR_GENERAL_ERROR:
        printf("Could not decode given input.\n");
        exit(1);
      default:
        printf("Unhandled error code %s\n",xed_error_enum_t2str(xed_error));
        exit(1);
    }
        
    dlen =  xed_decoded_inst_get_length(&xedd);
    printf ("Traditional length =  %d\n", dlen);
    if (dlen != length) {
      printf ("Length error\n");
      exit(1);
    }
    printf ("Length matched\n");
    return 0;
}
void xed_disas_test(xed_disas_info_t* di)
{

    static int first = 1;
#if !defined(XED_ILD_ONLY) && !defined(XED2_PERF_MEASURE)
    xed_uint64_t errors = 0;
#endif
    unsigned int m;
    unsigned char* z;
    unsigned char* zlimit;
    unsigned int length;

    int skipping;
    int last_all_zeros;
    unsigned int i;

    int okay;

    xed_decoded_inst_t xedd;


    xed_uint64_t runtime_instruction_address;

    xed_dot_graph_supp_t* gs = 0;
    xed_bool_t graph_empty = 1;

    //#define     XED_USE_DECODE_CACHE
#if defined(XED_USE_DECODE_CACHE)
    xed_decode_cache_t cache;
    xed_uint32_t n_cache_entries = 16 * 1024;
    xed_decode_cache_entry_t* cache_entries =
        (xed_decode_cache_entry_t*) malloc(n_cache_entries *
                                           sizeof(xed_decode_cache_entry_t));
    xed_decode_cache_initialize(&cache, cache_entries, n_cache_entries);
#endif


    if(di->dot_graph_output)
    {
        xed_syntax_enum_t syntax = XED_SYNTAX_INTEL;
        gs = xed_dot_graph_supp_create(syntax);
    }

    if(first)
    {
        xed_decode_stats_zero(&xed_stats, di);
        first = 0;
    }

    m = di->ninst; // number of things to decode
    z = di->a;

    if(di->runtime_vaddr_disas_start)
        if(di->runtime_vaddr_disas_start > di->runtime_vaddr)
            z = (di->runtime_vaddr_disas_start - di->runtime_vaddr) + di->a;

    zlimit = 0;
    if(di->runtime_vaddr_disas_end)
    {
        if(di->runtime_vaddr_disas_end > di->runtime_vaddr)
            zlimit = (di->runtime_vaddr_disas_end - di->runtime_vaddr) + di->a;
        else  /* end address is before start of this region -- skip it */
            goto finish;
    }


    if(z >= di->q)    /* start pointer  is after end of section */
        goto finish;

    // for skipping long strings of zeros
    skipping = 0;
    last_all_zeros = 0;
    for(i = 0; i < m; i++)
    {
        int ilim, elim;
        if(zlimit && z >= zlimit)
        {
            if(di->xml_format == 0)
                printf("# end of range.\n");
            break;
        }
        if(z >= di->q)
        {
            if(di->xml_format == 0)
#if !defined(XED_ILD_ONLY)
                printf("# end of text section.\n");
#endif
            break;
        }

        /* if we get near the end of the section, clip the itext length */
        ilim = 15;
        elim = di->q - z;
        if(elim < ilim)
            ilim = elim;

        if(CLIENT_VERBOSE3)
        {
            printf("\n==============================================\n");
            printf("Decoding instruction " XED_FMT_U "\n", i);
            printf("==============================================\n");
        }

        // if we get two full things of 0's in a row, start skipping.
        if(all_zeros((xed_uint8_t*) z, ilim))
        {
            if(skipping)
            {
                z = z + ilim;
                continue;
            }
            else if(last_all_zeros)
            {
#if !defined(XED_ILD_ONLY) && !defined(XED2_PERF_MEASURE)
                printf("...\n");
#endif
                z = z + ilim;
                skipping = 1;
                continue;
            }
            else
                last_all_zeros = 1;
        }
        else
        {
            skipping = 0;
            last_all_zeros = 0;
        }

        runtime_instruction_address = ((xed_uint64_t)(z - di->a)) +
                                      di->runtime_vaddr;

        if(CLIENT_VERBOSE3)
        {
            char tbuf[XED_HEX_BUFLEN];
            printf("Runtime Address " XED_FMT_LX , runtime_instruction_address);
            xed_print_hex_line(tbuf, (xed_uint8_t*) z, ilim, XED_HEX_BUFLEN);
            printf(" [%s]\n", tbuf);
        }
        okay = 0;
        length = 0;

        xed_decoded_inst_zero_set_mode(&xedd, di->dstate);
        if(di->late_init)
            (*di->late_init)(&xedd);

        if(di->decode_only)
        {
            xed_uint64_t t1;
            xed_uint64_t t2;
            xed_error_enum_t xed_error = XED_ERROR_NONE;

            t1 = xed_get_time();


#if defined(XED_USE_DECODE_CACHE)
            xed_error = xed_decode_cache(&xedd,
                                         XED_REINTERPRET_CAST(const xed_uint8_t*, z),
                                         ilim,
                                         &cache);
#else
            xed_error = decode_internal(
                            &xedd,
                            XED_REINTERPRET_CAST(const xed_uint8_t*, z),
                            ilim);
#endif
            t2 = xed_get_time();

            okay = (xed_error == XED_ERROR_NONE);
#if defined(PTI_XED_TEST)
            if(okay)
                pti_xed_test(&xedd,
                             XED_REINTERPRET_CAST(const xed_uint8_t*, z),
                             ilim,
                             runtime_instruction_address);
#endif

            xed_decode_stats_reset(&xed_stats, t1, t2);
            length = xed_decoded_inst_get_length(&xedd);

            if(okay && length == 0)
            {
                printf("Zero length on decoded instruction!\n");
                xed_decode_error(runtime_instruction_address,
                                 z - di->a, z, xed_error);
                xedex_derror("Dieing");
            }

            if(di->resync && di->symfn)
            {
                xed_bool_t resync = 0;
                unsigned int x;
                for(x = 1; x < length; x++)
                {

                    char* name = (*di->symfn)(runtime_instruction_address + x,
                                              di->caller_symbol_data);
                    if(name)
                    {
                        char buf[XED_HEX_BUFLEN];
                        /* bad news. We found a symbol in the middle of an
                         * instruction. That probably means decoding is
                         * messed up.  This usually happens because of
                         * data-in the code/text section.  We should reject
                         * the current instruction and pick up at the
                         * symbol address. */
                        printf("ERROR: found symbol in the middle of"
                               " an instruction. Resynchronizing...\n");
                        printf("ERROR: Rejecting: [");
                        xed_print_hex_line(buf, z, x, XED_HEX_BUFLEN);
                        printf("%s]\n", buf);

                        z += x;
                        resync = 1;
                        break;
                    }
                }
                if(resync)
                    continue;
            }

            xed_stats.total_ilen += length;

            //we don't want to print out disassembly with ILD perf
#if !defined(XED_ILD_ONLY) && !defined(XED2_PERF_MEASURE)

            if(okay)
            {
                if(CLIENT_VERBOSE1)
                {
                    char tbuf[XED_TMP_BUF_LEN];
                    xed_decoded_inst_dump(&xedd, tbuf, XED_TMP_BUF_LEN);
                    printf("%s\n", tbuf);
                }
                if(CLIENT_VERBOSE)
                {
                    char buffer[XED_TMP_BUF_LEN];
                    unsigned int dec_len;
                    unsigned int sp;
                    if(di->symfn)
                    {
                        char* name = (*di->symfn)(runtime_instruction_address,
                                                  di->caller_symbol_data);
                        if(name)
                        {
                            if(di->xml_format)
                                printf("\n<SYM>%s</SYM>\n", name);
                            else
                                printf("\nSYM %s:\n", name);
                        }
                    }
                    if(di->xml_format)
                    {
                        printf("<ASMLINE>\n");
                        printf("  <ADDR>" XED_FMT_LX "</ADDR>\n",
                               runtime_instruction_address);
                        printf("  <CATEGORY>%s</CATEGORY>\n",
                               xed_category_enum_t2str(
                                   xed_decoded_inst_get_category(&xedd)));
                        printf("  <EXTENSION>%s</EXTENSION>\n",
                               xed_extension_enum_t2str(
                                   xed_decoded_inst_get_extension(&xedd)));
                        printf("  <ITEXT>");
                        dec_len = xed_decoded_inst_get_length(&xedd);
                        xed_print_hex_line(buffer, (xed_uint8_t*) z,
                                           dec_len, XED_TMP_BUF_LEN);
                        printf("%s</ITEXT>\n", buffer);
                        buffer[0] = 0;
                        disassemble(buffer, XED_TMP_BUF_LEN,
                                    &xedd, runtime_instruction_address,
                                    di->caller_symbol_data);
                        printf("  %s\n", buffer);
                        printf("</ASMLINE>\n");
                    }
                    else
                    {
                        printf("XDIS " XED_FMT_LX ": ",
                               runtime_instruction_address);
#if 0  /* test code for the new API */
                        if(xed_decoded_inst_masked_vector_operation(&xedd))
                            printf("MSK ");
                        else
                            printf("    ");
#endif

                        if(di->ast)
                        {
                            printf("%-6s ",
                                   xed_ast_input_enum_t2str(
                                       classify_avx_sse(&xedd)));
                        }
                        else
                        {
                            printf("%-9s ",
                                   xed_category_enum_t2str(
                                       xed_decoded_inst_get_category(&xedd)));
                            printf("%-6s ",
                                   xed_extension_enum_t2str(
                                       xed_decoded_inst_get_extension(&xedd)));
                        }


                        dec_len = xed_decoded_inst_get_length(&xedd);
                        xed_print_hex_line(buffer, (xed_uint8_t*) z,
                                           dec_len, XED_HEX_BUFLEN);
                        printf("%s", buffer);
                        // pad out the instruction bytes
                        for(sp = dec_len; sp < 12; sp++)
                            printf("  ");
                        printf(" ");
                        buffer[0] = 0;
                        disassemble(buffer, XED_TMP_BUF_LEN,
                                    &xedd,
                                    runtime_instruction_address,
                                    di->caller_symbol_data);
                        printf("%s", buffer);
                        if(gs)
                        {
                            graph_empty = 0;
                            xed_dot_graph_add_instruction(
                                gs,
                                &xedd,
                                runtime_instruction_address,
                                di->caller_symbol_data);
                        }

                        if(di->line_number_info_fn)
                            (*di->line_number_info_fn)(runtime_instruction_address);

                        printf("\n");
                    }
                }
            }
            else
            {
                errors++;
                xed_decode_error(runtime_instruction_address, z - di->a, z,
                                 xed_error);
                // just give a length of 1B to see if we can restart decode...
                length = 1;
            }
        }
#if defined(XED_ENCODER)
        else
        {
Esempio n. 28
0
TCA OfflineX86Code::collectJmpTargets(FILE  *file,
                                      TCA    fileStartAddr,
                                      TCA    codeStartAddr,
                                      uint64_t codeLen,
                                      vector<TCA> *jmpTargets) {

  xed_uint8_t* code = (xed_uint8_t*) alloca(codeLen);
  xed_uint8_t* frontier;
  TCA          ip;

  if (codeLen == 0) return 0;

  if (fseek(file, codeStartAddr - fileStartAddr, SEEK_SET)) {
    error("collectJmpTargets error: seeking file");
  }

  size_t readLen = fread(code, codeLen, 1, file);
  if (readLen != 1) error("collectJmpTargets error: reading file");

  xed_decoded_inst_t xedd;
  xed_iclass_enum_t iclass = XED_ICLASS_NOP;

  // Decode each instruction
  for (frontier = code, ip = codeStartAddr; frontier < code + codeLen; ) {

    xed_decoded_inst_zero_set_mode(&xedd, &xed_state);
    xed_decoded_inst_set_input_chip(&xedd, XED_CHIP_INVALID);
    xed_error_enum_t xed_error = xed_decode(&xedd, frontier, 15);

    if (xed_error != XED_ERROR_NONE) break;

    uint32_t instrLen = xed_decoded_inst_get_length(&xedd);

    iclass = xed_decoded_inst_get_iclass(&xedd);

    if (iclass >= XED_ICLASS_JB && iclass <= XED_ICLASS_JZ) {
      const xed_inst_t    *xi       = xed_decoded_inst_inst(&xedd);
      always_assert(xed_inst_noperands(xi) >= 1);
      const xed_operand_t *opnd     = xed_inst_operand(xi, 0);
      xed_operand_enum_t   opndName = xed_operand_name(opnd);

      if (opndName == XED_OPERAND_RELBR) {
        always_assert(xed_decoded_inst_get_branch_displacement_width(&xedd));
        xed_int32_t disp = xed_decoded_inst_get_branch_displacement(&xedd);
        TCA         addr = ip + instrLen + disp;
        jmpTargets->push_back(addr);
      }
    }

    frontier += instrLen;
    ip       += instrLen;
  }

  // If the code sequence falls thru, then add the next instruction as a
  // possible target
  bool fallsThru = (iclass != XED_ICLASS_JMP      &&
                    iclass != XED_ICLASS_JMP_FAR  &&
                    iclass != XED_ICLASS_RET_NEAR &&
                    iclass != XED_ICLASS_RET_FAR);
  if (fallsThru) {
    jmpTargets->push_back(ip);
    return ip;
  }
  return 0;
}