Esempio n. 1
0
main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program ZLINSOLX1.
 *
 * This example illustrates how to use ZGSSVX to solve systems with the same
 * A but different right-hand side.
 * In this case, we factorize A only once in the first call to DGSSVX,
 * and reuse the following data structures in the subsequent call to ZGSSVX:
 *     perm_c, perm_r, R, C, L, U.
 * 
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, L, U;
    SuperMatrix    B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    doublecomplex         *a;
    int            *asub, *xa;
    int            *perm_c; /* column permutation vector */
    int            *perm_r; /* row permutations from partial pivoting */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, m, n, nnz;
    doublecomplex         *rhsb, *rhsx, *xact;
    double         *R, *C;
    double         *ferr, *berr;
    double         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default values for options argument:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
    */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("ZLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* ONLY PERFORM THE LU DECOMPOSITION */
    B.ncol = 0;  /* Indicate not to solve the system */
    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("LU factorization: zgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    /* ------------------------------------------------------------
       NOW WE SOLVE THE LINEAR SYSTEM USING THE FACTORED FORM OF A.
       ------------------------------------------------------------*/
    options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */
    B.ncol = nrhs;  /* Set the number of right-hand side */

    /* Initialize the statistics variables. */
    StatInit(&stat);

    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("Triangular solve: zgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) X.Store)->nzval; 

	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }


#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Esempio n. 2
0
int main(int argc, char *argv[])
{
    void zmatvec_mult(doublecomplex alpha, doublecomplex x[], doublecomplex beta, doublecomplex y[]);
    void zpsolve(int n, doublecomplex x[], doublecomplex y[]);
    extern int zfgmr( int n,
	void (*matvec_mult)(doublecomplex, doublecomplex [], doublecomplex, doublecomplex []),
	void (*psolve)(int n, doublecomplex [], doublecomplex[]),
	doublecomplex *rhs, doublecomplex *sol, double tol, int restrt, int *itmax,
	FILE *fits);
    extern int zfill_diag(int n, NCformat *Astore);

    char     equed[1] = {'B'};
    yes_no_t equil;
    trans_t  trans;
    SuperMatrix A, L, U;
    SuperMatrix B, X;
    NCformat *Astore;
    NCformat *Ustore;
    SCformat *Lstore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *etree;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    int      nrhs, ldx, lwork, info, m, n, nnz;
    doublecomplex   *rhsb, *rhsx, *xact;
    doublecomplex   *work = NULL;
    double   *R, *C;
    double   u, rpg, rcond;
    doublecomplex zero = {0.0, 0.0};
    doublecomplex one = {1.0, 0.0};
    doublecomplex none = {-1.0, 0.0};
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;

    int restrt, iter, maxit, i;
    double resid;
    doublecomplex *x, *b;

#ifdef DEBUG
    extern int num_drop_L, num_drop_U;
#endif

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
	options.Equil = YES;
	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 0.1; //different from complete LU
	options.Trans = NOTRANS;
	options.IterRefine = NOREFINE;
	options.SymmetricMode = NO;
	options.PivotGrowth = NO;
	options.ConditionNumber = NO;
	options.PrintStat = YES;
	options.RowPerm = LargeDiag;
	options.ILU_DropTol = 1e-4;
	options.ILU_FillTol = 1e-2;
	options.ILU_FillFactor = 10.0;
	options.ILU_DropRule = DROP_BASIC | DROP_AREA;
	options.ILU_Norm = INF_NORM;
	options.ILU_MILU = SILU;
     */
    ilu_set_default_options(&options);

    /* Modify the defaults. */
    options.PivotGrowth = YES;	  /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) ABORT("Malloc fails for work[].");
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
	printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
		"-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
		"-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
		"-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
		argv[0]);
	return 0;
    }
    else
    {
	switch (argv[1][1])
	{
	    case 'H':
	    case 'h':
		printf("Input a Harwell-Boeing format matrix:\n");
		zreadhb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'R':
	    case 'r':
		printf("Input a Rutherford-Boeing format matrix:\n");
		zreadrb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'T':
	    case 't':
		printf("Input a triplet format matrix:\n");
		zreadtriple(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    default:
		printf("Unrecognized format.\n");
		return 0;
	}
    }

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa,
                                SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    zfill_diag(n, Astore);
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    fflush(stdout);

    /* Generate the right-hand side */
    if ( !(rhsb = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) )
	ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
	ABORT("SUPERLU_MALLOC fails for C[].");

    info = 0;
#ifdef DEBUG
    num_drop_L = 0;
    num_drop_U = 0;
#endif

    /* Initialize the statistics variables. */
    StatInit(&stat);

    /* Compute the incomplete factorization and compute the condition number
       and pivot growth using dgsisx. */
    B.ncol = 0;  /* not to perform triangular solution */
    zgsisx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work,
	   lwork, &B, &X, &rpg, &rcond, &mem_usage, &stat, &info);

    /* Set RHS for GMRES. */
    if (!(b = doublecomplexMalloc(m))) ABORT("Malloc fails for b[].");
    if (*equed == 'R' || *equed == 'B') {
	for (i = 0; i < n; ++i) zd_mult(&b[i], &rhsb[i], R[i]);
    } else {
	for (i = 0; i < m; i++) b[i] = rhsb[i];
    }

    printf("zgsisx(): info %d, equed %c\n", info, equed[0]);
    if (info > 0 || rcond < 1e-8 || rpg > 1e8)
	printf("WARNING: This preconditioner might be unstable.\n");

    if ( info == 0 || info == n+1 ) {
	if ( options.PivotGrowth == YES )
	    printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);
    } else if ( info > 0 && lwork == -1 ) {
	printf("** Estimated memory: %d bytes\n", info - n);
    }

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;
    printf("n(A) = %d, nnz(A) = %d\n", n, Astore->nnz);
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    printf("Fill ratio: nnz(F)/nnz(A) = %.3f\n",
	    ((double)(Lstore->nnz) + (double)(Ustore->nnz) - (double)n)
	    / (double)Astore->nnz);
    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
    fflush(stdout);

    /* Set the global variables. */
    GLOBAL_A = &A;
    GLOBAL_L = &L;
    GLOBAL_U = &U;
    GLOBAL_STAT = &stat;
    GLOBAL_PERM_C = perm_c;
    GLOBAL_PERM_R = perm_r;
    GLOBAL_OPTIONS = &options;
    GLOBAL_R = R;
    GLOBAL_C = C;
    GLOBAL_MEM_USAGE = &mem_usage;

    /* Set the options to do solve-only. */
    options.Fact = FACTORED;
    options.PivotGrowth = NO;
    options.ConditionNumber = NO;

    /* Set the variables used by GMRES. */
    restrt = SUPERLU_MIN(n / 3 + 1, 50);
    maxit = 1000;
    iter = maxit;
    resid = 1e-8;
    if (!(x = doublecomplexMalloc(n))) ABORT("Malloc fails for x[].");

    if (info <= n + 1)
    {
	int i_1 = 1;
	double maxferr = 0.0, nrmA, nrmB, res, t;
        doublecomplex temp;
	extern double dznrm2_(int *, doublecomplex [], int *);
	extern void zaxpy_(int *, doublecomplex *, doublecomplex [], int *, doublecomplex [], int *);

	/* Initial guess */
	for (i = 0; i < n; i++) x[i] = zero;

	t = SuperLU_timer_();

	/* Call GMRES */
	zfgmr(n, zmatvec_mult, zpsolve, b, x, resid, restrt, &iter, stdout);

	t = SuperLU_timer_() - t;

	/* Output the result. */
	nrmA = dznrm2_(&(Astore->nnz), (doublecomplex *)((DNformat *)A.Store)->nzval,
		&i_1);
	nrmB = dznrm2_(&m, b, &i_1);
	sp_zgemv("N", none, &A, x, 1, one, b, 1);
	res = dznrm2_(&m, b, &i_1);
	resid = res / nrmB;
	printf("||A||_F = %.1e, ||B||_2 = %.1e, ||B-A*X||_2 = %.1e, "
		"relres = %.1e\n", nrmA, nrmB, res, resid);

	if (iter >= maxit)
	{
	    if (resid >= 1.0) iter = -180;
	    else if (resid > 1e-8) iter = -111;
	}
	printf("iteration: %d\nresidual: %.1e\nGMRES time: %.2f seconds.\n",
		iter, resid, t);

	/* Scale the solution back if equilibration was performed. */
	if (*equed == 'C' || *equed == 'B') 
	    for (i = 0; i < n; i++) zd_mult(&x[i], &x[i], C[i]);

	for (i = 0; i < m; i++) {
            z_sub(&temp, &x[i], &xact[i]);
            maxferr = SUPERLU_MAX(maxferr, z_abs1(&temp));
        }
	printf("||X-X_true||_oo = %.1e\n", maxferr);
    }
#ifdef DEBUG
    printf("%d entries in L and %d entries in U dropped.\n",
	    num_drop_L, num_drop_U);
#endif
    fflush(stdout);

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
	Destroy_SuperNode_Matrix(&L);
	Destroy_CompCol_Matrix(&U);
    }
    SUPERLU_FREE(b);
    SUPERLU_FREE(x);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif

    return 0;
}
Esempio n. 3
0
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, m, n, nnz;
    doublecomplex   *xact, *rhs;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Now we modify the default options to use the symmetric mode. */
    options.SymmetricMode = YES;
    options.ColPerm = MMD_AT_PLUS_A;
    options.DiagPivotThresh = 0.001;

    /* Read the matrix in Harwell-Boeing format. */
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    nrhs   = 1;
    if ( !(rhs = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(options.Trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    zgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
    
    if ( info == 0 ) {

	/* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) B.Store)->nzval; 

	 /* Compute the infinity norm of the error. */
	zinf_norm_error(nrhs, &B, xact);

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	
	zQuerySpace(&L, &U, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	
    } else {
	printf("zgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    zQuerySpace(&L, &U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
		   mem_usage.expansions);
	}
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Esempio n. 4
0
int main(int argc, char *argv[])
{
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, L, U;
    SuperMatrix    B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    doublecomplex         *a;
    int            *asub, *xa;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, m, n, nnz;
    doublecomplex         *rhsb, *rhsx, *xact;
    double         *R, *C;
    double         *ferr, *berr;
    double         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void  parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;
    
    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
    */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    /* Add more functionalities that the defaults. */
    options.PivotGrowth = YES;    /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */
    options.IterRefine = SLU_DOUBLE;  /* Perform double-precision refinement */
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("ZLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    
    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* Solve the system and compute the condition number
       and error bounds using dgssvx.      */
    
    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("zgssvx(): info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth == YES )
            printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);
	if ( options.IterRefine != NOREFINE ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	     
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *perm_r; /* row permutations from partial pivoting */
    int      *perm_c; /* column permutation vector */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, panel_size, m, n, nnz, permc_spec;
    char     trans[1];
    doublecomplex   *xact, *rhs;
    mem_usage_t   mem_usage;

    nrhs   = 1;
    *trans = 'N';
    
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhs = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");

    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = 0: natural ordering 
     *   permc_spec = 1: minimum degree on structure of A'*A
     *   permc_spec = 2: minimum degree on structure of A'+A
     *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
     */    	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    panel_size = sp_ienv(1);
    
    zgssv(&A, perm_c, perm_r, &L, &U, &B, &info);
    
    if ( info == 0 ) {

	zinf_norm_error(nrhs, &B, xact); /* Inf. norm of the error */

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	
	zQuerySpace(&L, &U, panel_size, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	
    } else {
	printf("zgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    zQuerySpace(&L, &U, panel_size, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
		   mem_usage.expansions);
	}
    }

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
}
Esempio n. 6
0
main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * ZDRIVE is the main test program for the DOUBLE COMPLEX linear
 * equation driver routines ZGSSV and ZGSSVX.
 *
 * The program is invoked by a shell script file -- ztest.csh.
 * The output from the tests are written into a file -- ztest.out.
 *
 * =====================================================================
 */
    doublecomplex         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    doublecomplex  zero = {0.0, 0.0};
    double         *R, *C;
    double         *ferr, *berr;
    double         *rwork;
    doublecomplex          *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    doublecomplex         *xact;
    doublecomplex         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    double         rpg, rcond;
    int            i, j, k1;
    double         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    double         u;
    double         anorm, cndnum;
    doublecomplex         *Afull;
    double         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[4], sym[1], dist[1];

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
                              SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */
    extern int zgst01(int, int, SuperMatrix *, SuperMatrix *,
                      SuperMatrix *, int *, int *, double *);
    extern int zgst02(trans_t, int, int, int, SuperMatrix *, doublecomplex *,
                      int, doublecomplex *, int, double *resid);
    extern int zgst04(int, int, doublecomplex *, int,
                      doublecomplex *, int, double rcond, double *resid);
    extern int zgst07(trans_t, int, int, SuperMatrix *, doublecomplex *, int,
                         doublecomplex *, int, doublecomplex *, int,
                         double *, double *, double *);
    extern int zlatb4_(char *, int *, int *, int *, char *, int *, int *,
                       double *, int *, double *, char *);
    extern int zlatms_(int *, int *, char *, int *, char *, double *d,
                       int *, double *, double *, int *, int *,
                       char *, doublecomplex *, int *, doublecomplex *, int *);
    extern int sp_zconvert(int, int, doublecomplex *, int, int, int,
                           doublecomplex *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "ZGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
                       &panel_size, &relax, &nrhs, &maxsuper,
                       &rowblk, &colblk, &lwork, &u);
    if ( lwork > 0 ) {
        work = SUPERLU_MALLOC(lwork);
        if ( !work ) {
            fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
            exit (-1);
        }
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = DOUBLE;

    if ( strcmp(matrix_type, "LA") == 0 ) {
        /* Test LAPACK matrix suite. */
        m = n;
        lda = SUPERLU_MAX(n, 1);
        nnz = n * n;        /* upper bound */
        fimat = 1;
        nimat = NTYPES;
        Afull = doublecomplexCalloc(lda * n);
        zallocateA(n, nnz, &a, &asub, &xa);
    } else {
        /* Read a sparse matrix */
        fimat = nimat = 0;
        zreadhb(&m, &n, &nnz, &a, &asub, &xa);
    }

    zallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = doublecomplexMalloc(m * nrhs);
    bsav = doublecomplexMalloc(m * nrhs);
    solx = doublecomplexMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (double *) SUPERLU_MALLOC(m*sizeof(double));
    C       = (double *) SUPERLU_MALLOC(n*sizeof(double));
    ferr    = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
    berr    = (double *) SUPERLU_MALLOC(nrhs*sizeof(double));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);
    rwork   = (double *) SUPERLU_MALLOC(j*sizeof(double));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = doublecomplexCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */

        if ( imat ) {

            /* Skip types 5, 6, or 7 if the matrix size is too small. */
            zerot = (imat >= 5 && imat <= 7);
            if ( zerot && n < imat-4 )
                continue;

            /* Set up parameters with ZLATB4 and generate a test matrix
               with ZLATMS.  */
            zlatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
                    &cndnum, dist);

            zlatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
                    &anorm, &kl, &ku, "No packing", Afull, &lda,
                    &wwork[0], &info);

            if ( info ) {
                printf(FMT3, "ZLATMS", info, izero, n, nrhs, imat, nfail);
                continue;
            }

            /* For types 5-7, zero one or more columns of the matrix
               to test that INFO is returned correctly.   */
            if ( zerot ) {
                if ( imat == 5 ) izero = 1;
                else if ( imat == 6 ) izero = n;
                else izero = n / 2 + 1;
                ioff = (izero - 1) * lda;
                if ( imat < 7 ) {
                    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
                } else {
                    for (j = 0; j < n - izero + 1; ++j)
                        for (i = 0; i < n; ++i)
                            Afull[ioff + i + j*lda] = zero;
                }
            } else {
                izero = 0;
            }

            /* Convert to sparse representation. */
            sp_zconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

        } else {
            izero = 0;
            zerot = 0;
        }

        zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);

        /* Save a copy of matrix A in ASAV */
        zCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
                              SLU_NC, SLU_Z, SLU_GE);
        zCopy_CompCol_Matrix(&A, &ASAV);

        /* Form exact solution. */
        zGenXtrue(n, nrhs, xact, ldx);

        StatInit(&stat);

        for (iequed = 0; iequed < 4; ++iequed) {
            *equed = equeds[iequed];
            if (iequed == 0) nfact = 4;
            else nfact = 1; /* Only test factored, pre-equilibrated matrix */

            for (ifact = 0; ifact < nfact; ++ifact) {
                fact = facts[ifact];
                options.Fact = fact;

                for (equil = 0; equil < 2; ++equil) {
                    options.Equil = equil;
                    prefact   = ( options.Fact == FACTORED ||
                                  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
                    nofact    = (options.Fact != FACTORED);  /* Not factored */

                    /* Restore the matrix A. */
                    zCopy_CompCol_Matrix(&ASAV, &A);

                    if ( zerot ) {
                        if ( prefact ) continue;
                    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
                            /* Compute row and column scale factors to
                               equilibrate matrix A.    */
                            zgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

                            /* Force equilibration. */
                            if ( !info && n > 0 ) {
                                if ( lsame_(equed, "R") ) {
                                    rowcnd = 0.;
                                    colcnd = 1.;
                                } else if ( lsame_(equed, "C") ) {
                                    rowcnd = 1.;
                                    colcnd = 0.;
                                } else if ( lsame_(equed, "B") ) {
                                    rowcnd = 0.;
                                    colcnd = 0.;
                                }
                            }

                            /* Equilibrate the matrix. */
                            zlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
                        }
                    }

                    if ( prefact ) { /* Need a factor for the first time */

                        /* Save Fact option. */
                        fact = options.Fact;
                        options.Fact = DOFACT;

                        /* Preorder the matrix, obtain the column etree. */
                        sp_preorder(&options, &A, perm_c, etree, &AC);

                        /* Factor the matrix AC. */
                        zgstrf(&options, &AC, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &stat, &info);

                        if ( info ) {
                            printf("** First factor: info %d, equed %c\n",
                                   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }

                        Destroy_CompCol_Permuted(&AC);

                        /* Restore Fact option. */
                        options.Fact = fact;
                    } /* if .. first time factor */

                    for (itran = 0; itran < NTRAN; ++itran) {
                        trans = transs[itran];
                        options.Trans = trans;

                        /* Restore the matrix A. */
                        zCopy_CompCol_Matrix(&ASAV, &A);

                        /* Set the right hand side. */
                        zFillRHS(trans, nrhs, xact, ldx, &A, &B);
                        zCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

                        /*----------------
                         * Test zgssv
                         *----------------*/
                        if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */

                            zCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
                            zgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);

                            if ( info && info != izero ) {
                                printf(FMT3, "zgssv",
                                       info, izero, n, nrhs, imat, nfail);
                            } else {
                                /* Reconstruct matrix from factors and
                                   compute residual. */
                                zgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
                                nt = 1;
                                if ( izero == 0 ) {
                                    /* Compute residual of the computed
                                       solution. */
                                    zCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
                                                       wwork, ldb);
                                    zgst02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
                                    nt = 2;
                                }

                                /* Print information about the tests that
                                   did not pass the threshold.      */
                                for (i = 0; i < nt; ++i) {
                                    if ( result[i] >= THRESH ) {
                                        printf(FMT1, "zgssv", n, i,
                                               result[i]);
                                        ++nfail;
                                    }
                                }
                                nrun += nt;
                            } /* else .. info == 0 */

                            /* Restore perm_c. */
                            for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

                            if (lwork == 0) {
                                Destroy_SuperNode_Matrix(&L);
                                Destroy_CompCol_Matrix(&U);
                            }
                        } /* if .. end of testing zgssv */

                        /*----------------
                         * Test zgssvx
                         *----------------*/

                        /* Equilibrate the matrix if fact = FACTORED and
                           equed = 'R', 'C', or 'B'.   */
                        if ( options.Fact == FACTORED &&
                             (equil || iequed) && n > 0 ) {
                            zlaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
                        }

                        /* Solve the system and compute the condition number
                           and error bounds using zgssvx.      */
                        zgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &mem_usage, &stat, &info);

                        if ( info && info != izero ) {
                            printf(FMT3, "zgssvx",
                                   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
                        } else {
                            if ( !prefact ) {
                                /* Reconstruct matrix from factors and
                                   compute residual. */
                                zgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
                                k1 = 0;
                            } else {
                                k1 = 1;
                            }

                            if ( !info ) {
                                /* Compute residual of the computed solution.*/
                                zCopy_Dense_Matrix(m, nrhs, bsav, ldb,
                                                  wwork, ldb);
                                zgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
                                          wwork, ldb, &result[1]);

                                /* Check solution from generated exact
                                   solution. */
                                zgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
                                          &result[2]);

                                /* Check the error bounds from iterative
                                   refinement. */
                                zgst07(trans, n, nrhs, &ASAV, bsav, ldb,
                                          solx, ldx, xact, ldx, ferr, berr,
                                          &result[3]);

                                /* Print information about the tests that did
                                   not pass the threshold.    */
                                for (i = k1; i < NTESTS; ++i) {
                                    if ( result[i] >= THRESH ) {
                                        printf(FMT2, "zgssvx",
                                               options.Fact, trans, *equed,
                                               n, imat, i, result[i]);
                                        ++nfail;
                                    }
                                }
                                nrun += NTESTS;
                            } /* if .. info == 0 */
                        } /* else .. end of testing zgssvx */

                    } /* for itran ... */

                    if ( lwork == 0 ) {
                        Destroy_SuperNode_Matrix(&L);
                        Destroy_CompCol_Matrix(&U);
                    }

                } /* for equil ... */
            } /* for ifact ... */
        } /* for iequed ... */
#if 0
    if ( !info ) {
        PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("ZGE", nfail, nrun, nerrs);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
    if ( lwork > 0 ) {
        SUPERLU_FREE (work);
        Destroy_SuperMatrix_Store(&L);
        Destroy_SuperMatrix_Store(&U);
    }
    StatFree(&stat);

    return 0;
}
Esempio n. 7
0
int main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program ZLINSOLX2.
 *
 * This example illustrates how to use ZGSSVX to solve systems repeatedly
 * with the same sparsity pattern of matrix A.
 * In this case, the column permutation vector perm_c is computed once.
 * The following data structures will be reused in the subsequent call to
 * ZGSSVX: perm_c, etree
 * 
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, A1, L, U;
    SuperMatrix    B, B1, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    doublecomplex         *a, *a1;
    int            *asub, *xa, *asub1, *xa1;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, j, m, n, nnz;
    doublecomplex         *rhsb, *rhsb1, *rhsx, *xact;
    double         *R, *C;
    double         *ferr, *berr;
    double         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("DLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);
    if ( !(a1 = doublecomplexMalloc(nnz)) ) ABORT("Malloc fails for a1[].");
    if ( !(asub1 = intMalloc(nnz)) ) ABORT("Malloc fails for asub1[].");
    if ( !(xa1 = intMalloc(n+1)) ) ABORT("Malloc fails for xa1[].");
    for (i = 0; i < nnz; ++i) {
        a1[i] = a[i];
	asub1[i] = asub[i];
    }
    for (i = 0; i < n+1; ++i) xa1[i] = xa[i];
    
    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsb1 = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb1[].");
    if ( !(rhsx = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);
    for (j = 0; j < nrhs; ++j)
        for (i = 0; i < m; ++i) rhsb1[i+j*m] = rhsb[i+j*m];
    
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME: AX = B
       ------------------------------------------------------------*/
    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("First system: zgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);
    Destroy_CompCol_Matrix(&A);
    Destroy_Dense_Matrix(&B);
    if ( lwork >= 0 ) { /* Deallocate storage associated with L and U. */
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }

    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER LINEAR SYSTEM: A1*X = B1
       ONLY THE SPARSITY PATTERN OF A1 IS THE SAME AS THAT OF A.
       ------------------------------------------------------------*/
    options.Fact = SamePattern;
    StatInit(&stat); /* Initialize the statistics variables. */

    zCreate_CompCol_Matrix(&A1, m, n, nnz, a1, asub1, xa1,
                           SLU_NC, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&B1, m, nrhs, rhsb1, m, SLU_DN, SLU_Z, SLU_GE);

    zgssvx(&options, &A1, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B1, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("\nSecond system: zgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A1);
    Destroy_Dense_Matrix(&B1);
    Destroy_Dense_Matrix(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}