Esempio n. 1
0
void zpsolve(int n,
                  doublecomplex x[], /* solution */
                  doublecomplex y[]  /* right-hand side */
)
{
    SuperMatrix *A = GLOBAL_A, *L = GLOBAL_L, *U = GLOBAL_U;
    SuperLUStat_t *stat = GLOBAL_STAT;
    int *perm_c = GLOBAL_PERM_C, *perm_r = GLOBAL_PERM_R;
    char equed[1] = {'N'};
    double *R = GLOBAL_R, *C = GLOBAL_C;
    superlu_options_t *options = GLOBAL_OPTIONS;
    mem_usage_t  *mem_usage = GLOBAL_MEM_USAGE;
    int info;
    static DNformat X, Y;
    static SuperMatrix XX = {SLU_DN, SLU_Z, SLU_GE, 1, 1, &X};
    static SuperMatrix YY = {SLU_DN, SLU_Z, SLU_GE, 1, 1, &Y};
    double rpg, rcond;

    XX.nrow = YY.nrow = n;
    X.lda = Y.lda = n;
    X.nzval = x;
    Y.nzval = y;

#if 0
    dcopy_(&n, y, &i_1, x, &i_1);
    zgstrs(NOTRANS, L, U, perm_c, perm_r, &XX, stat, &info);
#else
    zgsisx(options, A, perm_c, perm_r, NULL, equed, R, C,
	   L, U, NULL, 0, &YY, &XX, &rpg, &rcond, mem_usage, stat, &info);
#endif
}
Esempio n. 2
0
int main(int argc, char *argv[])
{
    void zmatvec_mult(doublecomplex alpha, doublecomplex x[], doublecomplex beta, doublecomplex y[]);
    void zpsolve(int n, doublecomplex x[], doublecomplex y[]);
    extern int zfgmr( int n,
	void (*matvec_mult)(doublecomplex, doublecomplex [], doublecomplex, doublecomplex []),
	void (*psolve)(int n, doublecomplex [], doublecomplex[]),
	doublecomplex *rhs, doublecomplex *sol, double tol, int restrt, int *itmax,
	FILE *fits);
    extern int zfill_diag(int n, NCformat *Astore);

    char     equed[1] = {'B'};
    yes_no_t equil;
    trans_t  trans;
    SuperMatrix A, L, U;
    SuperMatrix B, X;
    NCformat *Astore;
    NCformat *Ustore;
    SCformat *Lstore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *etree;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    int      nrhs, ldx, lwork, info, m, n, nnz;
    doublecomplex   *rhsb, *rhsx, *xact;
    doublecomplex   *work = NULL;
    double   *R, *C;
    double   u, rpg, rcond;
    doublecomplex zero = {0.0, 0.0};
    doublecomplex one = {1.0, 0.0};
    doublecomplex none = {-1.0, 0.0};
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;

    int restrt, iter, maxit, i;
    double resid;
    doublecomplex *x, *b;

#ifdef DEBUG
    extern int num_drop_L, num_drop_U;
#endif

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
	options.Equil = YES;
	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 0.1; //different from complete LU
	options.Trans = NOTRANS;
	options.IterRefine = NOREFINE;
	options.SymmetricMode = NO;
	options.PivotGrowth = NO;
	options.ConditionNumber = NO;
	options.PrintStat = YES;
	options.RowPerm = LargeDiag;
	options.ILU_DropTol = 1e-4;
	options.ILU_FillTol = 1e-2;
	options.ILU_FillFactor = 10.0;
	options.ILU_DropRule = DROP_BASIC | DROP_AREA;
	options.ILU_Norm = INF_NORM;
	options.ILU_MILU = SILU;
     */
    ilu_set_default_options(&options);

    /* Modify the defaults. */
    options.PivotGrowth = YES;	  /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) ABORT("Malloc fails for work[].");
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
	printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
		"-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
		"-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
		"-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
		argv[0]);
	return 0;
    }
    else
    {
	switch (argv[1][1])
	{
	    case 'H':
	    case 'h':
		printf("Input a Harwell-Boeing format matrix:\n");
		zreadhb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'R':
	    case 'r':
		printf("Input a Rutherford-Boeing format matrix:\n");
		zreadrb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'T':
	    case 't':
		printf("Input a triplet format matrix:\n");
		zreadtriple(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    default:
		printf("Unrecognized format.\n");
		return 0;
	}
    }

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa,
                                SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    zfill_diag(n, Astore);
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    fflush(stdout);

    /* Generate the right-hand side */
    if ( !(rhsb = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) )
	ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
	ABORT("SUPERLU_MALLOC fails for C[].");

    info = 0;
#ifdef DEBUG
    num_drop_L = 0;
    num_drop_U = 0;
#endif

    /* Initialize the statistics variables. */
    StatInit(&stat);

    /* Compute the incomplete factorization and compute the condition number
       and pivot growth using dgsisx. */
    B.ncol = 0;  /* not to perform triangular solution */
    zgsisx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work,
	   lwork, &B, &X, &rpg, &rcond, &mem_usage, &stat, &info);

    /* Set RHS for GMRES. */
    if (!(b = doublecomplexMalloc(m))) ABORT("Malloc fails for b[].");
    if (*equed == 'R' || *equed == 'B') {
	for (i = 0; i < n; ++i) zd_mult(&b[i], &rhsb[i], R[i]);
    } else {
	for (i = 0; i < m; i++) b[i] = rhsb[i];
    }

    printf("zgsisx(): info %d, equed %c\n", info, equed[0]);
    if (info > 0 || rcond < 1e-8 || rpg > 1e8)
	printf("WARNING: This preconditioner might be unstable.\n");

    if ( info == 0 || info == n+1 ) {
	if ( options.PivotGrowth == YES )
	    printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);
    } else if ( info > 0 && lwork == -1 ) {
	printf("** Estimated memory: %d bytes\n", info - n);
    }

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;
    printf("n(A) = %d, nnz(A) = %d\n", n, Astore->nnz);
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    printf("Fill ratio: nnz(F)/nnz(A) = %.3f\n",
	    ((double)(Lstore->nnz) + (double)(Ustore->nnz) - (double)n)
	    / (double)Astore->nnz);
    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
    fflush(stdout);

    /* Set the global variables. */
    GLOBAL_A = &A;
    GLOBAL_L = &L;
    GLOBAL_U = &U;
    GLOBAL_STAT = &stat;
    GLOBAL_PERM_C = perm_c;
    GLOBAL_PERM_R = perm_r;
    GLOBAL_OPTIONS = &options;
    GLOBAL_R = R;
    GLOBAL_C = C;
    GLOBAL_MEM_USAGE = &mem_usage;

    /* Set the options to do solve-only. */
    options.Fact = FACTORED;
    options.PivotGrowth = NO;
    options.ConditionNumber = NO;

    /* Set the variables used by GMRES. */
    restrt = SUPERLU_MIN(n / 3 + 1, 50);
    maxit = 1000;
    iter = maxit;
    resid = 1e-8;
    if (!(x = doublecomplexMalloc(n))) ABORT("Malloc fails for x[].");

    if (info <= n + 1)
    {
	int i_1 = 1;
	double maxferr = 0.0, nrmA, nrmB, res, t;
        doublecomplex temp;
	extern double dznrm2_(int *, doublecomplex [], int *);
	extern void zaxpy_(int *, doublecomplex *, doublecomplex [], int *, doublecomplex [], int *);

	/* Initial guess */
	for (i = 0; i < n; i++) x[i] = zero;

	t = SuperLU_timer_();

	/* Call GMRES */
	zfgmr(n, zmatvec_mult, zpsolve, b, x, resid, restrt, &iter, stdout);

	t = SuperLU_timer_() - t;

	/* Output the result. */
	nrmA = dznrm2_(&(Astore->nnz), (doublecomplex *)((DNformat *)A.Store)->nzval,
		&i_1);
	nrmB = dznrm2_(&m, b, &i_1);
	sp_zgemv("N", none, &A, x, 1, one, b, 1);
	res = dznrm2_(&m, b, &i_1);
	resid = res / nrmB;
	printf("||A||_F = %.1e, ||B||_2 = %.1e, ||B-A*X||_2 = %.1e, "
		"relres = %.1e\n", nrmA, nrmB, res, resid);

	if (iter >= maxit)
	{
	    if (resid >= 1.0) iter = -180;
	    else if (resid > 1e-8) iter = -111;
	}
	printf("iteration: %d\nresidual: %.1e\nGMRES time: %.2f seconds.\n",
		iter, resid, t);

	/* Scale the solution back if equilibration was performed. */
	if (*equed == 'C' || *equed == 'B') 
	    for (i = 0; i < n; i++) zd_mult(&x[i], &x[i], C[i]);

	for (i = 0; i < m; i++) {
            z_sub(&temp, &x[i], &xact[i]);
            maxferr = SUPERLU_MAX(maxferr, z_abs1(&temp));
        }
	printf("||X-X_true||_oo = %.1e\n", maxferr);
    }
#ifdef DEBUG
    printf("%d entries in L and %d entries in U dropped.\n",
	    num_drop_L, num_drop_U);
#endif
    fflush(stdout);

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
	Destroy_SuperNode_Matrix(&L);
	Destroy_CompCol_Matrix(&U);
    }
    SUPERLU_FREE(b);
    SUPERLU_FREE(x);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif

    return 0;
}
Esempio n. 3
0
PetscErrorCode MatSolve_SuperLU_Private(Mat A,Vec b,Vec x)
{
  Mat_SuperLU    *lu = (Mat_SuperLU*)A->spptr;
  PetscScalar    *barray,*xarray;
  PetscErrorCode ierr;
  PetscInt       info,i,n=x->map->n;
  PetscReal      ferr,berr; 
 
  PetscFunctionBegin;
  if ( lu->lwork == -1 ) {
    PetscFunctionReturn(0);
  }

  lu->B.ncol = 1;   /* Set the number of right-hand side */
  if (lu->options.Equil && !lu->rhs_dup){
    /* superlu overwrites b when Equil is used, thus create rhs_dup to keep user's b unchanged */
    ierr = PetscMalloc(n*sizeof(PetscScalar),&lu->rhs_dup);CHKERRQ(ierr); 
  }
  if (lu->options.Equil){
    /* Copy b into rsh_dup */
    ierr = VecGetArray(b,&barray);CHKERRQ(ierr);
    ierr = PetscMemcpy(lu->rhs_dup,barray,n*sizeof(PetscScalar));CHKERRQ(ierr);
    ierr = VecRestoreArray(b,&barray);CHKERRQ(ierr);
    barray = lu->rhs_dup;
  } else {
    ierr = VecGetArray(b,&barray);CHKERRQ(ierr);
  }
  ierr = VecGetArray(x,&xarray);CHKERRQ(ierr);

#if defined(PETSC_USE_COMPLEX)
  ((DNformat*)lu->B.Store)->nzval = (doublecomplex*)barray;
  ((DNformat*)lu->X.Store)->nzval = (doublecomplex*)xarray;
#else
  ((DNformat*)lu->B.Store)->nzval = barray;
  ((DNformat*)lu->X.Store)->nzval = xarray;
#endif

  lu->options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */
  if (A->factortype == MAT_FACTOR_LU){
#if defined(PETSC_USE_COMPLEX)
    zgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &info);
#else
    dgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &info);
#endif
  } else if (A->factortype == MAT_FACTOR_ILU){ 
#if defined(PETSC_USE_COMPLEX)
    zgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, 
           &lu->mem_usage, &lu->stat, &info);
#else
    dgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, 
           &lu->mem_usage, &lu->stat, &info);
#endif
  } else {
    SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Factor type not supported");
  }
  if (!lu->options.Equil){
    ierr = VecRestoreArray(b,&barray);CHKERRQ(ierr);
  }
  ierr = VecRestoreArray(x,&xarray);CHKERRQ(ierr);

  if ( !info || info == lu->A.ncol+1 ) {
    if ( lu->options.IterRefine ) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"Iterative Refinement:\n");
      ierr = PetscPrintf(PETSC_COMM_SELF,"  %8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
      for (i = 0; i < 1; ++i)
        ierr = PetscPrintf(PETSC_COMM_SELF,"  %8d%8d%16e%16e\n", i+1, lu->stat.RefineSteps, ferr, berr);
    }
  } else if ( info > 0 ){
    if ( lu->lwork == -1 ) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"  ** Estimated memory: %D bytes\n", info - lu->A.ncol);
    } else {
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Warning: gssvx() returns info %D\n",info);
    }
  } else if (info < 0){
    SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB, "info = %D, the %D-th argument in gssvx() had an illegal value", info,-info);
  }

  if ( lu->options.PrintStat ) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"MatSolve__SuperLU():\n");
    StatPrint(&lu->stat);
  }
  PetscFunctionReturn(0);
}
Esempio n. 4
0
PetscErrorCode MatLUFactorNumeric_SuperLU(Mat F,Mat A,const MatFactorInfo *info)
{
  Mat_SuperLU    *lu = (Mat_SuperLU*)F->spptr;
  Mat_SeqAIJ     *aa;
  PetscErrorCode ierr;
  PetscInt       sinfo;
  PetscReal      ferr, berr; 
  NCformat       *Ustore;
  SCformat       *Lstore;
  
  PetscFunctionBegin;
  if (lu->flg == SAME_NONZERO_PATTERN){ /* successing numerical factorization */
    lu->options.Fact = SamePattern;
    /* Ref: ~SuperLU_3.0/EXAMPLE/dlinsolx2.c */
    Destroy_SuperMatrix_Store(&lu->A); 
    if (lu->options.Equil){
      ierr = MatCopy_SeqAIJ(A,lu->A_dup,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
    }
    if ( lu->lwork >= 0 ) { 
      Destroy_SuperNode_Matrix(&lu->L);
      Destroy_CompCol_Matrix(&lu->U);
      lu->options.Fact = SamePattern;
    }
  }

  /* Create the SuperMatrix for lu->A=A^T:
       Since SuperLU likes column-oriented matrices,we pass it the transpose,
       and then solve A^T X = B in MatSolve(). */
  if (lu->options.Equil){
    aa = (Mat_SeqAIJ*)(lu->A_dup)->data;
  } else {
    aa = (Mat_SeqAIJ*)(A)->data;
  }
#if defined(PETSC_USE_COMPLEX)
  zCreate_CompCol_Matrix(&lu->A,A->cmap->n,A->rmap->n,aa->nz,(doublecomplex*)aa->a,aa->j,aa->i,
                           SLU_NC,SLU_Z,SLU_GE);
#else
  dCreate_CompCol_Matrix(&lu->A,A->cmap->n,A->rmap->n,aa->nz,aa->a,aa->j,aa->i,
                           SLU_NC,SLU_D,SLU_GE);
#endif

  /* Numerical factorization */
  lu->B.ncol = 0;  /* Indicate not to solve the system */
  if (F->factortype == MAT_FACTOR_LU){
#if defined(PETSC_USE_COMPLEX)
    zgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &sinfo);
#else
    dgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &sinfo);
#endif
  } else if (F->factortype == MAT_FACTOR_ILU){
    /* Compute the incomplete factorization, condition number and pivot growth */
#if defined(PETSC_USE_COMPLEX)
    zgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r,lu->etree, lu->equed, lu->R, lu->C, 
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond,
           &lu->mem_usage, &lu->stat, &sinfo);
#else
    dgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C, 
          &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, 
          &lu->mem_usage, &lu->stat, &sinfo);
#endif
  } else {
    SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Factor type not supported");
  }
  if ( !sinfo || sinfo == lu->A.ncol+1 ) {
    if ( lu->options.PivotGrowth ) 
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Recip. pivot growth = %e\n", lu->rpg);
    if ( lu->options.ConditionNumber )
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Recip. condition number = %e\n", lu->rcond);
  } else if ( sinfo > 0 ){
    if ( lu->lwork == -1 ) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"  ** Estimated memory: %D bytes\n", sinfo - lu->A.ncol);
    } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot in row %D",sinfo);
  } else { /* sinfo < 0 */
    SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB, "info = %D, the %D-th argument in gssvx() had an illegal value", sinfo,-sinfo); 
  }

  if ( lu->options.PrintStat ) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"MatLUFactorNumeric_SuperLU():\n");
    StatPrint(&lu->stat);
    Lstore = (SCformat *) lu->L.Store;
    Ustore = (NCformat *) lu->U.Store;
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in factor L = %D\n", Lstore->nnz);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in factor U = %D\n", Ustore->nnz);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in L+U = %D\n", Lstore->nnz + Ustore->nnz - lu->A.ncol);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  L\\U MB %.3f\ttotal MB needed %.3f\n",
	       lu->mem_usage.for_lu/1e6, lu->mem_usage.total_needed/1e6);
  }

  lu->flg = SAME_NONZERO_PATTERN;
  F->ops->solve          = MatSolve_SuperLU;
  F->ops->solvetranspose = MatSolveTranspose_SuperLU;
  F->ops->matsolve       = MatMatSolve_SuperLU;
  PetscFunctionReturn(0);
}