/* Subroutine */ int zdrvpp_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *asav, doublecomplex *b, doublecomplex *bsav, doublecomplex *x, doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal * rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*3] = "F" "N" "E"; static char packs[1*2] = "C" "R"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1,\002" ", test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i__, k, n, k1, in, kl, ku, nt, lda, npp; char fact[1]; integer ioff, mode; doublereal amax; char path[3]; integer imat, info; char dist[1], uplo[1], type__[1]; integer nrun, ifact, nfail, iseed[4], nfact; extern doublereal dget06_(doublereal *, doublereal *); extern logical lsame_(char *, char *); char equed[1]; doublereal roldc, rcond, scond; integer nimat; doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); logical equil; integer iuplo, izero, nerrs; extern /* Subroutine */ int zppt01_(char *, integer *, doublecomplex *, doublecomplex *, doublereal *, doublereal *), zppt02_( char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zppt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); char xtype[1]; extern /* Subroutine */ int zppsv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *, integer * , integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); logical prefac; doublereal rcondc; logical nofact; char packit[1]; integer iequed; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); doublereal ainvnm; extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zlaqhp_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublereal *, char *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal result[6]; extern /* Subroutine */ int zppequ_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublereal *, integer *), zpptrf_(char *, integer *, doublecomplex *, integer *), zpptri_(char *, integer *, doublecomplex *, integer *), zerrvx_(char *, integer *), zppsvx_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, char *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); /* Fortran I/O blocks */ static cilist io___49 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZDRVPP tests the driver routines ZPPSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */ /* AFAC (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */ /* ASAV (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* BSAV (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); npp = n * (n + 1) / 2; *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L130; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L130; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; *(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1] ; /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); rcondc = 1. / cndnum; s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L120; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[1], &c__2, &c__1); } else { zlaipd_(&n, &a[1], &n, &c_n1); } /* Save a copy of the matrix A in ASAV. */ zcopy_(&npp, &a[1], &c__1, &asav[1], &c__1); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L100; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison with */ /* the value returned by ZPPSVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ zcopy_(&npp, &asav[1], &c__1, &afac[1], &c__1); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ zppequ_(uplo, &n, &afac[1], &s[1], &scond, & amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ zlaqhp_(uplo, &n, &afac[1], &s[1], &scond, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in ZGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = zlanhp_("1", uplo, &n, &afac[1], &rwork[1] ); /* Factor the matrix A. */ zpptrf_(uplo, &n, &afac[1], &info); /* Form the inverse of A. */ zcopy_(&npp, &afac[1], &c__1, &a[1], &c__1); zpptri_(uplo, &n, &a[1], &info); /* Compute the 1-norm condition number of A. */ ainvnm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ zcopy_(&npp, &asav[1], &c__1, &a[1], &c__1); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen) 6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact) { /* --- Test ZPPSV --- */ /* Compute the L*L' or U'*U factorization of the */ /* matrix and solve the system. */ zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "ZPPSV ", (ftnlen)6, ( ftnlen)6); zppsv_(uplo, &n, nrhs, &afac[1], &x[1], &lda, & info); /* Check error code from ZPPSV . */ if (info != izero) { alaerh_(path, "ZPPSV ", &info, &izero, uplo, & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); goto L70; } else if (info != 0) { goto L70; } /* Reconstruct matrix from factors and compute */ /* residual. */ zppt01_(uplo, &n, &a[1], &afac[1], &rwork[1], result); /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[ 1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, "ZPPSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += nt; L70: ; } /* --- Test ZPPSVX --- */ if (! prefac && npp > 0) { zlaset_("Full", &npp, &c__1, &c_b63, &c_b63, & afac[1], &npp); } zlaset_("Full", &n, nrhs, &c_b63, &c_b63, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ zlaqhp_(uplo, &n, &a[1], &s[1], &scond, &amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using ZPPSVX. */ s_copy(srnamc_1.srnamt, "ZPPSVX", (ftnlen)6, (ftnlen) 6); zppsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], equed, &s[1], &b[1], &lda, &x[1], &lda, &rcond, & rwork[1], &rwork[*nrhs + 1], &work[1], &rwork[ (*nrhs << 1) + 1], &info); /* Check the error code from ZPPSVX. */ if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "ZPPSVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ zppt01_(uplo, &n, &a[1], &afac[1], &rwork[(* nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); zppt02_(uplo, &n, nrhs, &asav[1], &x[1], &lda, & work[1], &lda, &rwork[(*nrhs << 1) + 1], & result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ zppt05_(uplo, &n, nrhs, &asav[1], &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], & rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from ZPPSVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "ZPPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, "ZPPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; L90: L100: ; } /* L110: */ } L120: ; } L130: ; } /* L140: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVPP */ } /* zdrvpp_ */
/* Subroutine */ int zchkpp_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex * ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char packs[1*2] = "C" "R"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; /* Local variables */ integer i__, k, n, in, kl, ku, lda, npp, ioff, mode, imat, info; char path[3], dist[1]; integer irhs, nrhs; char uplo[1], type__[1]; integer nrun; integer nfail, iseed[4]; doublereal rcond; integer nimat; doublereal anorm; integer iuplo, izero, nerrs; logical zerot; char xtype[1]; doublereal rcondc; char packit[1]; doublereal cndnum; doublereal result[8]; /* Fortran I/O blocks */ static cilist io___34 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___37 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKPP tests ZPPTRF, -TRI, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AFAC (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AINV (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrpo_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L100; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; *(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1] ; /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L90; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[1], &c__2, &c__1); } else { zlaipd_(&n, &a[1], &n, &c_n1); } /* Compute the L*L' or U'*U factorization of the matrix. */ npp = n * (n + 1) / 2; zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); s_copy(srnamc_1.srnamt, "ZPPTRF", (ftnlen)32, (ftnlen)6); zpptrf_(uplo, &n, &afac[1], &info); /* Check error code from ZPPTRF. */ if (info != izero) { alaerh_(path, "ZPPTRF", &info, &izero, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L90; } /* Skip the tests if INFO is not 0. */ if (info != 0) { goto L90; } /* + TEST 1 */ /* Reconstruct matrix from factors and compute residual. */ zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1); zppt01_(uplo, &n, &a[1], &ainv[1], &rwork[1], result); /* + TEST 2 */ /* Form the inverse and compute the residual. */ zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1); s_copy(srnamc_1.srnamt, "ZPPTRI", (ftnlen)32, (ftnlen)6); zpptri_(uplo, &n, &ainv[1], &info); /* Check error code from ZPPTRI. */ if (info != 0) { alaerh_(path, "ZPPTRI", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } zppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[1], &rcondc, &result[1]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 1; k <= 2; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += 2; i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZPPTRS", (ftnlen)32, (ftnlen)6); zpptrs_(uplo, &n, &nrhs, &afac[1], &x[1], &lda, &info); /* Check error code from ZPPTRS. */ if (info != 0) { alaerh_(path, "ZPPTRS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); zppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], & lda, &rwork[1], &result[2]); /* + TEST 4 */ /* Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); /* + TESTS 5, 6, and 7 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZPPRFS", (ftnlen)32, (ftnlen)6); zpprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &b[1], &lda, &x[ 1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], & rwork[(nrhs << 1) + 1], &info); /* Check error code from ZPPRFS. */ if (info != 0) { alaerh_(path, "ZPPRFS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[4]); zppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], & result[5]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___37.ciunit = *nout; s_wsfe(&io___37); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L70: */ } nrun += 5; /* L80: */ } /* + TEST 8 */ /* Get an estimate of RCOND = 1/CNDNUM. */ anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]); s_copy(srnamc_1.srnamt, "ZPPCON", (ftnlen)32, (ftnlen)6); zppcon_(uplo, &n, &afac[1], &anorm, &rcond, &work[1], &rwork[ 1], &info); /* Check error code from ZPPCON. */ if (info != 0) { alaerh_(path, "ZPPCON", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = dget06_(&rcond, &rcondc); /* Print the test ratio if greater than or equal to THRESH. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; L90: ; } L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKPP */ } /* zchkpp_ */