void SystemZTDCPass::convertFCmp(CmpInst &I) { Value *Op0 = I.getOperand(0); auto *Const = dyn_cast<ConstantFP>(I.getOperand(1)); auto Pred = I.getPredicate(); // Only comparisons with consts are interesting. if (!Const) return; // Compute the smallest normal number (and its negation). auto &Sem = Op0->getType()->getFltSemantics(); APFloat Smallest = APFloat::getSmallestNormalized(Sem); APFloat NegSmallest = Smallest; NegSmallest.changeSign(); // Check if Const is one of our recognized consts. int WhichConst; if (Const->isZero()) { // All comparisons with 0 can be converted. WhichConst = 0; } else if (Const->isInfinity()) { // Likewise for infinities. WhichConst = Const->isNegative() ? 2 : 1; } else if (Const->isExactlyValue(Smallest)) { // For Smallest, we cannot do EQ separately from GT. if ((Pred & CmpInst::FCMP_OGE) != CmpInst::FCMP_OGE && (Pred & CmpInst::FCMP_OGE) != 0) return; WhichConst = 3; } else if (Const->isExactlyValue(NegSmallest)) { // Likewise for NegSmallest, we cannot do EQ separately from LT. if ((Pred & CmpInst::FCMP_OLE) != CmpInst::FCMP_OLE && (Pred & CmpInst::FCMP_OLE) != 0) return; WhichConst = 4; } else { // Not one of our special constants. return; } // Partial masks to use for EQ, GT, LT, UN comparisons, respectively. static const int Masks[][4] = { { // 0 SystemZ::TDCMASK_ZERO, // eq SystemZ::TDCMASK_POSITIVE, // gt SystemZ::TDCMASK_NEGATIVE, // lt SystemZ::TDCMASK_NAN, // un }, { // inf SystemZ::TDCMASK_INFINITY_PLUS, // eq 0, // gt (SystemZ::TDCMASK_ZERO | SystemZ::TDCMASK_NEGATIVE | SystemZ::TDCMASK_NORMAL_PLUS | SystemZ::TDCMASK_SUBNORMAL_PLUS), // lt SystemZ::TDCMASK_NAN, // un }, { // -inf SystemZ::TDCMASK_INFINITY_MINUS, // eq (SystemZ::TDCMASK_ZERO | SystemZ::TDCMASK_POSITIVE | SystemZ::TDCMASK_NORMAL_MINUS | SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt 0, // lt SystemZ::TDCMASK_NAN, // un }, { // minnorm 0, // eq (unsupported) (SystemZ::TDCMASK_NORMAL_PLUS | SystemZ::TDCMASK_INFINITY_PLUS), // gt (actually ge) (SystemZ::TDCMASK_ZERO | SystemZ::TDCMASK_NEGATIVE | SystemZ::TDCMASK_SUBNORMAL_PLUS), // lt SystemZ::TDCMASK_NAN, // un }, { // -minnorm 0, // eq (unsupported) (SystemZ::TDCMASK_ZERO | SystemZ::TDCMASK_POSITIVE | SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt (SystemZ::TDCMASK_NORMAL_MINUS | SystemZ::TDCMASK_INFINITY_MINUS), // lt (actually le) SystemZ::TDCMASK_NAN, // un } }; // Construct the mask as a combination of the partial masks. int Mask = 0; if (Pred & CmpInst::FCMP_OEQ) Mask |= Masks[WhichConst][0]; if (Pred & CmpInst::FCMP_OGT) Mask |= Masks[WhichConst][1]; if (Pred & CmpInst::FCMP_OLT) Mask |= Masks[WhichConst][2]; if (Pred & CmpInst::FCMP_UNO) Mask |= Masks[WhichConst][3]; // A lone fcmp is unworthy of tdc conversion on its own, but may become // worthy if combined with fabs. bool Worthy = false; if (CallInst *CI = dyn_cast<CallInst>(Op0)) { Function *F = CI->getCalledFunction(); if (F && F->getIntrinsicID() == Intrinsic::fabs) { // Fold with fabs - adjust the mask appropriately. Mask &= SystemZ::TDCMASK_PLUS; Mask |= Mask >> 1; Op0 = CI->getArgOperand(0); // A combination of fcmp with fabs is a win, unless the constant // involved is 0 (which is handled by later passes). Worthy = WhichConst != 0; PossibleJunk.insert(CI); }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case ISD::BUILD_VECTOR: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) { break; } // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. SDValue RegSeqArgs[9] = { CurDAG->getTargetConstant(AMDGPU::R600_Reg128RegClassID, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32) }; bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[2 * i + 1] = N->getOperand(i); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.device()->getGeneration() > AMDGPUDeviceInfo::HD6XXX) { break; } const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector<SDValue> Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), R600Operands::IMM); assert(ImmIdx != -1); // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->isALUInstr(Result->getMachineOpcode())) { // Fold FNEG/FABS/CONST_ADDRESS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), R600Operands::CLAMP); std::vector<SDValue> Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; }
SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case AMDGPUISD::CONST_ADDRESS: { for (SDNode::use_iterator I = N->use_begin(), Next = llvm::next(I); I != SDNode::use_end(); I = Next) { Next = llvm::next(I); if (!I->isMachineOpcode()) { continue; } unsigned Opcode = I->getMachineOpcode(); bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1; int SrcIdx = I.getOperandNo(); int SelIdx; // Unlike MachineInstrs, SDNodes do not have results in their operand // list, so we need to increment the SrcIdx, since // R600InstrInfo::getOperandIdx is based on the MachineInstr indices. if (HasDst) { SrcIdx++; } SelIdx = TII->getSelIdx(I->getMachineOpcode(), SrcIdx); if (SelIdx < 0) { continue; } SDValue CstOffset; if (N->getValueType(0).isVector() || !SelectGlobalValueConstantOffset(N->getOperand(0), CstOffset)) continue; // Gather constants values int SrcIndices[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1), TII->getOperandIdx(Opcode, AMDGPU::OpName::src2), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W) }; std::vector<unsigned> Consts; for (unsigned i = 0; i < sizeof(SrcIndices) / sizeof(int); i++) { int OtherSrcIdx = SrcIndices[i]; int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); if (OtherSrcIdx < 0 || OtherSelIdx < 0) { continue; } if (HasDst) { OtherSrcIdx--; OtherSelIdx--; } if (RegisterSDNode *Reg = dyn_cast<RegisterSDNode>(I->getOperand(OtherSrcIdx))) { if (Reg->getReg() == AMDGPU::ALU_CONST) { ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(I->getOperand(OtherSelIdx)); Consts.push_back(Cst->getZExtValue()); } } } ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(CstOffset); Consts.push_back(Cst->getZExtValue()); if (!TII->fitsConstReadLimitations(Consts)) continue; // Convert back to SDNode indices if (HasDst) { SrcIdx--; SelIdx--; } std::vector<SDValue> Ops; for (int i = 0, e = I->getNumOperands(); i != e; ++i) { if (i == SrcIdx) { Ops.push_back(CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32)); } else if (i == SelIdx) { Ops.push_back(CstOffset); } else { Ops.push_back(I->getOperand(i)); } } CurDAG->UpdateNodeOperands(*I, Ops.data(), Ops.size()); } break; } case ISD::BUILD_VECTOR: { unsigned RegClassID; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); const AMDGPURegisterInfo *TRI = static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo()); const SIRegisterInfo *SIRI = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo()); EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); assert(VT.getVectorElementType().bitsEq(MVT::i32)); if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { bool UseVReg = true; for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); U != E; ++U) { if (!U->isMachineOpcode()) { continue; } const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); if (!RC) { continue; } if (SIRI->isSGPRClass(RC)) { UseVReg = false; } } switch(NumVectorElts) { case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID : AMDGPU::SReg_32RegClassID; break; case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID : AMDGPU::SReg_64RegClassID; break; case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID : AMDGPU::SReg_128RegClassID; break; case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID : AMDGPU::SReg_256RegClassID; break; case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID : AMDGPU::SReg_512RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } else { // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break; case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } } SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32); if (NumVectorElts == 1) { return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, VT.getVectorElementType(), N->getOperand(0), RegClass); } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SDValue RegSeqArgs[16 * 2 + 1]; RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32); bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { // XXX: Why is this here? if (dyn_cast<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector<SDValue> Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { switch(Use->getMachineOpcode()) { case AMDGPU::REG_SEQUENCE: break; default: if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } } // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), AMDGPU::OpName::literal); if (ImmIdx == -1) { continue; } if (TII->getOperandIdx(Use->getMachineOpcode(), AMDGPU::OpName::dst) != -1) { // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; } ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { const R600InstrInfo *TII = static_cast<const R600InstrInfo*>(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && Result->getMachineOpcode() == AMDGPU::DOT_4) { bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldDotOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); } if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->hasInstrModifiers(Result->getMachineOpcode())) { // Fold FNEG/FABS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector<SDValue> Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), AMDGPU::OpName::clamp); std::vector<SDValue> Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; }
// Create an MCInst from a MachineInstr void llvm::HexagonLowerToMC(MachineInstr const* MI, MCInst& MCB, HexagonAsmPrinter& AP) { if(MI->getOpcode() == Hexagon::ENDLOOP0){ HexagonMCInstrInfo::setInnerLoop(MCB); return; } if(MI->getOpcode() == Hexagon::ENDLOOP1){ HexagonMCInstrInfo::setOuterLoop(MCB); return; } MCInst* MCI = new (AP.OutContext) MCInst; MCI->setOpcode(MI->getOpcode()); assert(MCI->getOpcode() == static_cast<unsigned>(MI->getOpcode()) && "MCI opcode should have been set on construction"); for (unsigned i = 0, e = MI->getNumOperands(); i < e; i++) { const MachineOperand &MO = MI->getOperand(i); MCOperand MCO; switch (MO.getType()) { default: MI->dump(); llvm_unreachable("unknown operand type"); case MachineOperand::MO_Register: // Ignore all implicit register operands. if (MO.isImplicit()) continue; MCO = MCOperand::createReg(MO.getReg()); break; case MachineOperand::MO_FPImmediate: { APFloat Val = MO.getFPImm()->getValueAPF(); // FP immediates are used only when setting GPRs, so they may be dealt // with like regular immediates from this point on. MCO = MCOperand::createImm(*Val.bitcastToAPInt().getRawData()); break; } case MachineOperand::MO_Immediate: MCO = MCOperand::createImm(MO.getImm()); break; case MachineOperand::MO_MachineBasicBlock: MCO = MCOperand::createExpr (MCSymbolRefExpr::create(MO.getMBB()->getSymbol(), AP.OutContext)); break; case MachineOperand::MO_GlobalAddress: MCO = GetSymbolRef(MO, AP.getSymbol(MO.getGlobal()), AP); break; case MachineOperand::MO_ExternalSymbol: MCO = GetSymbolRef(MO, AP.GetExternalSymbolSymbol(MO.getSymbolName()), AP); break; case MachineOperand::MO_JumpTableIndex: MCO = GetSymbolRef(MO, AP.GetJTISymbol(MO.getIndex()), AP); break; case MachineOperand::MO_ConstantPoolIndex: MCO = GetSymbolRef(MO, AP.GetCPISymbol(MO.getIndex()), AP); break; case MachineOperand::MO_BlockAddress: MCO = GetSymbolRef(MO, AP.GetBlockAddressSymbol(MO.getBlockAddress()),AP); break; } MCI->addOperand(MCO); } MCB.addOperand(MCOperand::createInst(MCI)); }
// Walk forwards down the list of seen instructions, so we visit defs before // uses. void Float2IntPass::walkForwards() { for (auto &It : reverse(SeenInsts)) { if (It.second != unknownRange()) continue; Instruction *I = It.first; std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; switch (I->getOpcode()) { // FIXME: Handle select and phi nodes. default: case Instruction::UIToFP: case Instruction::SIToFP: llvm_unreachable("Should have been handled in walkForwards!"); case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: Op = [I](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 2 && "its a binary operator!"); auto BinOp = (Instruction::BinaryOps) I->getOpcode(); return Ops[0].binaryOp(BinOp, Ops[1]); }; break; // // Root-only instructions - we'll only see these if they're the // first node in a walk. // case Instruction::FPToUI: case Instruction::FPToSI: Op = [I](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); // Note: We're ignoring the casts output size here as that's what the // caller expects. auto CastOp = (Instruction::CastOps)I->getOpcode(); return Ops[0].castOp(CastOp, MaxIntegerBW+1); }; break; case Instruction::FCmp: Op = [](ArrayRef<ConstantRange> Ops) { assert(Ops.size() == 2 && "FCmp is a binary operator!"); return Ops[0].unionWith(Ops[1]); }; break; } bool Abort = false; SmallVector<ConstantRange,4> OpRanges; for (Value *O : I->operands()) { if (Instruction *OI = dyn_cast<Instruction>(O)) { assert(SeenInsts.find(OI) != SeenInsts.end() && "def not seen before use!"); OpRanges.push_back(SeenInsts.find(OI)->second); } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { // Work out if the floating point number can be losslessly represented // as an integer. // APFloat::convertToInteger(&Exact) purports to do what we want, but // the exactness can be too precise. For example, negative zero can // never be exactly converted to an integer. // // Instead, we ask APFloat to round itself to an integral value - this // preserves sign-of-zero - then compare the result with the original. // const APFloat &F = CF->getValueAPF(); // First, weed out obviously incorrect values. Non-finite numbers // can't be represented and neither can negative zero, unless // we're in fast math mode. if (!F.isFinite() || (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && !I->hasNoSignedZeros())) { seen(I, badRange()); Abort = true; break; } APFloat NewF = F; auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { seen(I, badRange()); Abort = true; break; } // OK, it's representable. Now get it. APSInt Int(MaxIntegerBW+1, false); bool Exact; CF->getValueAPF().convertToInteger(Int, APFloat::rmNearestTiesToEven, &Exact); OpRanges.push_back(ConstantRange(Int)); } else { llvm_unreachable("Should have already marked this as badRange!"); } } // Reduce the operands' ranges to a single range and return. if (!Abort) seen(I, Op(OpRanges)); } }
static SILInstruction *constantFoldBuiltin(BuiltinInst *BI, Optional<bool> &ResultsInError) { const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo(); SILModule &M = BI->getModule(); // If it's an llvm intrinsic, fold the intrinsic. if (Intrinsic.ID != llvm::Intrinsic::not_intrinsic) return constantFoldIntrinsic(BI, Intrinsic.ID, ResultsInError); // Otherwise, it should be one of the builtin functions. OperandValueArrayRef Args = BI->getArguments(); const BuiltinInfo &Builtin = BI->getBuiltinInfo(); switch (Builtin.ID) { default: break; // Check and fold binary arithmetic with overflow. #define BUILTIN(id, name, Attrs) #define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \ case BuiltinValueKind::id: #include "swift/AST/Builtins.def" return constantFoldBinaryWithOverflow(BI, Builtin.ID, ResultsInError); #define BUILTIN(id, name, Attrs) #define BUILTIN_BINARY_OPERATION(id, name, attrs, overload) \ case BuiltinValueKind::id: #include "swift/AST/Builtins.def" return constantFoldBinary(BI, Builtin.ID, ResultsInError); // Fold comparison predicates. #define BUILTIN(id, name, Attrs) #define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \ case BuiltinValueKind::id: #include "swift/AST/Builtins.def" return constantFoldCompare(BI, Builtin.ID); case BuiltinValueKind::Trunc: case BuiltinValueKind::ZExt: case BuiltinValueKind::SExt: case BuiltinValueKind::TruncOrBitCast: case BuiltinValueKind::ZExtOrBitCast: case BuiltinValueKind::SExtOrBitCast: { // We can fold if the value being cast is a constant. auto *V = dyn_cast<IntegerLiteralInst>(Args[0]); if (!V) return nullptr; APInt CastResV = constantFoldCast(V->getValue(), Builtin); // Add the literal instruction to represent the result of the cast. SILBuilderWithScope B(BI); return B.createIntegerLiteral(BI->getLoc(), BI->getType(), CastResV); } // Process special builtins that are designed to check for overflows in // integer conversions. case BuiltinValueKind::SToSCheckedTrunc: case BuiltinValueKind::UToUCheckedTrunc: case BuiltinValueKind::SToUCheckedTrunc: case BuiltinValueKind::UToSCheckedTrunc: case BuiltinValueKind::SUCheckedConversion: case BuiltinValueKind::USCheckedConversion: { return constantFoldAndCheckIntegerConversions(BI, Builtin, ResultsInError); } case BuiltinValueKind::IntToFPWithOverflow: { // Get the value. It should be a constant in most cases. // Note, this will not always be a constant, for example, when analyzing // _convertFromBuiltinIntegerLiteral function itself. auto *V = dyn_cast<IntegerLiteralInst>(Args[0]); if (!V) return nullptr; APInt SrcVal = V->getValue(); Type DestTy = Builtin.Types[1]; APFloat TruncVal( DestTy->castTo<BuiltinFloatType>()->getAPFloatSemantics()); APFloat::opStatus ConversionStatus = TruncVal.convertFromAPInt( SrcVal, /*isSigned=*/true, APFloat::rmNearestTiesToEven); SILLocation Loc = BI->getLoc(); const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>(); // Check for overflow. if (ConversionStatus & APFloat::opOverflow) { // If we overflow and are not asked for diagnostics, just return nullptr. if (!ResultsInError.hasValue()) return nullptr; SmallString<10> SrcAsString; SrcVal.toString(SrcAsString, /*radix*/10, true /*isSigned*/); // Otherwise emit our diagnostics and then return nullptr. diagnose(M.getASTContext(), Loc.getSourceLoc(), diag::integer_literal_overflow, CE ? CE->getType() : DestTy, SrcAsString); ResultsInError = Optional<bool>(true); return nullptr; } // The call to the builtin should be replaced with the constant value. SILBuilderWithScope B(BI); return B.createFloatLiteral(Loc, BI->getType(), TruncVal); } case BuiltinValueKind::FPTrunc: { // Get the value. It should be a constant in most cases. auto *V = dyn_cast<FloatLiteralInst>(Args[0]); if (!V) return nullptr; APFloat TruncVal = V->getValue(); Type DestTy = Builtin.Types[1]; bool losesInfo; APFloat::opStatus ConversionStatus = TruncVal.convert( DestTy->castTo<BuiltinFloatType>()->getAPFloatSemantics(), APFloat::rmNearestTiesToEven, &losesInfo); SILLocation Loc = BI->getLoc(); // Check if conversion was successful. if (ConversionStatus != APFloat::opStatus::opOK && ConversionStatus != APFloat::opStatus::opInexact) { return nullptr; } // The call to the builtin should be replaced with the constant value. SILBuilderWithScope B(BI); return B.createFloatLiteral(Loc, BI->getType(), TruncVal); } case BuiltinValueKind::AssumeNonNegative: { auto *V = dyn_cast<IntegerLiteralInst>(Args[0]); if (!V) return nullptr; APInt VInt = V->getValue(); if (VInt.isNegative() && ResultsInError.hasValue()) { diagnose(M.getASTContext(), BI->getLoc().getSourceLoc(), diag::wrong_non_negative_assumption, VInt.toString(/*Radix*/ 10, /*Signed*/ true)); ResultsInError = Optional<bool>(true); } return V; } } return nullptr; }
/// \brief Fold binary operations. /// /// The list of operations we constant fold might not be complete. Start with /// folding the operations used by the standard library. static SILInstruction *constantFoldBinary(BuiltinInst *BI, BuiltinValueKind ID, Optional<bool> &ResultsInError) { switch (ID) { default: llvm_unreachable("Not all BUILTIN_BINARY_OPERATIONs are covered!"); // Not supported yet (not easily computable for APInt). case BuiltinValueKind::ExactSDiv: case BuiltinValueKind::ExactUDiv: return nullptr; // Not supported now. case BuiltinValueKind::FRem: return nullptr; // Fold constant division operations and report div by zero. case BuiltinValueKind::SDiv: case BuiltinValueKind::SRem: case BuiltinValueKind::UDiv: case BuiltinValueKind::URem: { return constantFoldAndCheckDivision(BI, ID, ResultsInError); } // Are there valid uses for these in stdlib? case BuiltinValueKind::Add: case BuiltinValueKind::Mul: case BuiltinValueKind::Sub: return nullptr; case BuiltinValueKind::And: case BuiltinValueKind::AShr: case BuiltinValueKind::LShr: case BuiltinValueKind::Or: case BuiltinValueKind::Shl: case BuiltinValueKind::Xor: { OperandValueArrayRef Args = BI->getArguments(); auto *LHS = dyn_cast<IntegerLiteralInst>(Args[0]); auto *RHS = dyn_cast<IntegerLiteralInst>(Args[1]); if (!RHS || !LHS) return nullptr; APInt LHSI = LHS->getValue(); APInt RHSI = RHS->getValue(); bool IsShift = ID == BuiltinValueKind::AShr || ID == BuiltinValueKind::LShr || ID == BuiltinValueKind::Shl; // Reject shifting all significant bits if (IsShift && RHSI.getZExtValue() >= LHSI.getBitWidth()) { diagnose(BI->getModule().getASTContext(), RHS->getLoc().getSourceLoc(), diag::shifting_all_significant_bits); ResultsInError = Optional<bool>(true); return nullptr; } APInt ResI = constantFoldBitOperation(LHSI, RHSI, ID); // Add the literal instruction to represent the result. SILBuilderWithScope B(BI); return B.createIntegerLiteral(BI->getLoc(), BI->getType(), ResI); } case BuiltinValueKind::FAdd: case BuiltinValueKind::FDiv: case BuiltinValueKind::FMul: case BuiltinValueKind::FSub: { OperandValueArrayRef Args = BI->getArguments(); auto *LHS = dyn_cast<FloatLiteralInst>(Args[0]); auto *RHS = dyn_cast<FloatLiteralInst>(Args[1]); if (!RHS || !LHS) return nullptr; APFloat LHSF = LHS->getValue(); APFloat RHSF = RHS->getValue(); switch (ID) { default: llvm_unreachable("Not all cases are covered!"); case BuiltinValueKind::FAdd: LHSF.add(RHSF, APFloat::rmNearestTiesToEven); break; case BuiltinValueKind::FDiv: LHSF.divide(RHSF, APFloat::rmNearestTiesToEven); break; case BuiltinValueKind::FMul: LHSF.multiply(RHSF, APFloat::rmNearestTiesToEven); break; case BuiltinValueKind::FSub: LHSF.subtract(RHSF, APFloat::rmNearestTiesToEven); break; } // Add the literal instruction to represent the result. SILBuilderWithScope B(BI); return B.createFloatLiteral(BI->getLoc(), BI->getType(), LHSF); } } }