Esempio n. 1
0
float3
OpenSteer::SteerLibrary::
steerForWander (const AbstractVehicle& v, float dt)
{
    // random walk WanderSide and WanderUp between -1 and +1
    const float speed = 12 * dt; // maybe this (12) should be an argument?
    WanderSide = scalarRandomWalk (WanderSide, speed, -1, +1);
    WanderUp   = scalarRandomWalk (WanderUp,   speed, -1, +1);

    // return a pure lateral steering vector: (+/-Side) + (+/-Up)
    return float3_add(float3_scalar_multiply(v.side(), WanderSide), float3_scalar_multiply(v.up(), WanderUp));
}
Esempio n. 2
0
OpenSteer::Vec3 
OpenSteer::Obstacle::PathIntersection::
steerToAvoidIfNeeded (const AbstractVehicle& vehicle,
                      const float minTimeToCollision) const
{
    // if nearby intersection found, steer away from it, otherwise no steering
    const float minDistanceToCollision = minTimeToCollision * vehicle.speed();
    if (intersect && (distance < minDistanceToCollision))
    {
        // compute avoidance steering force: take the component of
        // steerHint which is lateral (perpendicular to vehicle's
        // forward direction), set its length to vehicle's maxForce
        Vec3 lateral = steerHint.perpendicularComponent (vehicle.forward ());
        if (lateral == Vec3::zero)
            lateral = vehicle.side ();
        return lateral.normalize () * vehicle.maxForce ();
    }
    else
    {
        return Vec3::zero;
    }
}
Esempio n. 3
0
float3
OpenSteer::SteerLibrary::
steerToAvoidNeighbors (const AbstractVehicle& v, 
					   const float minTimeToCollision,
                       const AVGroup& others)
{
    // first priority is to prevent immediate interpenetration
    const float3 separation = steerToAvoidCloseNeighbors (v, 0, others);
    
	if (!float3_equals(separation, float3_zero()))
		return separation;

    // otherwise, go on to consider potential future collisions
    float steer = 0;
    AbstractVehicle* threat = NULL;

    // Time (in seconds) until the most immediate collision threat found
    // so far.  Initial value is a threshold: don't look more than this
    // many frames into the future.
    float minTime = minTimeToCollision;

    // xxx solely for annotation
    float3 xxxThreatPositionAtNearestApproach;
    float3 xxxOurPositionAtNearestApproach;

    // for each of the other vehicles, determine which (if any)
    // pose the most immediate threat of collision.
    for (AVIterator i = others.begin(); i != others.end(); i++)
    {
        AbstractVehicle& other = **i;
        if (&other != &v)
        {	
            // avoid when future positions are this close (or less)
            const float collisionDangerThreshold = v.radius() * 2;

            // predicted time until nearest approach of "this" and "other"
            const float time = predictNearestApproachTime (v, other);

            // If the time is in the future, sooner than any other
            // threatened collision...
            if ((time >= 0) && (time < minTime))
            {
                // if the two will be close enough to collide,
                // make a note of it
                if (computeNearestApproachPositions (v, other, time)
                    < collisionDangerThreshold)
                {
                    minTime = time;
                    threat = &other;
                    xxxThreatPositionAtNearestApproach
                        = hisPositionAtNearestApproach;
                    xxxOurPositionAtNearestApproach
                        = ourPositionAtNearestApproach;
                }
            }
        }
    }

    // if a potential collision was found, compute steering to avoid
    if (threat != NULL)
    {
        // parallel: +1, perpendicular: 0, anti-parallel: -1
        float parallelness = float3_dot(make_float3(v.forward()), make_float3(threat->forward()));
        float angle = 0.707f;

        if (parallelness < -angle)
        {
            // anti-parallel "head on" paths:
            // steer away from future threat position
            float3 offset = float3_subtract(xxxThreatPositionAtNearestApproach, make_float3(v.position()));
            float sideDot = float3_dot(offset, v.side());
            steer = (sideDot > 0) ? -1.0f : 1.0f;
        }
        else
        {
            if (parallelness > angle)
            {
                // parallel paths: steer away from threat
                float3 offset = float3_subtract(make_float3(threat->position()), make_float3(v.position()));
                float sideDot = float3_dot(offset, v.side());
                steer = (sideDot > 0) ? -1.0f : 1.0f;
            }
            else
            {
                // perpendicular paths: steer behind threat
                // (only the slower of the two does this)
                if (threat->speed() <= v.speed())
                {
                    float sideDot = float3_dot(v.side(), threat->velocity());
                    steer = (sideDot > 0) ? -1.0f : 1.0f;
                }
            }
        }

        annotateAvoidNeighbor (*threat,
                               steer,
                               xxxOurPositionAtNearestApproach,
                               xxxThreatPositionAtNearestApproach);
    }

	return float3_scalar_multiply(v.side(), steer);
}