// Initialize global alignment of all images. int initGlobalAlign(const vector<FeatureSet> &fs, int minMatches, MotionModel m, float f, int width, int height, int nRANSAC, double RANSACthresh, AlignMatrix &am, vector<CTransform3x3> &ms) { int n = fs.size(); CTransform3x3 transMat; vector<FeatureMatch> matches; // create the n-by-n alignment matrix am.resize(n); for (int i=0; i<n; i++) am[i].resize(n); for (int i=0; i<n; i++) { for (int j=0; j<n; j++) { if (i != j) { printf("matching image %d with image %d, ", i, j); // BEGIN TODO // write code to fill in the information for am[i][j] // // you'll need to call your feature matching routine, // then your pair alignment routine matches.clear(); int count = 0; FeatureSet f1 = fs[i]; int m = f1.size(); FeatureSet f2 = fs[j]; int n = f2.size(); double d; double dBest[2]; int idBest; FeatureMatch feamatch; for (int i = 0; i < m; i++) { dBest[0] = 1e64; dBest[1] = 1e64 + 1; idBest = 0; for (int j = 0; j < n; j++) { d = Euclidean(f1[i], f2[j]); if (d < dBest[0]) { dBest[1] = dBest[0]; dBest[0] = d; idBest = f2[j].id; } else if (d < dBest[1]) { dBest[1] = d; } } if (sqrt(dBest[0] / dBest[1]) < 1.0) { feamatch.id = idBest; matches.push_back(feamatch); count++; } else { feamatch.id = -1; matches.push_back(feamatch); } } if (count < minMatches) { am[i][j].matches = matches; am[i][j].inliers.clear(); am[i][j].r = transMat; } else { am[i][j].matches = matches; alignImagePair(fs[i], fs[j], matches, eRotate3D, f, width, height, nRANSAC, RANSACthresh, transMat, am[i][j].inliers); am[i][j].r = transMat; } // END TODO printf("%d inliers\n", am[i][j].inliers.size()); if ((int) am[i][j].inliers.size() < minMatches) am[i][j].inliers.clear(); } } } vector<AlignmentImage> nodes(n); for (int i=1; i<n; i++) { nodes[i].added = false; nodes[i].nBest = 0; nodes[i].imageID = i; nodes[i].parentID = -1; } // create the image heap ImageHeap heap(nodes); // add the first image and update the match quality of // its neighbors nodes[0].added = true; for (int j=1; j<n; j++) { int nMatches = am[0][j].inliers.size(); if (nodes[j].nBest < nMatches) { heap.increaseKey(nodes[j].heapIndex, nMatches); nodes[j].parentID = 0; } } AlignmentImage *nextImage; // add the rest of the images for (int i=0; i<n-1; i++) { nextImage = heap.extractMax(); if (nextImage->nBest == 0) { // image set seems to be disconnected return -1; } nextImage->added = true; int id = nextImage->imageID; int pid = nextImage->parentID; // compute the global alignment of the extracted image nextImage->r = am[pid][id].r * nodes[pid].r; // update the match quality for its neighbor images for (int j=0; j<n; j++) { if ((id != j) && (!nodes[j].added)) { int nMatches = am[id][j].inliers.size(); if (nodes[j].nBest < nMatches) { heap.increaseKey(nodes[j].heapIndex, nMatches); nodes[j].parentID = id; } } } } ms.clear(); // put the global transformations into the output array for (int i=0; i<n; i++) { ms.push_back(nodes[i].r); } return 0; }
// Initialize global alignment of all images. int initGlobalAlign(const vector<FeatureSet> &fs, int minMatches, MotionModel m, float f, const vector< pair<int,int> >& WH, int nRANSAC, double RANSACthresh, AlignMatrix &am, vector<CTransform3x3> &ms) { int n = fs.size(); // create the n-by-n alignment matrix am.resize(n); for (int i=0; i<n; i++) am[i].resize(n); vector<FeatureMatch> matches; CTransform3x3 transMat; for (int i=0; i<n; i++) { for (int j=0; j<n; j++) { if (i != j) { printf("matching image %d with image %d, ", i, j); // BEGIN TODO // write code to fill in the information for am[i][j] // // you'll need to call your feature matching routine, // then your pair alignment routine matches.clear(); int count = MatchFeaturesByDistRatio(fs[i], fs[j],matches); if(count < minMatches) { am[i][j].matches = matches; am[i][j].inliers.clear(); am[i][j].r = transMat; } else { am[i][j].matches = matches; if(ApproximateRotation) am[i][j].inliers = alignPair(fs[i],fs[j],matches,eRotate3D,f,WH[i],WH[j],nRANSAC,RANSACthresh,transMat); else am[i][j].inliers = MyalignPair(fs[i],fs[j],matches,eRotate3D,f,WH[i],WH[j],nRANSAC,RANSACthresh,transMat); am[i][j].r = transMat; } // END TODO printf("%d inliers\n", am[i][j].inliers.size()); if ((int) am[i][j].inliers.size() < minMatches) am[i][j].inliers.clear(); } } } vector<AlignmentImage> nodes(n); for (int i=1; i<n; i++) { nodes[i].added = false; nodes[i].nBest = 0; nodes[i].imageID = i; nodes[i].parentID = -1; } // create the image heap ImageHeap heap(nodes); // add the first image and update the match quality of // its neighbors nodes[0].added = true; for (int j=1; j<n; j++) { int nMatches = am[0][j].inliers.size(); if (nodes[j].nBest < nMatches) { heap.increaseKey(nodes[j].heapIndex, nMatches); nodes[j].parentID = 0; } } AlignmentImage *nextImage; // add the rest of the images for (int i=0; i<n-1; i++) { nextImage = heap.extractMax(); if (nextImage->nBest == 0) { // image set seems to be disconnected return -1; } nextImage->added = true; int id = nextImage->imageID; int pid = nextImage->parentID; // compute the global alignment of the extracted image nextImage->r = am[pid][id].r * nodes[pid].r; // update the match quality for its neighbor images for (int j=0; j<n; j++) { if ((id != j) && (!nodes[j].added)) { int nMatches = am[id][j].inliers.size(); if (nodes[j].nBest < nMatches) { heap.increaseKey(nodes[j].heapIndex, nMatches); nodes[j].parentID = id; } } } } ms.clear(); // put the global transformations into the output array for (int i=0; i<n; i++) { ms.push_back(nodes[i].r); } return 0; }