Esempio n. 1
0
  void ProcessBlock(AudioNodeStream* aStream,
                    GraphTime aFrom,
                    const AudioBlock& aInput,
                    AudioBlock* aOutput,
                    bool* aFinished) override
  {
    // This node is not connected to anything. Per spec, we don't fire the
    // onaudioprocess event. We also want to clear out the input and output
    // buffer queue, and output a null buffer.
    if (!mIsConnected) {
      aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
      mSharedBuffers->Reset();
      mInputWriteIndex = 0;
      return;
    }

    // The input buffer is allocated lazily when non-null input is received.
    if (!aInput.IsNull() && !mInputBuffer) {
      mInputBuffer = ThreadSharedFloatArrayBufferList::
        Create(mInputChannelCount, mBufferSize, fallible);
      if (mInputBuffer && mInputWriteIndex) {
        // Zero leading for null chunks that were skipped.
        for (uint32_t i = 0; i < mInputChannelCount; ++i) {
          float* channelData = mInputBuffer->GetDataForWrite(i);
          PodZero(channelData, mInputWriteIndex);
        }
      }
    }

    // First, record our input buffer, if its allocation succeeded.
    uint32_t inputChannelCount = mInputBuffer ? mInputBuffer->GetChannels() : 0;
    for (uint32_t i = 0; i < inputChannelCount; ++i) {
      float* writeData = mInputBuffer->GetDataForWrite(i) + mInputWriteIndex;
      if (aInput.IsNull()) {
        PodZero(writeData, aInput.GetDuration());
      } else {
        MOZ_ASSERT(aInput.GetDuration() == WEBAUDIO_BLOCK_SIZE, "sanity check");
        MOZ_ASSERT(aInput.ChannelCount() == inputChannelCount);
        AudioBlockCopyChannelWithScale(static_cast<const float*>(aInput.mChannelData[i]),
                                       aInput.mVolume, writeData);
      }
    }
    mInputWriteIndex += aInput.GetDuration();

    // Now, see if we have data to output
    // Note that we need to do this before sending the buffer to the main
    // thread so that our delay time is updated.
    *aOutput = mSharedBuffers->GetOutputBuffer();

    if (mInputWriteIndex >= mBufferSize) {
      SendBuffersToMainThread(aStream, aFrom);
      mInputWriteIndex -= mBufferSize;
    }
  }
Esempio n. 2
0
void
DelayBuffer::Write(const AudioBlock& aInputChunk)
{
  // We must have a reference to the buffer if there are channels
  MOZ_ASSERT(aInputChunk.IsNull() == !aInputChunk.ChannelCount());
#ifdef DEBUG
  MOZ_ASSERT(!mHaveWrittenBlock);
  mHaveWrittenBlock = true;
#endif

  if (!EnsureBuffer()) {
    return;
  }

  if (mCurrentChunk == mLastReadChunk) {
    mLastReadChunk = -1; // invalidate cache
  }
  mChunks[mCurrentChunk] = aInputChunk.AsAudioChunk();
}
void
AudioNodeExternalInputStream::ProcessInput(GraphTime aFrom, GraphTime aTo,
                                           uint32_t aFlags)
{
  // According to spec, number of outputs is always 1.
  MOZ_ASSERT(mLastChunks.Length() == 1);

  // GC stuff can result in our input stream being destroyed before this stream.
  // Handle that.
  if (!IsEnabled() || mInputs.IsEmpty() || mPassThrough) {
    mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
    return;
  }

  MOZ_ASSERT(mInputs.Length() == 1);

  MediaStream* source = mInputs[0]->GetSource();
  AutoTArray<AudioSegment,1> audioSegments;
  uint32_t inputChannels = 0;
  for (StreamTracks::TrackIter tracks(source->mTracks);
       !tracks.IsEnded(); tracks.Next()) {
    const StreamTracks::Track& inputTrack = *tracks;
    if (!mInputs[0]->PassTrackThrough(tracks->GetID())) {
      continue;
    }

    if (inputTrack.GetSegment()->GetType() == MediaSegment::VIDEO) {
      MOZ_ASSERT(false, "AudioNodeExternalInputStream shouldn't have video tracks");
      continue;
    }

    const AudioSegment& inputSegment =
        *static_cast<AudioSegment*>(inputTrack.GetSegment());
    if (inputSegment.IsNull()) {
      continue;
    }

    AudioSegment& segment = *audioSegments.AppendElement();
    GraphTime next;
    for (GraphTime t = aFrom; t < aTo; t = next) {
      MediaInputPort::InputInterval interval = mInputs[0]->GetNextInputInterval(t);
      interval.mEnd = std::min(interval.mEnd, aTo);
      if (interval.mStart >= interval.mEnd)
        break;
      next = interval.mEnd;

      // We know this stream does not block during the processing interval ---
      // we're not finished, we don't underrun, and we're not suspended.
      StreamTime outputStart = GraphTimeToStreamTime(interval.mStart);
      StreamTime outputEnd = GraphTimeToStreamTime(interval.mEnd);
      StreamTime ticks = outputEnd - outputStart;

      if (interval.mInputIsBlocked) {
        segment.AppendNullData(ticks);
      } else {
        // The input stream is not blocked in this interval, so no need to call
        // GraphTimeToStreamTimeWithBlocking.
        StreamTime inputStart =
          std::min(inputSegment.GetDuration(),
                   source->GraphTimeToStreamTime(interval.mStart));
        StreamTime inputEnd =
          std::min(inputSegment.GetDuration(),
                   source->GraphTimeToStreamTime(interval.mEnd));

        segment.AppendSlice(inputSegment, inputStart, inputEnd);
        // Pad if we're looking past the end of the track
        segment.AppendNullData(ticks - (inputEnd - inputStart));
      }
    }

    for (AudioSegment::ChunkIterator iter(segment); !iter.IsEnded(); iter.Next()) {
      inputChannels = GetAudioChannelsSuperset(inputChannels, iter->ChannelCount());
    }
  }

  uint32_t accumulateIndex = 0;
  if (inputChannels) {
    DownmixBufferType downmixBuffer;
    ASSERT_ALIGNED16(downmixBuffer.Elements());
    for (uint32_t i = 0; i < audioSegments.Length(); ++i) {
      AudioBlock tmpChunk;
      ConvertSegmentToAudioBlock(&audioSegments[i], &tmpChunk, inputChannels);
      if (!tmpChunk.IsNull()) {
        if (accumulateIndex == 0) {
          mLastChunks[0].AllocateChannels(inputChannels);
        }
        AccumulateInputChunk(accumulateIndex, tmpChunk, &mLastChunks[0], &downmixBuffer);
        accumulateIndex++;
      }
    }
  }
  if (accumulateIndex == 0) {
    mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
  }
}