bool SHAPE_LINE_CHAIN::PointInside( const VECTOR2I& aPt, int aAccuracy ) const { BOX2I bbox = BBox(); bbox.Inflate( aAccuracy ); if( !m_closed || PointCount() < 3 || !BBox().Contains( aPt ) ) return false; bool inside = false; /** * To check for interior points, we draw a line in the positive x direction from * the point. If it intersects an even number of segments, the point is outside the * line chain (it had to first enter and then exit). Otherwise, it is inside the chain. * * Note: slope might be denormal here in the case of a horizontal line but we require our * y to move from above to below the point (or vice versa) */ for( int i = 0; i < PointCount(); i++ ) { const auto p1 = CPoint( i ); const auto p2 = CPoint( i + 1 ); // CPoint wraps, so ignore counts const auto diff = p2 - p1; if( diff.y != 0 ) { const int d = rescale( diff.x, ( aPt.y - p1.y ), diff.y ); if( ( ( p1.y > aPt.y ) != ( p2.y > aPt.y ) ) && ( aPt.x - p1.x < d ) ) inside = !inside; } } return inside && !PointOnEdge( aPt, aAccuracy ); }
void DIALOG_PAD_PROPERTIES::redraw() { if( m_parent->IsGalCanvasActive() ) { m_dummyPad->ViewUpdate(); BOX2I bbox = m_dummyPad->ViewBBox(); if( bbox.GetSize().x > 0 && bbox.GetSize().y > 0 ) { // gives a size to the full drawable area BOX2I drawbox; drawbox.Move( m_dummyPad->GetPosition() ); drawbox.Inflate( bbox.GetSize().x*2, bbox.GetSize().y*2 ); m_panelShowPadGal->GetView()->SetBoundary( drawbox ); // Autozoom m_panelShowPadGal->GetView()->SetViewport( BOX2D( bbox.GetOrigin(), bbox.GetSize() ) ); // Add a margin m_panelShowPadGal->GetView()->SetScale( m_panelShowPadGal->GetView()->GetScale() * 0.7 ); m_panelShowPadGal->Refresh(); } } else { m_panelShowPad->Refresh(); } }
const BOX2I SHAPE_ARC::BBox( int aClearance ) const { BOX2I bbox; std::vector<VECTOR2I> points; points.push_back( m_pc ); points.push_back( m_p0 ); points.push_back( GetP1() ); bbox.Compute( points ); if( aClearance != 0 ) bbox.Inflate( aClearance ); return bbox; }
const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const { BOX2I bb; for( unsigned i = 0; i < m_polys.size(); i++ ) { if( i == 0 ) bb = m_polys[i][0].BBox(); else bb.Merge( m_polys[i][0].BBox() ); } bb.Inflate( aClearance ); return bb; }
bool GERBVIEW_SELECTION_TOOL::selectionContains( const VECTOR2I& aPoint ) const { const unsigned GRIP_MARGIN = 20; VECTOR2D margin = getView()->ToWorld( VECTOR2D( GRIP_MARGIN, GRIP_MARGIN ), false ); // Check if the point is located within any of the currently selected items bounding boxes for( auto item : m_selection ) { BOX2I itemBox = item->ViewBBox(); itemBox.Inflate( margin.x, margin.y ); // Give some margin for gripping an item if( itemBox.Contains( aPoint ) ) return true; } return false; }
bool SELECTION_TOOL::selectionContains( const VECTOR2I& aPoint ) const { const unsigned GRIP_MARGIN = 20; VECTOR2D margin = getView()->ToWorld( VECTOR2D( GRIP_MARGIN, GRIP_MARGIN ), false ); // Check if the point is located within any of the currently selected items bounding boxes for( unsigned int i = 0; i < m_selection.items.GetCount(); ++i ) { BOARD_ITEM* item = m_selection.Item<BOARD_ITEM>( i ); BOX2I itemBox = item->ViewBBox(); itemBox.Inflate( margin.x, margin.y ); // Give some margin for gripping an item if( itemBox.Contains( aPoint ) ) return true; } return false; }
const BOX2I ROUTER_PREVIEW_ITEM::ViewBBox() const { BOX2I bbox; switch( m_type ) { case PR_SHAPE: bbox = m_shape->BBox(); bbox.Inflate( m_width / 2 ); return bbox; case PR_POINT: bbox = BOX2I ( m_pos - VECTOR2I( 100000, 100000 ), VECTOR2I( 200000, 200000 ) ); return bbox; default: break; } return bbox; }
void ZONE_FILLER::buildUnconnectedThermalStubsPolygonList( SHAPE_POLY_SET& aCornerBuffer, const ZONE_CONTAINER* aZone, const SHAPE_POLY_SET& aRawFilledArea, double aArcCorrection, double aRoundPadThermalRotation ) const { SHAPE_LINE_CHAIN spokes; BOX2I itemBB; VECTOR2I ptTest[4]; auto zoneBB = aRawFilledArea.BBox(); int zone_clearance = aZone->GetZoneClearance(); int biggest_clearance = m_board->GetDesignSettings().GetBiggestClearanceValue(); biggest_clearance = std::max( biggest_clearance, zone_clearance ); zoneBB.Inflate( biggest_clearance ); // half size of the pen used to draw/plot zones outlines int pen_radius = aZone->GetMinThickness() / 2; for( auto module : m_board->Modules() ) { for( auto pad : module->Pads() ) { // Rejects non-standard pads with tht-only thermal reliefs if( aZone->GetPadConnection( pad ) == PAD_ZONE_CONN_THT_THERMAL && pad->GetAttribute() != PAD_ATTRIB_STANDARD ) continue; if( aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THERMAL && aZone->GetPadConnection( pad ) != PAD_ZONE_CONN_THT_THERMAL ) continue; if( !pad->IsOnLayer( aZone->GetLayer() ) ) continue; if( pad->GetNetCode() != aZone->GetNetCode() ) continue; // Calculate thermal bridge half width int thermalBridgeWidth = aZone->GetThermalReliefCopperBridge( pad ) - aZone->GetMinThickness(); if( thermalBridgeWidth <= 0 ) continue; // we need the thermal bridge half width // with a small extra size to be sure we create a stub // slightly larger than the actual stub thermalBridgeWidth = ( thermalBridgeWidth + 4 ) / 2; int thermalReliefGap = aZone->GetThermalReliefGap( pad ); itemBB = pad->GetBoundingBox(); itemBB.Inflate( thermalReliefGap ); if( !( itemBB.Intersects( zoneBB ) ) ) continue; // Thermal bridges are like a segment from a starting point inside the pad // to an ending point outside the pad // calculate the ending point of the thermal pad, outside the pad VECTOR2I endpoint; endpoint.x = ( pad->GetSize().x / 2 ) + thermalReliefGap; endpoint.y = ( pad->GetSize().y / 2 ) + thermalReliefGap; // Calculate the starting point of the thermal stub // inside the pad VECTOR2I startpoint; int copperThickness = aZone->GetThermalReliefCopperBridge( pad ) - aZone->GetMinThickness(); if( copperThickness < 0 ) copperThickness = 0; // Leave a small extra size to the copper area inside to pad copperThickness += KiROUND( IU_PER_MM * 0.04 ); startpoint.x = std::min( pad->GetSize().x, copperThickness ); startpoint.y = std::min( pad->GetSize().y, copperThickness ); startpoint.x /= 2; startpoint.y /= 2; // This is a CIRCLE pad tweak // for circle pads, the thermal stubs orientation is 45 deg double fAngle = pad->GetOrientation(); if( pad->GetShape() == PAD_SHAPE_CIRCLE ) { endpoint.x = KiROUND( endpoint.x * aArcCorrection ); endpoint.y = endpoint.x; fAngle = aRoundPadThermalRotation; } // contour line width has to be taken into calculation to avoid "thermal stub bleed" endpoint.x += pen_radius; endpoint.y += pen_radius; // compute north, south, west and east points for zone connection. ptTest[0] = VECTOR2I( 0, endpoint.y ); // lower point ptTest[1] = VECTOR2I( 0, -endpoint.y ); // upper point ptTest[2] = VECTOR2I( endpoint.x, 0 ); // right point ptTest[3] = VECTOR2I( -endpoint.x, 0 ); // left point // Test all sides for( int i = 0; i < 4; i++ ) { // rotate point RotatePoint( ptTest[i], fAngle ); // translate point ptTest[i] += pad->ShapePos(); if( aRawFilledArea.Contains( ptTest[i] ) ) continue; spokes.Clear(); // polygons are rectangles with width of copper bridge value switch( i ) { case 0: // lower stub spokes.Append( -thermalBridgeWidth, endpoint.y ); spokes.Append( +thermalBridgeWidth, endpoint.y ); spokes.Append( +thermalBridgeWidth, startpoint.y ); spokes.Append( -thermalBridgeWidth, startpoint.y ); break; case 1: // upper stub spokes.Append( -thermalBridgeWidth, -endpoint.y ); spokes.Append( +thermalBridgeWidth, -endpoint.y ); spokes.Append( +thermalBridgeWidth, -startpoint.y ); spokes.Append( -thermalBridgeWidth, -startpoint.y ); break; case 2: // right stub spokes.Append( endpoint.x, -thermalBridgeWidth ); spokes.Append( endpoint.x, thermalBridgeWidth ); spokes.Append( +startpoint.x, thermalBridgeWidth ); spokes.Append( +startpoint.x, -thermalBridgeWidth ); break; case 3: // left stub spokes.Append( -endpoint.x, -thermalBridgeWidth ); spokes.Append( -endpoint.x, thermalBridgeWidth ); spokes.Append( -startpoint.x, thermalBridgeWidth ); spokes.Append( -startpoint.x, -thermalBridgeWidth ); break; } aCornerBuffer.NewOutline(); // add computed polygon to list for( int ic = 0; ic < spokes.PointCount(); ic++ ) { auto cpos = spokes.CPoint( ic ); RotatePoint( cpos, fAngle ); // Rotate according to module orientation cpos += pad->ShapePos(); // Shift origin to position aCornerBuffer.Append( cpos ); } } } } }
OPT_BOX2I PNS_LINE::ChangedArea( const PNS_LINE* aOther ) const { BOX2I area; bool areaDefined = false; int i_start = -1; int i_end_self = -1, i_end_other = -1; SHAPE_LINE_CHAIN self( m_line ); self.Simplify(); SHAPE_LINE_CHAIN other( aOther->m_line ); other.Simplify(); int np_self = self.PointCount(); int np_other = other.PointCount(); int n = std::min( np_self, np_other ); for( int i = 0; i < n; i++ ) { const VECTOR2I p1 = self.CPoint( i ); const VECTOR2I p2 = other.CPoint( i ); if( p1 != p2 ) { if( i != n - 1 ) { SEG s = self.CSegment( i ); if( !s.Contains( p2 ) ) { i_start = i; break; } } else { i_start = i; break; } } } for( int i = 0; i < n; i++ ) { const VECTOR2I p1 = self.CPoint( np_self - 1 - i ); const VECTOR2I p2 = other.CPoint( np_other - 1 - i ); if( p1 != p2 ) { i_end_self = np_self - 1 - i; i_end_other = np_other - 1 - i; break; } } if( i_start < 0 ) i_start = n; if( i_end_self < 0 ) i_end_self = np_self - 1; if( i_end_other < 0 ) i_end_other = np_other - 1; for( int i = i_start; i <= i_end_self; i++ ) extendBox( area, areaDefined, self.CPoint( i ) ); for( int i = i_start; i <= i_end_other; i++ ) extendBox( area, areaDefined, other.CPoint( i ) ); if( areaDefined ) { area.Inflate( std::max( Width(), aOther->Width() ) ); return area; } return OPT_BOX2I(); }