void thundersvm_train_after_parse(char **option, int len, char *file_name){ CMDParser parser; parser.parse_python(len, option); if(!parser.check_parameter()) return; char model_file_path[1024] = DATASET_DIR; // strcat(model_file_path, "../python/"); strcpy(model_file_path, file_name); thundersvm_train_sub(dataset_python, parser, model_file_path); }
void thundersvm_predict_after_parse(char *model_file_name, char *output_file_name, char **option, int len){ CMDParser parser; parser.parse_python(len, option); char model_file_path[1024] = DATASET_DIR; char output_file_path[1024] = DATASET_DIR; // strcat(model_file_path, "../python/"); // strcat(output_file_path, "../python/"); strcpy(model_file_path, model_file_name); strcpy(output_file_path, output_file_name); thundersvm_predict_sub(dataset_python, parser, model_file_path, output_file_path); }
void thundersvm_predict(int argc, char **argv){ CMDParser parser; parser.parse_command_line(argc, argv); char model_file_path[1024] = DATASET_DIR; char predict_file_path[1024] = DATASET_DIR; char output_file_path[1024] = DATASET_DIR; // strcat(model_file_path, "../python/"); // strcat(predict_file_path, "../python/"); // strcat(output_file_path, "../python/"); strcpy(model_file_path, parser.svmpredict_model_file_name.c_str()); strcpy(predict_file_path, parser.svmpredict_input_file.c_str()); strcpy(output_file_path, parser.svmpredict_output_file.c_str()); DataSet predict_dataset; predict_dataset.load_from_file(predict_file_path); thundersvm_predict_sub(predict_dataset, parser, model_file_path, output_file_path); }
void thundersvm_train(int argc, char **argv) { CMDParser parser; parser.parse_command_line(argc, argv); /* parser.param_cmd.svm_type = SvmParam::NU_SVC; parser.param_cmd.kernel_type = SvmParam::RBF; parser.param_cmd.C = 100; parser.param_cmd.gamma = 0; parser.param_cmd.nu = 0.1; parser.param_cmd.epsilon = 0.001; */ DataSet train_dataset; char input_file_path[1024] = DATASET_DIR; char model_file_path[1024] = DATASET_DIR; // strcat(input_file_path, "../python/"); // strcat(model_file_path, "../python/"); strcpy(input_file_path, parser.svmtrain_input_file_name.c_str()); strcpy(model_file_path, parser.model_file_name.c_str()); train_dataset.load_from_file(input_file_path); thundersvm_train_sub(train_dataset, parser, model_file_path); return; }
void thundersvm_train_matlab(int argc, char **argv) { CMDParser parser; parser.parse_command_line(argc, argv); /* parser.param_cmd.svm_type = SvmParam::NU_SVC; parser.param_cmd.kernel_type = SvmParam::RBF; parser.param_cmd.C = 100; parser.param_cmd.gamma = 0; parser.param_cmd.nu = 0.1; parser.param_cmd.epsilon = 0.001; */ DataSet train_dataset; char input_file_path[1024] = DATASET_DIR; char model_file_path[1024] = DATASET_DIR; strcat(input_file_path, parser.svmtrain_input_file_name); strcat(model_file_path, parser.model_file_name); train_dataset.load_from_file(input_file_path); SvmModel *model = nullptr; switch (parser.param_cmd.svm_type) { case SvmParam::C_SVC: model = new SVC(); break; case SvmParam::NU_SVC: model = new NuSVC(); break; case SvmParam::ONE_CLASS: model = new OneClassSVC(); break; case SvmParam::EPSILON_SVR: model = new SVR(); break; case SvmParam::NU_SVR: model = new NuSVR(); break; } //todo add this to check_parameter method if (parser.param_cmd.svm_type == SvmParam::NU_SVC) { train_dataset.group_classes(); for (int i = 0; i < train_dataset.n_classes(); ++i) { int n1 = train_dataset.count()[i]; for (int j = i + 1; j < train_dataset.n_classes(); ++j) { int n2 = train_dataset.count()[j]; if (parser.param_cmd.nu * (n1 + n2) / 2 > min(n1, n2)) { printf("specified nu is infeasible\n"); return; } } } } #ifdef USE_CUDA CUDA_CHECK(cudaSetDevice(parser.gpu_id)); #endif vector<float_type> predict_y, test_y; if (parser.do_cross_validation) { vector<float_type> test_predict = model->cross_validation(train_dataset, parser.param_cmd, parser.nr_fold); int dataset_size = test_predict.size() / 2; test_y.insert(test_y.end(), test_predict.begin(), test_predict.begin() + dataset_size); predict_y.insert(predict_y.end(), test_predict.begin() + dataset_size, test_predict.end()); } else { model->train(train_dataset, parser.param_cmd); model->save_to_file(model_file_path); //predict_y = model->predict(train_dataset.instances(), 10000); //test_y = train_dataset.y(); } /* //perform svm testing Metric *metric = nullptr; switch (parser.param_cmd.svm_type) { case SvmParam::C_SVC: case SvmParam::NU_SVC: { metric = new Accuracy(); break; } case SvmParam::EPSILON_SVR: case SvmParam::NU_SVR: { metric = new MSE(); break; } case SvmParam::ONE_CLASS: { } } if (metric) { LOG(INFO) << metric->name() << " = " << metric->score(predict_y, test_y); } */ return; }
void thundersvm_predict_matlab(int argc, char **argv){ CMDParser parser; parser.parse_command_line(argc, argv); char model_file_path[1024] = DATASET_DIR; char predict_file_path[1024] = DATASET_DIR; char output_file_path[1024] = DATASET_DIR; strcat(model_file_path, parser.svmpredict_model_file_name); strcat(predict_file_path, parser.svmpredict_input_file); strcat(output_file_path, parser.svmpredict_output_file); std::fstream file; //FILE *fp; //fp = fopen("model_file_path", "rb"); file.open(model_file_path, std::fstream::in); string feature, svm_type; //char feature[20]; //char svm_type[20]; //fscanf(fp, "%s", feature); //fscanf(fp, "%s", svm_type); file >> feature >> svm_type; CHECK_EQ(feature, "svm_type"); SvmModel *model = nullptr; Metric *metric = nullptr; if (svm_type == "c_svc") { model = new SVC(); metric = new Accuracy(); } else if (svm_type == "nu_svc") { model = new NuSVC(); metric = new Accuracy(); } else if (svm_type == "one_class") { model = new OneClassSVC(); //todo determine a metric } else if (svm_type == "epsilon_svr") { model = new SVR(); metric = new MSE(); } else if (svm_type == "nu_svr") { model = new NuSVR(); metric = new MSE(); } #ifdef USE_CUDA CUDA_CHECK(cudaSetDevice(parser.gpu_id)); #endif model->load_from_file(model_file_path); //fclose(fp); file.close(); //fp = fopen("output_file_path", "wb"); file.open(output_file_path, std::fstream::out); DataSet predict_dataset; predict_dataset.load_from_file(predict_file_path); vector<float_type> predict_y; predict_y = model->predict(predict_dataset.instances(), 10000); for (int i = 0; i < predict_y.size(); ++i) { //fprintf(fp, "%s\n", predict_y[i]); file << predict_y[i] << std::endl; } //fclose(fp); file.close(); if (metric) { LOG(INFO) << metric->name() << " = " << metric->score(predict_y, predict_dataset.y()); } }