Esempio n. 1
0
static BOOL tiCompatibleWithByRef(COMP_HANDLE CompHnd, const typeInfo& child, const typeInfo& parent)
{
    assert(parent.IsByRef());

    if (!child.IsByRef())
    {
        return FALSE;
    }

    if (child.IsReadonlyByRef() && !parent.IsReadonlyByRef())
    {
        return FALSE;
    }

    // Byrefs are compatible if the underlying types are equivalent
    typeInfo childTarget  = ::DereferenceByRef(child);
    typeInfo parentTarget = ::DereferenceByRef(parent);

    if (typeInfo::AreEquivalent(childTarget, parentTarget))
    {
        return TRUE;
    }

    // Make sure that both types have a valid m_cls
    if ((childTarget.IsType(TI_REF) || childTarget.IsType(TI_STRUCT)) &&
        (parentTarget.IsType(TI_REF) || parentTarget.IsType(TI_STRUCT)))
    {
        return CompHnd->areTypesEquivalent(childTarget.GetClassHandle(), parentTarget.GetClassHandle());
    }

    return FALSE;
}
Esempio n. 2
0
BOOL typeInfo::tiMergeToCommonParent(COMP_HANDLE CompHnd, typeInfo* pDest, const typeInfo* pSrc, bool* changed)
{
    assert(pSrc->IsDead() || typeInfo::AreEquivalent(::NormaliseForStack(*pSrc), *pSrc));
    assert(pDest->IsDead() || typeInfo::AreEquivalent(::NormaliseForStack(*pDest), *pDest));

    // Merge the auxiliary information like "this" pointer tracking, etc...

    // Remember the pre-state, so we can tell if it changed.
    *changed              = false;
    DWORD destFlagsBefore = pDest->m_flags;

    // This bit is only set if both pDest and pSrc have it set
    pDest->m_flags &= (pSrc->m_flags | ~TI_FLAG_THIS_PTR);

    // This bit is set if either pDest or pSrc have it set
    pDest->m_flags |= (pSrc->m_flags & TI_FLAG_UNINIT_OBJREF);

    // This bit is set if either pDest or pSrc have it set
    pDest->m_flags |= (pSrc->m_flags & TI_FLAG_BYREF_READONLY);

    // If the byref wasn't permanent home in both sides, then merge won't have the bit set
    pDest->m_flags &= (pSrc->m_flags | ~TI_FLAG_BYREF_PERMANENT_HOME);

    if (pDest->m_flags != destFlagsBefore)
    {
        *changed = true;
    }

    // OK the main event.  Merge the main types
    if (typeInfo::AreEquivalent(*pDest, *pSrc))
    {
        return (TRUE);
    }

    if (pDest->IsUnboxedGenericTypeVar() || pSrc->IsUnboxedGenericTypeVar())
    {
        // Should have had *pDest == *pSrc
        goto FAIL;
    }
    if (pDest->IsType(TI_REF))
    {
        if (pSrc->IsType(TI_NULL))
        { // NULL can be any reference type
            return TRUE;
        }
        if (!pSrc->IsType(TI_REF))
        {
            goto FAIL;
        }

        // Ask the EE to find the common parent,  This always succeeds since System.Object always works
        CORINFO_CLASS_HANDLE pDestClsBefore = pDest->m_cls;
        pDest->m_cls                        = CompHnd->mergeClasses(pDest->GetClassHandle(), pSrc->GetClassHandle());
        if (pDestClsBefore != pDest->m_cls)
        {
            *changed = true;
        }
        return TRUE;
    }
    else if (pDest->IsType(TI_NULL))
    {
        if (pSrc->IsType(TI_REF)) // NULL can be any reference type
        {
            *pDest   = *pSrc;
            *changed = true;
            return TRUE;
        }
        goto FAIL;
    }
    else if (pDest->IsType(TI_STRUCT))
    {
        if (pSrc->IsType(TI_STRUCT) && CompHnd->areTypesEquivalent(pDest->GetClassHandle(), pSrc->GetClassHandle()))
        {
            return TRUE;
        }
        goto FAIL;
    }
    else if (pDest->IsByRef())
    {
        return tiCompatibleWithByRef(CompHnd, *pSrc, *pDest);
    }
#ifdef _TARGET_64BIT_
    // On 64-bit targets we have precise representation for native int, so these rules
    // represent the fact that the ECMA spec permits the implicit conversion
    // between an int32 and a native int.
    else if (typeInfo::AreEquivalent(*pDest, typeInfo::nativeInt()) && pSrc->IsType(TI_INT))
    {
        return TRUE;
    }
    else if (typeInfo::AreEquivalent(*pSrc, typeInfo::nativeInt()) && pDest->IsType(TI_INT))
    {
        *pDest   = *pSrc;
        *changed = true;
        return TRUE;
    }
#endif // _TARGET_64BIT_

FAIL:
    *pDest = typeInfo();
    return FALSE;
}
Esempio n. 3
0
BOOL typeInfo::tiCompatibleWith(COMP_HANDLE     CompHnd,
                                const typeInfo& child,
                                const typeInfo& parent,
                                bool            normalisedForStack)
{
    assert(child.IsDead() || !normalisedForStack || typeInfo::AreEquivalent(::NormaliseForStack(child), child));
    assert(parent.IsDead() || !normalisedForStack || typeInfo::AreEquivalent(::NormaliseForStack(parent), parent));

    if (typeInfo::AreEquivalent(child, parent))
    {
        return TRUE;
    }

    if (parent.IsUnboxedGenericTypeVar() || child.IsUnboxedGenericTypeVar())
    {
        return (FALSE); // need to have had child == parent
    }
    else if (parent.IsType(TI_REF))
    {
        // An uninitialized objRef is not compatible to initialized.
        if (child.IsUninitialisedObjRef() && !parent.IsUninitialisedObjRef())
        {
            return FALSE;
        }

        if (child.IsNullObjRef())
        { // NULL can be any reference type
            return TRUE;
        }
        if (!child.IsType(TI_REF))
        {
            return FALSE;
        }

        return CompHnd->canCast(child.m_cls, parent.m_cls);
    }
    else if (parent.IsType(TI_METHOD))
    {
        if (!child.IsType(TI_METHOD))
        {
            return FALSE;
        }

        // Right now we don't bother merging method handles
        return FALSE;
    }
    else if (parent.IsType(TI_STRUCT))
    {
        if (!child.IsType(TI_STRUCT))
        {
            return FALSE;
        }

        // Structures are compatible if they are equivalent
        return CompHnd->areTypesEquivalent(child.m_cls, parent.m_cls);
    }
    else if (parent.IsByRef())
    {
        return tiCompatibleWithByRef(CompHnd, child, parent);
    }
#ifdef _TARGET_64BIT_
    // On 64-bit targets we have precise representation for native int, so these rules
    // represent the fact that the ECMA spec permits the implicit conversion
    // between an int32 and a native int.
    else if (parent.IsType(TI_INT) && typeInfo::AreEquivalent(nativeInt(), child))
    {
        return TRUE;
    }
    else if (typeInfo::AreEquivalent(nativeInt(), parent) && child.IsType(TI_INT))
    {
        return TRUE;
    }
#endif // _TARGET_64BIT_
    return FALSE;
}